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ABSTRACT
The extension of Gröbner bases concept from polynomial algebras
over fields to polynomial rings over rings allows to tackle numer-
ous applications, both of theoretical and of practical importance.
Gröbner and Gröbner-Shirshov bases can be defined for various
non-commutative and even non-associative algebraic structures.
We study the case of associative rings and aim at free algebras
over principal ideal rings. We concentrate ourselves on the case of
commutative coefficient ring without zero divisors (i. e. a domain).
Even working over Z allows one to do computations, which can be
treated as universal for fields of arbitrary characteristic. By using
the systematic approach, we revisit the theory and present the algo-
rithms in the implementable form. We show drastic differences in
the behavior of Gröbner bases between free algebras and algebras,
close to commutative. Even the formation of critical pairs has to
be reengineered, together with the criteria for their quick discard-
ing. We present an implementation of algorithms in the Singular
subsystem called Letterplace, which internally uses Letterplace
techniques (and Letterplace Gröbner bases), due to La Scala and
Levandovskyy. Interesting examples accompany our presentation.

CCS CONCEPTS
•Computingmethodologies→Algebraic algorithms; Special-
purpose algebraic systems.

KEYWORDS
Non-commutative algebra; Gröbner bases; Coefficients in rings;
Algorithms

ACM Reference Format:
Viktor Levandovskyy, TobiasMetzlaff, and KarimAbou Zeid. 2020. Computa-
tion of free non-commutative Gröbner Bases overZwith Singular:Letterplace.
In Proceedings of 2020 ACM International Symposium on Symbolic and Al-

gebraic Computation (ISSAC ’20). ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSAC ’20, July 20–23, 2020, Kalamata, Messinia, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

INTRODUCTION
In the recent years a somewhat strange attitude has established
itself around Gröbner bases: non-commutative generalizations of
various concepts, related to algorithms and, in particular, Gröbner
bases, are often met with expressions like “as expected”, “straight-
forward”, “more or less clear” and so on. This is not true in general
for generalizations to various flavours of non-commutativity re-
quire deep analysis of procedures (algorithms) based on very good
knowledge of properties of rings and modules over them. Char-
acteristically, in this paper we demonstrate in e. g. Example 2.4
and 2.5, how intrinsically different Gröbner bases over Z⟨X ⟩ are
even when compared with Gröbner bases over Q⟨X ⟩, not taking
the commutative case into account. An example can illustrate this
better than a thousand words: the same set {2x, 3y} delivers a finite
strong Gröbner basis {3x, 3y,yx, xy} over Z⟨x,y⟩ and an infinite
Gröbner basis over Z⟨x,y, z1, . . . , zm⟩ for anym ≥ 1, containing
e. g. xzki y,yz

k
i x for any natural k .

In his recent articles and in the book [18] Teo Mora has pre-
sented "a manual for creating your own Gröbner bases theory"
over effective associative rings. This development is hard to un-
derestimate, for it presents a unifying theoretical framework for
handling very general rings. On the other hand, procedures and
even algorithms related to Gröbner bases in such frameworks are
still very complicated. Therefore, when aiming at implementation,
one faces the classical dilemma: generality versus performance.
Perhaps the most general implementation which exists is the JAS
system by Heinz Kredel [8]. In our attempts we balance the gen-
erality with the performance; based on Singular, we utilize its’
long and successful experience with data structures and algorithms
in commutative algebra. Notably, the recent years have seen the
in-depth development of Gröbner bases in commutative algebras
with coefficients in principal ideal rings (O. Wienand, G. Pfister,
A. Frühbis-Krüger, A. Popescu, C. Eder, T. Hofmann and others),
see e. g. [5–7, 16]. This required massive changes in the structure
of algorithms; ideally, one has one code for several instances of
Gröbner bases with specialization to particular cases. In particular,
the very generation of critical pairs and the criteria for discarding
them without much effort were intensively studied. These devel-
opments were additional motivation for us in the task of attacking
Gröbner bases in free algebras over commutative principal ideal
rings, with Z at the first place. There are plenty of other motiva-
tions for doing these: currently, to the best of our knowledge, no
computer algebra system is able to do such computations. Also,
a number of highly interesting applications wait to be solved: in
studying representation theory of a finitely presented algebra (i. e.
the one, given by generators and relations), computations over Z
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remain valid after specification to any characteristic and thus en-
code a universal information. In the system Felix by Apel et al.
[2, 3], such computations were experimentally available, though
not documented. In his paper [1], Apel demonstrates Gröbner bases
of several nontrivial examples over Z⟨X ⟩, the correctness of which
we can easily confirm now.

Our secret weapon is the Letterplace technology [9–11, 14], which
allows the usage of commutative data structures at the lowest level
of algorithms. We speak, however, in theory, the language of free al-
gebras over rings, since this is mutually bijective with the language
of Letterplace.

This paper is organized as follows: In the first chapter we fix
the notations which are necessary when dealing with polynomial
rings. Subsequently, in the second chapter we generalize the notion
of Gröbner bases for our setup, present a theoretical version of
Buchberger’s algorithm and give examples to visualize significant
differences compared to the field case or the commutative case.
Implementation of Buchberger’s algorithm depends on and ben-
efits from the choice of pairs, which we will discuss in the third
chapter. This is followed up by computational examples and imple-
mentational aspects to confirm important examples from the cited
literature in the fourth and fifth chapter.

1 GRÖBNER BASICS
All rings are assumed to be associative and unital, but not neces-
sarily commutative.

We want to discuss non-commutative Gröbner bases over the
integers Z. Equivalently one can take any commutative Euclidean
domain or principal ideal domain1 R.

We work towards an implementation and therefore we are in-
terested in algorithms, that is in procedures, which terminate after
a finite number of steps. Since Z⟨X ⟩ is not Noetherian, there exist
finite generating sets whose Gröbner bases are infinite with respect
to any monomial well-ordering. Therefore, our typical computation
is executed subject to the length bound (where length is meant
literally, applied to words from the free monoid ⟨X ⟩), specified in
the input, and therefore terminates per assumption. Thus, we talk
about algorithms in this sense.

Our main goal is to obtain an algorithm to construct a Gröbner
basis over such a ring, finding or adjusting criteria for critical pairs
and giving an effective method to implement Buchberger’s algo-
rithm in the computer algebra system Singular. The problem of
applying the statements of commutative Gröbner basis over Eu-
clidean domains and principal ideal rings, such as in [6, 7, 16, 17],
are divisibility conditions of type LM(f ) | LM(д). We start with the
construction of S-polynomials.

Let X = {x1, . . . , xn } denote the finite alphabet with n letters.
We set P = R⟨X ⟩, the free R-algebra of X , where all words on X
form a basis B of P as of the free R-module (from now on we say
shortly “B is an R-basis”). Moreover, let Pe = P ⊗R Popp be the
free enveloping R-algebra with basis Be = {x ⊗ y | x, y ∈ B}. The
natural action Pe ×P → P, (x ⊗y, r ) 7→ x · r ·y makes a bimodule
P into a left Pe -module. We call the elements of B monomials.

1This concept can be extended to principal ideal rings. It was done in the commutative
case by [5] with so-called annihilator polynomials.

Let ⪯ be a monomial well-ordering on B. An element f ∈ P is
a polynomial which is either zero or has a degree deg(f ) ∈ N0 and,
w.r.t. ⪯, a leading coefficient LC(f ) ∈ R \ {0}, a leading monomial

LM(f ) ∈ B and a leading term LT(f ) = LC(f )LM(f ) , 0. We
denote by |w | the length of the word w ∈ ⟨X ⟩. An ordering ≻ is
called length-compatible, if u ≺ w implies |u | ≤ |w |. Every subset
G ⊆ P yields a two-sided ideal, the ideal of leading terms L(G) =
⟨LT(f ) | f ∈ G \ {0}⟩.

Naturally, the definitions of leading coefficient, monomial and
term carry over to an element h ∈ Pe by considering h · 1 ∈ P.

Definition 1.1. Let x, y ∈ B. We say that x and y have an overlap,
if there exist monomials a1, a2 ∈ B, such that at least one of the
following four cases

(1) xa1 = a2y (2) a1x = ya2 (3) a1xa2 = y (4) x = a1ya2

holds. Additionally we say that x and y have a non-trivial overlap,
if in the first two cases |a1 | < |y | and |a2 | < |x |. In the third,
respectively fourth case, we say that x divides y, respectively y
divides x . The set of all elements which are divisible by both x andy
is denoted by cm(x, y) (“common multiple”). The set of all minimal,
non-trivial elements which are divisible by both x and y is denoted
by lcm(x, y) (“least...”), i. e. t ∈ lcm(x, y), if and only if there exist
τx , τy ∈ Be , such that t = τxx = τyy, representing non-trivial
overlaps of x and y, and if t, t̃ ∈ lcm(x, y) with t̃ = τt for some
τ ∈ Be , then t = t̃ and τ = 1 ⊗ 1. If there are only trivial overlaps,
then lcm(x, y) = ∅.

If LM(д) divides LM(f ) for f , д ∈ P, then LM(д) ⪯ LM(д),
because ⪯ is a monomial well-ordering with 1 (representing the
empty word) as the smallest element.

2 NON-COMMUTATIVE GRÖBNER BASES
A Gröbner basis G ⊆ P \ {0} is a generating set for a two-sided
ideal I ⊆ P with the property L(I) ⊆ L(G). In the field case,
this guarantees the existence of a so-called Gröbner representation,
which we will redefine subsequently, and for any f ∈ I \ {0} the
existence of an element д ∈ G, such that LT(д) divides LT(f ).

Definition 2.1. Let f , д ∈ P \ {0}, G ⊆ P \ {0} be a countable
set and I ⊆ P be an ideal. Assume, that we fix a monomial well-
ordering ⪯.

We say thatд LM-reduces f , if LM(д) divides LM(f )with LM(f ) =
τLM(д) for some τ ∈ Be and there are a, b ∈ R, a , 0 and b <E
LC(f ) (in the Euclidean norm), such that LC(f ) = a LC(д)+b. Then
the LM-reduction of f by д is given by f − aτд.

We say that f has a strong Gröbner representation w.r.t. G, if
f =

∑m
i=1 hiдi with m ∈ N, дi ∈ G, hi ∈ Pe and there exists a

unique 1 ≤ j ≤ m, such that LM(f ) = LM(hjдj ) and LM(f ) ≻

LM(hiдi ) for all i , j where hi , 0.
G is called a strong Gröbner basis for I, if G is a Gröbner basis

for I and for all f ′ ∈ I \ {0} there exists д′ ∈ G, such that LT(д′)
divides LT(f ′).

LM-reductions are the key to obtain a remainder after division
through a set G (usually a generating set) and used in Buchberger’s
algorithm to construct a Gröbner basis from G. In this sense, the
idea of a Gröbner basis is to deliver a unique remainder when divid-
ing through it. Since we operate in a polynomial ring of multiple
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variables, the expression “reduction” is more justified than “divi-
sion” to describe a chain of LM-reductions. The outcome of such
a reduction, i. e. the remainder of the division, is then known as a
normal form.

The following strong normal form algorithm uses LM-reductions
and can be compared to the normal form algorithms in algebras
over fields (cf. [12]).

NormalForm

input: f ∈ P \ {0}, G ⊆ G finite and partially ordered
output: normal form of f w.r.t. G
01: h = f
02: while h , 0 and Gh = {д ∈ G | д LM-reduces h} , ∅ do
03: choose д ∈ Gh
04: choose a, b ∈ R with:

a , 0, LC(h) = aLC(д) + b and | |b | | <E | |LC(h)| |
05: choose τ ∈ Be with LM(h) = τLM(д)
06: h = h − aτд, the LM-reduction of h by д
07: end while
08: return h

A normal form of the zero-polynomial is always unique and zero.
Termination and correctness are analogous to the classical proofs.

The output of the algorithm is in general not unique, but depends
on the choice of elements д ∈ Gh which are used for reduction.

We confirm, that the proof of the following theorem carries over
verbatim from the commutative case.

Theorem 2.2. Let G ⊆ P \ {0} and {0} , I ⊆ P. Then the

following statements with respect to G and ⪯, are equivalent.

(1) G is a strong Gröbner basis for I.

(2) Every f ∈ I \ {0} has a strong Gröbner representation.
(3) Every f ∈ P \ {0} has a unique normal form after reduction.

The proof is analogous to the commutative case in [16]. An early
“weak” non-commutative version was proven by Pritchard in [20].

Such a strong Gröbner basis can be computed with Buchberger’s
algorithm using syzygy relations between leading monomials of
generating polynomials. In the field case, this is done with S-poly-
nomials. However, it does not suffice, when leading coefficients are
non-invertible.

Definition 2.3. Let f , д ∈ P \ {0}. There exist τf , τд ∈ Be , such
that τf LM(f ) = τдLM(д) ∈ cm(LM(f ), LM(д)). Furthermore, let
a = lcm(LC(f ), LC(f )) and af , aд ∈ R, such that a = af LC(f ) =
aдLC(д). In a Euclidean domain, the least common multiple is
uniquely determined up to a sign and so are af , aд . Then a S-

polynomial of f and д is defined as

spoly(f , д) := af τf f − aдτдд.

It is well known from the commutative case over rings that
it does not suffice to take such S-polynomials to obtain a strong
Gröbner basis. Let I = ⟨f = 3x, д = 2y⟩. Then every S-polynomial
of f and д is zero, but clearly xy = f y − xд ∈ I has a leading term
which is neither divisible by LT(f ) nor LT(д). Thus, { f , д} is not a
strong Gröbner basis for I. The problematic polynomial xy could
be constructed by looking at the greatest common divisor of the
leading coefficients of f and д.

Let b = gcd(LC(f ), LC(f )) and bf , bf ∈ R, such that b =
bf LC(f )+bдLC(д) (the Bézout identity for the leading coefficients).
As above, b is unique in a Euclidean domain as a greatest com-
mon divisor, although the Bézout coefficients bf , bд may not be,
but depend on the implementation of a Euclidean algorithm. A
G-polynomial of f and д is defined as

gpoly(f , д) := bf τf f + bдτдд.

So far everything seems to work out as in the commutative case.
We consider some examples to see, that this assumption is wrong.

Example 2.4. Let f = 2xy, д = 3yz ∈ Z⟨x, y, z⟩. Usually we
would compute an S-polynomial (which is zero) and a G-polynomial

gpoly(f , д) := (−1) · 2xy · z + 1 · x · 3yz = xyz

and add them to { f , д} to obtain a strong Gröbner basis for I =
⟨f , д⟩ ⊆ P. But clearly

gpoly′(f , д) := (−1) · 2xy ·w · yz + 1 · xy ·w · 3yz = xywyz

is also a G-polynomial of f , д for everyw ∈ B and must be added
to the basis. In other words there is no finite Gröbner basis for I
and we have to be satisfied with computing up to a fixed maximal
leading monomial or length. Note that in the case of gpoly we
computed a G-polynomial in the canonical way by looking for a
non-trivial overlap of xy and yz. In the case of gpoly′ we ignored
this overlap. In the commutative case this is irrelevant, because
then gpoly(f , д) | gpoly′(f , д). Furthermore, in the field case this
is also irrelevant, because then we do not need G-polynomials.

Example 2.5. A similar problem occurs with S-polynomials. Let
f = 2xy + x, д = 3yz + z. Then spoly(f , д) = 3f z − 2xд =
3xz − 2xz = xz is an S-polynomial of f and д. However, so are all
polynomials

spoly′(f , д) := 3f wyz − 2xywд = 3xwyz − 2xywz

for any monomialw ∈ B. Now we can reduce spoly′(f , д) with f
and д to

(spoly′(f , д) − xwд) + f wz = −2xywz + f wz = xwz

which does not reduce any further. Therefore, we have to add
spoly′(f , д) to the basis. And even this is not enough. For f =
2xy + x we see that

spoly′(f , f ) := f wxy − xyw f = xwxy − xywx , 0

is an S-polynomial of f with itself which does not reduce any
further, because the leading coefficient of f is not a unit and we
need LM(f )wLM(f ) ∈ cm(LM(f ), LM(f )), although it is clearly
not contained in lcm(LM(f ), LM(f )). So even principal ideals do
not have finite strong Gröbner bases in general. This case of S-
polynomials does not occur over fields and is completely new for
non-commutative polynomials over R.

Also, note that we do not consider any further extensions of
the leading monomials, meaning that the S- and G-polynomial
corresponding to t ∈ lcm(LM(f ), LM(д) or LM(f )wLM(д) make
any further (trivial) overlap relations τt or τ (LM(f )wLM(д)) for
τ ∈ Be redundant. Therefore, in the definition of lcm(x, y) we
attached importance to the minimality.
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The previous example shows that we have to consider all possible
S- and G-polynomials, but those are infinitely many. Moreover,
the set cm(LM(f ), LM(д)) contains too many elements that are
redundant whereas the set lcm(LM(f ), LM(д)) is too small. The
following definition is made to classify two types of S- and G-
polynomials, namely those corresponding to non-trivial overlap
relations and those corresponding to trivial ones.

Definition 2.6. Let f , д ∈ P \ {0} and af , aд, bf , bд ∈ R as in
2.3. We distinguish the following two cases.

If LM(f ) and LM(д) have a non-trivial overlap, then there exist
t ∈ lcm(LM(f ), LM(д)) and τf , τд ∈ Be , such that t = τf LM(f ) =
τдLM(д). Furthermore, we assume that τf = 1 ⊗ tf , τд = tд ⊗

1 or τf = 1 ⊗ 1, τд = tд ⊗ t ′д for tf , tд, t ′д ∈ B with |tf | <

|LM(д)|, |tд |, |t
′
д | < |LM(f )|. We define a first type S-polynomial of

f and д w.r.t. t as

spolyt1(f , д) := af τf f − aдτдд

and a first type G-polynomial of f and д w.r.t. t as

gpolyt1(f , д) := bf τf f + bдτдд.

If such τf , τд do not exist then we set the first type S- and G-
polynomials both to zero. Since two monomials may have several
non-trivial overlaps, these τf , τд are not unique.More precisely, this
results from P not being a unique (but merely a finite) factorization
domain.

For anyw ∈ B we define the second type S-polynomial of f and
д w.r.t.w by

spolyw2 (f , д) := af f wLM(д) − aдLM(f )wд

and the second type G-polynomial of f and д w.r.t.w as

gpolyw2 (f , д) := bf f wLM(д) + bдLM(f )wд.

Remark 2.7. Clearly, it only makes sense to consider first type
S- and G-polynomials if there is a non-trivial overlap of the lead-
ing monomials. However, as Example 2.4 shows, we always need
to consider second type S- and G-polynomials. For any w ∈ B

we have LM(f )wLM(д) ∈ cm(LM(f ), LM(д)) and LM(д)wLM(f ) ∈
cm(LM(f ), LM(д)), which are distinct in general. Therefore, we
need to consider both spolyw2 (f , д) and spoly

w
2 (д, f ) and the same

holds for second type G-polynomials. Also, note that the set of
first type S- and G-polynomials is finite, because our monomial
ordering is a well-ordering, whereas the set of second type S- and
G-polynomials is infinite. Therefore, we need to fix an upper bound
for the length of monomials which may be involved.

It is important to point out, that the elements τf , τд are not
uniquely determined. Take for example f = 2xyx + y, д = 3x + 1.
Then t := xyx = LM(f ) = xyLM(д) ∈ lcm(LM(f ), LM(f )), but
also t = LM(д)yx and thus spolyt1(f , д) = −3f + 2дyx = 2yx − 3y
and (spolyt1)

′(f , д) = −3f + 2xyд = 2xy − 3y are both first type
S-polynomials with different leading monomials.

A finite set G ⊆ P is called length-bounded strong Gröbner basis

for an ideal I, if there is a Gröbner basis G′ for I, such that G ⊆ G′

contains precisely the elements of G′ of length smaller or equal to
d for some d ∈ N.

The following algorithm uses Buchberger’s criterion 2.8 as a
characterization for strong Gröbner bases, which we will prove
subsequently. It computes S- and G-polynomials up to a fixed degree

and reduces them with the algorithm NormalForm in order to
obtain a length-bounded strong Gröbner basis for an input ideal.

BuchbergerAlgorithm

input: I = ⟨f1, . . . , fk ⟩ ⊆ R⟨X ⟩, d ∈ N, NormalForm
output: length-bounded strong Gröbner basis G for I
01: G = { f1, . . . , fk }
02: L = {spolyt1(fi , fj ), gpoly

t
1(fi , fj ) | ∀ t

∗, i, j}
03: L = L ∪ {spolyw2 (fi , fj ), gpoly

w
2 (fi , fj ) | ∀w

∗∗, i, j}
04: while L , ∅ do
05: choose h ∈ L

06: L = L \ {h}
07: h = NormalForm(h, G)
08: if h , 0 then
09: G = G ∪ {h}
10: for д ∈ G do
11: L = L ∪ {spolyt1(д, h), gpoly

t
1(д, h) | ∀ t

∗}

L = L ∪ {spolyt1(h, д), gpoly
t
1(h, д) | ∀ t

∗}

L = L ∪ {spolyw2 (д, h), gpoly
w
2 (д, h) | ∀w

∗∗∗}

L = L ∪ {spolyw2 (h, д), gpoly
w
2 (h, д) | ∀w

∗∗∗}

12: end do
13: end if
14: end while
15: return G

∗ t ∈ lcm, such that |t | < d
∗∗ w ∈ B, such that |LM(fi )| + |w | + |LM(fj )| < d
∗∗∗ w ∈ B, such that |LM(h)| + |w | + |LM(д)| < d

For the algorithm to terminate we need the set L to eventually
become empty. This happens, if and only if after finitely many steps
every S- and G-polynomial based on any combination of leading
terms has normal form zero w.r.t G, i. e. there exists a chain of
LM-reductions, such that the current S- or G-polynomial reduces
to zero. However, LM-reductions only use polynomials of smaller
or equal length and all of these are being computed. Therefore, the
algorithm terminates.

For the correctness of the algorithm we still need a version of
Buchberger’s criterion. More precisely, we want G to be a Gröb-
ner basis for I, if and only if for every pair f , д ∈ G all their
S- and G-polynomials reduce to zero. Moreover, we only want to
consider first and second type S- and G-polynomials, i. e. only use
t ∈ cm(LM(f ), LM(д)), such that one of the following four cases

(1) t = LM(f )t ′f = tдLM(д) (2) t = LM(f ) = tдLM(д)t ′д

(3) t = tf LM(f ) = LM(д)t ′д (4) t = tf LM(f )t ′f = LM(д)

holds for tf , t ′f , tд, t
′
д ∈ B. This excludes all cases where t is not

minimal, i. e. t = τt ′ for τ ∈ Be and t ′ satisfying one of the above
four cases. Pritchard has proven in [20], that for a generating set of
the left syzygy module (which is not finitely generated in general)
we may use only minimal syzygies.

Lemma 2.8. Let G ⊆ P \ {0}. Then G is a strong Gröbner basis

for I := ⟨G⟩, if and only if for every pair f , д ∈ G their first and

second type S- and G-polynomials reduce to zero w.r.t. G.
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Proof. The proof is similar to the commutative case and the
idea goes back to [16]. The “only if” part follows immediately from
Theorem 2.2.
For “if” let f ∈ I \ {0} with f =

∑
i hiдi for some hi ∈ Pe .

We set t := max(LM(hiдi )) and M := {i ∈ N | LM(hiдi ) = t}.
Clearly LM(f ) ⪯ t and we may assume that there is no other
representation of f where t is smaller. Withour loss of gener-
ality let M = {1, . . . , m}. Moreover, since the Euclidean norm
induces a well-ordering, we can choose a representation where∑m
i=1 |LC(hi )LC(дi )| is minimal w.r.t. t . If M contains exactly one

element, then t = LM(f ) and we have a strong standard rep-
resentation of f w.r.t. G. Suppose otherwise that card(M) > 1.
Then t ⪰ LM(f ). Note that t = LM(hiдi ) = LM(hi )LM(дi ) for
i ≤ m. Then there exist monomials t1, t ′1, t2, t

′
2 ∈ B, such that

t = t1LM(д1)t ′1 = t2LM(д2)t ′2. This induces an overlap relation of
the leading monomials, because then there exist s1, s ′1, s2, s

′
2 ∈ B,

such that one of the following four cases

(1) LM(д1)s
′
1 = s2LM(д2) =: T (2) LM(д1) = s2LM(д2)s

′
2 =: T

(3) s1LM(д1) = LM(д2)s
′
2 =: T (4) s1LM(д1)s

′
1 = LM(д2) =: T

holds and t = τT for some τ ∈ Be . Moreover, let τ1, τ2 result from
s1, s ′1, s2, s

′
2, such that T = τ1LM(д1) = τ2LM(д2). Furthermore, let

a1, a2 ∈ R with a1LC(д1) = a2LC(д2) = lcm(LC(д1), LC(д2)) and
d := gcd(LC(д1), LC(д2)) = b1LC(д1) + b2LC(д2) ∈ R (the Bézout
identity for the leading coefficients). Now, ifT corresponds to a non-
trivial overlap, then we can compute spolyT1 (д1, д2), gpoly

T
1 (д1, д2)

or spolyT1 (д2, д1), spoly
T
1 (д2, д1), respectively. Otherwise there ex-

istsw ∈ B, such that T = LM(д1)wLM(д2) or T = LM(д2)wLM(д1).
In this case we are interested in spolyw2 (д1, д2), gpoly

w
2 (д1, д2)

or spolyw2 (д2, д1), spoly
w
2 (д2, д1), respectively. This shows that

spoly(д1, д2) := a1τ1д1−a2τ2д2 and gpoly(д1, д2) := b1τ1д1+b2τ2д2
are first or second type S- and G-polynomials and LM(h1) = ττ1,
LM(h2) = ττ2.

As d is a greatest common divisor, there exists a ∈ R \ {0}, such
that ad = LC(h1)LC(д1) + LC(h2)LC(д2) or equivalently
LC(h1)LC(д1) = b1LC(д1) + b2LC(д2) − LC(h2)LC(д2), i. e. there is
b ∈ R \ {0} with LC(h1) = ab1 + ba1, LC(h2) = ab2 − ba2.

Then, since |a1LC(д1) + a2LC(д2)| > 0 and by the triangle in-
equality, we have

|LC(h1)LC(д1)| + |LC(h2)LC(д2)|
=|(ab1 + ba1)LC(д1)| + |(ab2 − ba2)LC(д2)|
≥|ab1LC(д1)| + |ba1LC(д1)| + |ab2LC(д2)| + |ba2LC(д2)|
> |ab1LC(д1)| + |ab2LC(д2)| ≥ |ab1LC(д1) + ab2LC(д2)| = |ad |,

thus |ad | is strictly smaller than |LC(h1)LC(д1)| + |LC(h2)LC(д2)|.
Furthermore, we have

h1д1 + h2д2

=(LC(h1)LM(h1) tail(h1))д1 + (LC(h2)LM(h2) tail(h2))д2
=(ab1 + ba1)ττ1д1 + tail(h1)д1 + (ab2 − ba2)ττ2д2 + tail(h2)д1
=aτ (b1τ1д1 + b2τ2д2) + bτ (a1τ1д1 − a2τ2д2) + tail(h1)д1 + tail(h2)д1
=aτ gpoly(д1, д2) + bτ spoly(д1, д2) + tail(h1)д1 + tail(h2)д1.

Since the S- and the G-polynomials are of first or second type, they
reduce to zero w.r.t. G. Hence, we can write h1д1 + h2д2 =

∑
j h

′
jдj

for h′j ∈ Pe and define M ′ := {j ∈ N | LM(h′jдj ) = t}. Since

LM(τ spoly(д1, д2)) ≺ t , LM(tail(h1)д1) ≺ t and LM(tail(h2)д1) ≺ t ,
we have∑
j ∈M ′

|LC(h′j )LC(дj )| =
∑
j ∈M ′

|LC(h′jдj )| =

=|LC(dτ gpoly(д1, д2))| = |ad | < |LC(h1)LC(д1)| + |LC(h2)LC(д2)|,

which contradicts our assumption that the leading coefficient of our
original representation are minimal. Therefore,M contains exactly
one element and thus we have a strong Gröbner representation of
f w.r.t. G, i. e. G is a strong Gröbner basis for I. □

This is similar to a statement over fields which can be found
in [21]. The point is that these overlap relations or “obstructions”
tf LM(f )t ′f = tдLM(д)t ′д correspond to S- and G-polynomials up to
coefficients. But, since the coefficients are uniquely determined by
f and д and we compute S- and G-polynomials for all pairs, we do
not loose any information. Now let τf = tf ⊗ t ′f , τд = tд ⊗ t ′д ∈ Be ,
t ∈ cm(LM(f ), LM(д)) with t = τf LM(f ) = τдLM(д). Then there
exists a t ′ ∈ cm(LM(f ), LM(д)) that satisfies one of the above four
cases (1) – (4) and τ , τ ′f , τ

′
д ∈ Be , such that t = τt ′ = τ ′f LM(f ) =

τ ′дLM(д) and τf = ττ ′f , τд = ττ
′
д . Let

• spoly(f , д) = af τf f − aдτдд • gpoly(f , д) = bf τf f + bдτдд
• spoly′(f , д) = af τ

′
f f − aдτ

′
дд • gpoly′(f , д) = bf τ ′f f + bдτ

′
дд

be the corresponding S- and G-polynomials. Clearly spoly′(f , д),
gpoly′(f , д) are first or second type S- and G-polynomials and we
have spoly(f , д) = τ spoly′(f , д) and gpoly(f , д) = τ gpoly′(f , д).
Therefore, if spoly′(f , д), gpoly′(f , д) reduce to zero w.r.t. G, then
so do spoly(f , д) and gpoly(f , д).

It is possible to define monic or reduced Gröbner basis in our
setup. For monic Gröbner bases, this was done by Li in [15]. Such a
set is a Gröbner basis where every element is a monic polynomial,
i. e. has leading coefficient 1. A similar notion is reduced Gröbner
basis which satisfies three properties. A proposal for this definition
was also made in [19]. Let G ⊆ P \ {0}. Then G is called a reduced
Gröbner basis, if

(1) every д ∈ G has leading coefficient with signum 1,
(2) L(G \ {д}) ⊊ L(G) for every д ∈ G and
(3) LT(tail(д)) < L(G) for every д ∈ G.
The first condition states that, in the case of R = Z, every el-

ement of a reduced Gröbner basis has leading coefficient in Z+.
The second condition is sometimes referred to as “simplicity” and
means that the leading ideal becomes strictly smaller when remov-
ing an element, thus no element is useless. The third condition,
“tail-reduced”, is required in the classical field case with commuta-
tive polynomials to ensure that a reduced Gröbner basis is unique.
However, this does not suffice in our setup: for instance, Pritchard
gave a counterexample in [20].

Let f = 2y2, д = 3x2 + y2 and I = ⟨f , д⟩. Then { f , д} is a
Gröbner basis for I with respect to any ordering x ≻ y and satisfies
the above three conditions. On the other hand, this is also true for
{ f , д′} where д′ = д − f = 3x2 − y2, so we have two different
reduced Gröbner bases for I. In the field case the polynomial д is
not tail-reduced. This example can be used in both the commutative
and non-commutative case.
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When implementing a version of Buchberger’s algorithm, one
should always aim to have a reduced Gröbner basis as an output.
In fact this is more practical, because removing elements which are
not simplified or tail reduced speeds up the computation, since we
do not need to consider them in critical pairs.

Lemma 2.9. Suppose, that G ⊂ R⟨X ⟩ is a result of a Gröbner basis

computation up to a length bound d ∈ N, and thus finite. G is a strong

Gröbner basis of the ideal it generates, if and only if a Gröbner basis

computation up to a length bound 2d − 1 does not change L(G).

Proof. It suffices to prove the "if" part. Assume that G′ is a
result of a computation up to degree 2d − 1 and L(G) = L(G′). This
means that all overlap relations of length 2d−1, which are precisely
the non-trivial overlap relations for polynomials of degree up to
d , do not enlarge the leading ideal. In other words, all first kind S-
and G-polynomials reduce to zero. Because G is finite and since
for a Gröbner basis over fields or respectively for a “weak” (not
strong) Gröbner basis over rings, we only need non-trivial overlap
relations, this is the characterizing property of a Gröbner basis. □

If we additionally assume that a Gröbner basis computation up
to degree 2d does not change L(G), then this means that the trivial
overlap relations LM(f )LM(д), which are of length ≤ 2d , do not
add new polynomials to the basis. It remains to prove that this
suffices for all trivial overlap relations LM(f )wLM(д) withw ∈ B

to be irrelevant. Moreover, we need to take the divisibility condition
LT(д) | LT(f ) into account. As a consequence we could replace
“Gröbner basis” with “strong Gröbner basis” in Lemma 2.9.

3 CRITICAL PAIRS
To improve BuchbergerAlgorithm, we need criteria to deter-
mine which pairs of polynomials of the input set yield S- and G-
polynomials which reduce to zero. In the followingwewill recall the
criteria for discarding critical pairs known from the commutative
case and analyze, which of them can be applied in the case R⟨X ⟩.
We also consider special situations and give counterexamples when
no criterion can be derived from them.

Remark 3.1. First we consider the case where t := LM(f ) is
divisible by (or even equals to) LM(д). Then lcm(LM(f ), LM(д))
contains exactly one element, namely t , because it is the only min-
imal element that is divisible by both leading monomials. There-
fore, spolyt1(f , д) and gpolyt1(f , д) are the only first type S- and
G-polynomials. However, these are not uniquely determined, we
might have more overlap relations of LM(f ), LM(д), as we have
seen in the previous example of Remark 2.7, and we still need
second type S-polynomials.

The following Lemma has the obvious consequence that G-
polynomials are redundant over fields.

Lemma 3.2. (cf. [7, 16]) Let f , д ∈ P \ {0}. If LC(f ) | LC(д) in R,

then every G-polynomial of f and д is redundant.

Proof. By the hypothesis we have b = lcm(LC(f ), LC(д)) =
LC(f ). Let r ∈ R, such that rLC(f ) = LC(д). Then LC(f ) = (nr +
1)LC(f ) − nLC(д) yields any possible Bézout identity for b, where
n ∈ Z. Thus, with t = τf LM(f ) = τдLM(д), every G-polynomial of
f and д has shape gpoly(f , д) = (nr + 1)τf f − nτдд = LC(f )t +

n(rτf tail(f ) −τд tail(д))+τf tail(f ). Subtracting τf f , we can reduce
this to n(rτf tail(f ) − τд tail(д)). Note that rτf tail(f ) − τд tail(д) is
an S-polynomial of f and д. Hence, every G-polynomial of f and д
reduces to zero, after we compute their S-polynomials. □

For f ∈ P\{0}we define recursively tail0(f ) := f and taili (f ) :=
tail(taili−1(f )) for i ≥ 1 when taili−1(f ) , 0.

Lemma 3.3. (Buchberger’s product criterion, cf. [7, 16]) Let f , д ∈

P \ {0} andw ∈ B, such that

(1) LC(f ) and LC(д) are coprime over R,

(2) LM(f ) and LM(д) only have trivial overlaps and

(3) for all i, j ≥ 1,w does not satisfy:

LM(taili (f ))wLM(д) = LM(f )wLM(tailj (д)) .

Then s := spoly
w
2 (f , д) reduces to zero w.r.t. { f , д}.

Proof. Under the assumptions (1) and (2)wehave s = f wLT(д)−
LT(f )wд = f w(д−tail(д))−(f −tail(f ))wд = tail(f )wд− f wtail(д).
Note that tail(f )wд reduces to zero w.r.t. д and f wtail(д) reduces
to zero w.r.t. f .

By (3) we can assume without loss of generality that LT(s) =
LT(tail(f ))wLT(д). Then s reduces to s ′ := s − LT(tail(f ))wд =
tail(tail(f ))wд − tail(д)w f and LM(s ′) ≺ LM(s). Again by (3) there
is no cancellation of leading terms and, since ≺ is a well ordering,
we iteratively see that s reduces to zero. □

Remark 3.4. The commutative version of Buchberger’s product
(cf. [7, 16]) criterion states, that the S-polynomial reduces to zero,
if the leading terms are coprime over K[X ].

Condition (3), or rather its negation, describes a very specific re-
lation between the monomials of f andд, which can occur infinitely
often in theory and yield irreducible S-polynomials. The reader is
reminded here that there is only a finite amount of suchw ∈ B, that
satisfy this relation and are considered in Buchberger’s algorithm,
because we only compute with monomials up to a certain length.

The version over fields for this criterion is much simpler, be-
cause then we only considerw to be the empty word which clearly
satisfies (3). Moreover, (1) is redundant and Buchberger’s product
criterion states that an S-polynomial reduces to zero when the
leading monomials have only trivial overlap relations.

We consider further situation where we might find applications
for criteria.

Example 3.5. If LM(f ) and LM(д) do not overlap and the leading
coefficients are not coprime, i. e. lcm(LC(f ), LC(д)) , 1, then we
can make no a priori statement about reduction. This only applies
to second type S- and G-polynomials. Take for example f = 4xy +
x, д = 6zy+z ∈ Z⟨X ⟩ = Z⟨x, y, z⟩ in the degree left lexicographical
ordering with x ≻ y ≻ z. Then spoly12(f , д) = 3f zy − 2xyд =
3xzy−2xyz and gpoly12(f , д) = (−1)f zy+1xyд = 2xyzy+xyz−xzy
both do not reduce any further and thus must be added to the
Gröbner basis just as any other second type S- and G-polynomial.

Also, for first type S- and G-polynomials no statement can be
made when the leading coefficients are not coprime. For example in
the case of f = 4xy+y, д = 6yz+y we have spolyxyz1 (f , д) = 3f z−
2xд = 3yz−2xy and gpolyxyz1 (f , д) = (−1)f z+1xд = 2xyz−yz+xy
which do not reduce any further.
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Remark 3.6. Recall that the pair { f , д} can be replaced in the
commutative case (cf. [7]) by {spoly(f , д), gpoly(f , д)}, if t =
LM(f ) = LM(д) (cf. [7]). Now, if LM(f ) = LM(д) then in the defini-
tion of first type S- and G-polynomials we have τf = τд = 1⊗ 1 and
therefore spolyt1(f , д) = af f − aдд and gpolyt1(f , д) = bf f + bдд.
This yields a linear equation(

spolyt1(f , д)
gpolyt1(f , д)

)
=

(
af −aд
bf bд

) (
f
д

)
,

where the defining matrix has determinant af bд + aдbf = 1, and
thus is invertible over R. Hence, we can obtain f and д from their S-
and G- polynomial and replace them. The importance of this state-
ment was discussed for the commutative case in [7] and translates
equivalently to the non-commutative one.

The following two lemmata are chain criteria, which are based
on the idea to have two critical pairs and derive a third one from
them under certain conditions. The commutative versions for both
criteria were proven in [7].

Lemma 3.7. (Buchberger’s S-chain criterion, cf. [7, 16]) LetG ⊆ P\

{0} and f , д, h ∈ G. For a, b ∈ { f , д, h} let lcm(LM(a), LM(b)) ,
∅ and fix Tab ∈ lcm(LM(a), LM(b)) and choose τab ∈ Be

with

τabLM(a) = Tab . There exist τba ∈ Be
, such that τbaLM(b) = Tab .

We assume that Tab = Tba . Furthermore, let

(1) Thд = Tдh be divisible by both Thf and Tдf with δдf Thf =
Thд and δhf Tдf = Tдh for some δдf , δhf ∈ Be

,

(2) LC(f ) | lcm(LC(д), LC(h)) over R and

(3) spoly

Tf д
1 (f , д) and spoly

Tf h
1 (f , h) both have strong Gröbner

representations w.r.t. G.

Then spoly

Tдh
1 (f , д) has a strong Gröbner representation w.r.t. G.

Proof. Let cab :=
lcm(LC(a), LC(b))

LC(a)
for a, b ∈ { f , д, h}. Then

chд

chf
δдf spoly

Tf h
1 (f , h) −

cдh

cдf
δhf spoly

Tf д
1 (f , д)

=
chд

chf
δдf (cf hτf h f − chf τhf h) −

cдh

cдf
δhf (cf дτf д f − cдf τдf д)

=cдhδhf τдf д − chдδдf τhf h +

(
chдcf h

chf
δдf τf h −

cдhcf д

cдf
δhf τf д

)
f

and with τhдLM(h) = Thд = δдf Thf = δдf τhf LM(h) we have
δдf τhf = τhд ∈ Be . Analogously δhf τдf = τдh and thus the

first term equals spolyTдh1 (д, h). Moreover, one can observe that
cf hchдcдf = cf дcдhchf . Finally, δдf Tf h = δдf Thf = Thд and
Tдh = δhf Tдf = δhf Tf д implies δдf τf h = δhf τf д in Pe , hence
chд

chf
δдf spoly

Tf h
1 (f , h) −

cдh

cдf
δhf spoly

Tf д
1 (f , д) = spolyTдh1 (д, h),

which shows that spolyTдh1 (д, h) has a strong Gröbner representa-
tion w.r.t. G. Clearly this also works for second type S-polynomials
spolyw2 (д, h) or spoly

w̃
2 (h, д) if we choosew or w̃ , such that either

LM(д)wLM(h) = Tдh or LM(h)w̃LM(д) = Thд . □

We give a similar criterion for G-polynomials

Lemma 3.8. (Buchberger’s G-chain criterion, cf. [7, 16]) Let G ⊆

P \ {0} and f , д, h ∈ G. We use the notation Tab and τab from

Buchberger’s S-chain criterion. Let

(1) Thд = Tдh be divisible by both Thf and Tдf with δдf Thf =
Thд and δhf Tдf = Tдh for some δдf , δhf ∈ Be

and

(2) LC(f ) | gcd(LC(д), LC(д)) with d :=
gcd(LC(д), LC(д))

LC(f )
.

Then gpoly

Tдh
1 (д, h) has a strong Gröbner representation w.r.t. G.

Proof. First of all note that

gpolyTдh1 =gcd(LC(д), LC(h))Tдh + bдτдh tail(д) + bhτhд tail(h),

spolyTf д1 =
LC(д)
LC(f )

τf д f − τдf д =
LC(д)
LC(f )

τf д tail(f ) − τдf tail(д),

spolyTf h1 =
LC(h)
LC(f )

τf h f − τhf h =
LC(h)
LC(f )

τf h tail(f ) − τhf tail(h)

(leaving out arguments of S- and G-polynomials). SinceTf h divides
Tдh , there existsw ∈ Be withwLM(f ) = Tдh . Then

wLM(f ) = Tдh = δдf Tf h = δдf Tf hLM(f ).

Hence,w = δдf τf h and analogouslyw = δhf τf д .
Moreover, dwLC(f )LM(f ) = gcd(LC(д), LC(h))Tдh and finally

we obtain

gpolyTдh1 − dw f + bдδhf spoly
Tf д
1 + bhδдf spoly

Tf h
1

= gcd(LC(д), LC(h))Tдh − (gcd(LC(д), LC(h))Tдh + dw tail(f ))

+ bдτдh tail(д) + bдδhf
(
LC(д)
LC(f )

τf д tail(f ) − τдf tail(д)
)

+ bhτhд tail(h) + bhδдf
(
LC(h)
LC(f )

τf h tail(f ) − τhf tail(h)
)

=bдτдh tail(д) + bhτhд tail(h) − dw tail(f ) + bд
LC(д)
LC(f )

δhf τf д tail(f )

− bд δhf τдf︸  ︷︷  ︸
=τдh

tail(д) + bh
LC(h)
LC(f )

δдf τf h︸  ︷︷  ︸
=δhf τf д

tail(f ) − bh δдf τhf︸  ︷︷  ︸
=τhд

tail(h)

=

(
bдLC(д) + LC(h)

LC(f )
δhf τf д − dw

)
tail(f ) = d(δhf τf д −w) tail(f ) = 0.

Thus,

gpolyTдh1 = dw f − bдδhf spoly
Tf д
1 − bhδдf spoly

Tf h
1

is a strong Gröbner representation of gpolyTдh1 (д, h). □

We conclude that thewell-known criteria for S- andG-polynomials
from the commutative case can also be applied in the non-commutative
case with modifications, if we distinguish between first and second
type S- and G-polynomials. Computations can show how hard these
requirements are to be fulfilled compared to the commutative case
by specifically counting the number of applications of product and
chain criteria.

4 EXAMPLES
We give examples for Gröbner bases that have been computed up
to a certain length bound over the integers. These examples also
show that although computing over Z delivers infinite results much
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more often than when computing over fields, non-commutative
Gröbner bases over Z can be finite as well.

For the examples which will follow, let P = Z⟨x, y, z⟩ with the
degree left lexicographical ordering and x ≻ y ≻ z.

Example 4.1. (cf. [1]) We consider the ideal I = ⟨f1 = yx −3xy−
3z, f2 = zx − 2xz + y, f3 = zy − yz − x⟩ ⊂ P.
At first, we analyze this ideal over the field Q:

LIB "freegb.lib"; // initialization of free algebras
ring r = 0,(z,y,x),Dp; // degree left lex ord on z>y>x
ring R = freeAlgebra(r,7); // length bound is 7
ideal I = y*x - 3*x*y - 3*z, z*x - 2*x*z +y, z*y-y*z-x;
option(redSB); option(redTail); // for minimal reduced GB
option(intStrategy); // avoid divisions by coefficients
ideal J = twostd(I); // compute a two-sided GB of I
J; // prints generators of J

The output is a finite Gröbner basis

{4xy + 3z, 3xz − y, 4yx − 3z, 2y2 − 3x2, 2yz + x,

3zx + y, 2zy − x, 3z2 − 2x2, 4x3 + x}.

As we see, original generators have decomposed. In order to com-
pute their expressions in the Gröbner basis above, one can use the
lift command. In particular, yx − 3xy − 3z = − 3

4 (4xy + 3z) +
1
4 (4yx − 3z). Now, it seems from the form of leading monomials,
that Q⟨x, y, z⟩/J is finite dimensional vector space. Let us check it:

LIB "fpadim.lib"; // load the library for K-dimensions
lpMonomialBasis(7,0,J); // compute all monomials
// of length up to 7 in Q<x,y,z>/J

which results in {1, z, y, x, x2}.
Now, we proceed to work over Z. For doing this, we need just

one change in the code above, namely in the definition of a ring

ring r = integer,(z,y,x),Dp;

The output has plenty of elements in each degree (which is the same
as length because of the degree ordering), what hints at potentially
infinite Gröbner basis (what we confirm below) and the elements,
which can be subsequently constructed, are

{ f1, f2, f3, 12xy + 9z, 9xz − 3y, 6y2 − 9x2, 6yz + 3x,

3z2 + 2y2 − 5x2, 6x3 − 3yz, 4x2y + 3xz, 3x2z + 3xy + 3z,

2xy2 + 3x3 + 3yz + 3x, 3xyz + 3y2 − 3x2, 2y3 + x2y + 3xz,

2x4 + y2 − x2, 2x3y + 3y2z + 3xy + 3z, x2yz + xy2 − x3,

xy2z − y3 + x2y, x5 − y3z − xy2 + x3, y3z2 − x4y,

x4z + x3y + 2y2z + x2z + 3xy + 3z, xy3z − y4 + x4 − y2 + x2,

xy4z − y5 + x2y3, xy5z − y6 + x4y2 + y4 + x4 + 2y2 − 2x2}.

We can show that for every 2 ≤ i ∈ N I contains an element xyiz+
l.o.t. and these are the only polynomials which have to be added to
the above set in order to obtain a Gröbner basis for I. Therefore
this Gröbner basis is infinite, but can be presented in finite terms.
Also, we note that the original generators have been preserved in
any Gröbner basis, while over Q they were decomposed.

Example 4.2. Let I = ⟨f1 = yx − 3xy − z, f2 = zx − xz +y, f3 =
zy −yz −x⟩ ⊂ P. Then I has a finite strong Gröbner basis, namely

{ f1, f2, f3, 8xy + 2z, 4xz − 2y, 4yz + 2x,

2x2 − 2y2, 4y2 − 2z2, 2z3 − 2xy}.

As we can see, the leading coefficients of the Gröbner basis above
might vanish, if we pass to the field of characteristic 2. Therefore
the bimoduleM := Z⟨x, y, z⟩/I might have nontrivial 2-torsion, i. e.
there is a nonzero submoduleT2(M) := {p ∈ M : ∃n ∈ N0 2n ·p ∈ I }.
By adopting the classical method of Caboara and Traverso for
computing colon (or quotient) ideals to our situation, where we
use the fact that the ground ring is central (i. e. commutes with all
variables), we do the following:
LIB "freegb.lib";
ring r = integer,(x,y,z),(c,dp); // position-over-term order
ring R = freeAlgebra(r,7,2); // 2==number of components
ideal I = y*x - 3*x*y - z, z*x - x*z +y, z*y-y*z-x;
option(redSB); option(redTail);
ideal J = twostd(I); module N;
N = 2*ncgen(1)*gen(1)+ncgen(2)*gen(2),J*ncgen(1)*gen(1);
module SN = twostd(N); SN;

Above, gen(i) stands for the i-th canonical basis vector (commut-
ing with everything) and ncgen(i) - for the i-th canonical genera-
tor of the free bimodule, which commutes only with constants.

The output, which is a list of vectors, looks as follows:
...
SN[9]=[0,z*z*z*ncgen(2)-x*y*ncgen(2)]
SN[10]=[2*ncgen(1),ncgen(2)]
SN[11]=[z*y*ncgen(1)-y*z*ncgen(1)-x*ncgen(1)]
...

From this output we gather all vectors with 0 in the first component
ncgen(1), which results into an ideal, whose Gröbner basis is

{zy − yz − x, zx − xz + y, yx + xy, 2yz + x,

2xz − y, 2y2 − z2, 4xy + z, x2 − y2, z3 − xy}.

Another step of the colon computation terminates, therefore we
have computed the saturation ideal of I at 2, denoted by
L = I : 2∞ ⊂ Z⟨x, y, z⟩. It is the presentation for the 2-torsion
submodule T2(M) = Z⟨x, y, z⟩L/I and, moreover, 2 · L ⊂ I ⊂ L
holds.

Example 4.3. Another ideal that has a finite Gröbner basis is
I = ⟨f1 = yx − 3xy, f2 = zx + y2, f3 = zy − yz + z2⟩. A Gröbner
basis of I is given by

{ f1, f2, f3, 2y3 + y2z − 2yz2 + 2z3, 14yz3 − 28z4,

y2z2 − 4yz3 + 6z4, 27xy2z − 54xyz2 + 54xz3 + y4, 14z5,

2yz4 − 6z5, y4z, y5, 2xyz3 − 4xz4, 27xy3z, 2z6, 2xz5}.

Example 4.4. In this example we have to run a Gröbner basis of
⟨f1 = zy−yz+z2, f2 = zx +y2, f3 = yx − 3xy⟩ up to length bound
11, in order to prove with the Lemma 2.9 that we have computed a
finite Gröbner basis. We use degree right lexicographical ordering,
while its left version and elimination orderings do not result in
finite sets
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{ f1, f2, f3, 2y3 + y2z − 2yz2 + 2z3,

y2z2 − 4yz3 + 6z4, y4 + 27xy2z − 54xyz2 + 54xz3,

54xy2z − y3z − 108xyz2 + 108xz3 + 62yz3 − 124z4, 14z5,

14yz3 − 28z4, 2yz4 − 6z5, 2xyz3 − 4xz4, xy3z, 2z6, 2xz5}.

As we can see from the leading terms, the corresponding module
might have 2- and 7-torsion submodules.

There have been 17068 critical pairs created, and internal total
degree of intermediate elements was 11. The product criterion has
been used 196 times, while the chain criterion was invoked 36711
times. Totally, up to 2.9 GB of memory was allocated.

In the contrast, the Gröbner basis computation of the same input
over Q considered only 14 critical pairs, went up to total degree 6,
used no product criterion and 9 times the chain criterion with less
than 1 MB of memory. The result is

{ f1, f2, f3, 2y3 + y2z − 2yz2 + 2z3, yz3 − 2z4,

y2z2 − 2z4, xy2z − 2xyz2 + 2xz3, z5}.

5 IMPLEMENTATION
We have created a powerful implementation called Letterplace
[13] in the framework of Singular. Its’ extension to coefficient
rings like Z addresses the following functions with the current re-
lease for ideals and subbimodules of a free bimodule of a finite rank.
All these can be executed with respect to the orderings like degree
right and left lexicographical, weighted degree left lexicographical,
left and right total elimination, extra weight ordering extension. For
modules, position-over-term and term-over-position constructions
are available.
twostd: a two-sided Gröbner basis; run with respect to an elimina-
tion ordering, it allows t eliminate variables, and thus to compute
kernels of ring morphisms and preimages of ideals under such;
reduce (NF): a normal form of a vector or a polynomial with
respect to a two-sided Gröbner basis;
syz: a generating set of a syzygy bimodule of an input;
lift: computation of a transformation matrix between a module
and its submodule, in other words expressing generators of a sub-
module in terms of generators of a module;
liftstd: computation of a two-sided Gröbner basis and a transfor-
mation matrix of a given ideal or subbimodule and, optionally, a
syzygy bimodule.

6 CONCLUSION AND FUTUREWORK
Following Mora’s “manual for creating own Gröbner basis theory”
[18], we have considered the case of free non-commutative Gröbner
bases for ideals and bimodules over Z⟨X ⟩. We have derived novel
information on the building critical pairs and on criteria to discard
them when possible. Armed with this theoretical and algorithmic
knowledge, we have created an implementation in a Singular sub-
system Letterplace, which offers a rich functionality at a decent
speed.

In this paper we have demonstrated several important appli-
cations of our algorithms and their implementation, in particular

the determination of torsion submodules with respect to natural
numbers.

A further adaptation of our implementation to the explicitly
given Z/mZ is planned, as well as the development (also a theo-
retical) of one-sided Gröbner bases in factor algebras (over fields,
Letterplace already offers rightStd). More functions for dealing
with matrices will make possible the usage of our implementation
as a backend from the system HomAlg [4]. This system performs
homological algebra computations within computable Abelian cat-
egories and uses other computer algebra systems as backends for
concrete calculations with matrices over rings.

7 ACKNOWLEDGEMENTS
The authors are grateful to Gerhard Pfister (Kaiserslautern), Anne
Frühbis-Krüger (Oldenburg), Leonard Schmitz, Eva Zerz (RWTH
Aachen) and Evelyne Hubert (INRIA) for fruitful discussions.

The first and third authors (V. Levandovskyy and K. Abou Zeid)
have been supported by Project II.6 of SFB-TRR 195 “Symbolic Tools
in Mathematics and their Applications” of the German Research
Foundation (DFG).

The work of the second author (T. Metzlaff) has been supported
by European Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Skłodowska-Curie Actions, grant agree-
ment 813211 (POEMA).

REFERENCES
[1] J. Apel. 2000. Computational ideal theory in finitely generated extension rings.

Theor. Comput. Sci. 244, 1-2 (2000), 1–33.
[2] J. Apel and U. Klaus. 1991. FELIX – an assistant for algebraists. In Proc. of the

International Symposium on Symbolic and Algebraic Computation (ISSAC’91). ACM
Press, 382–389.

[3] J. Apel and U. Klaus. 1998. FELIX, a Special Computer Algebra System for
the Computation in Commutative and Non-commutative Rings and Modules.
http://felix.hgb-leipzig.de

[4] Mohamed Barakat, Sebastian Gutsche, and Markus Lange-Hegermann. 2019.
homalg - A homological algebra meta-package for computable Abelian categories.
https://homalg-project.github.io/homalg_project/homalg/.

[5] Christian Eder and Tommy Hofmann. 2019. Efficient Gröbner Bases Computation
over Principal Ideal Rings. https://arxiv.org/abs/1906.08543.

[6] Christian Eder, Gerhard Pfister, and Adrian Popescu. 2016. New Strategies for
Standard Bases over Z. https://arxiv.org/abs/1609.04257.

[7] Christian Eder, Gerhard Pfister, and Adrian Popescu. 2018. Standard Bases over
Euclidean Domains. https://arxiv.org/abs/1811.05736.

[8] Heinz Kredel. 2015. Parametric Solvable Polynomial Rings and Applications.
In Proc. CASC’15, Vladimir P. Gerdt, Wolfram Koepf, Werner M. Seiler, and
Evgenii V. Vorozhtsov (Eds.). Springer International Publishing, Cham, 275–291.
https://doi.org/10.1007/978-3-319-24021-3_21

[9] Roberto La Scala. 2014. Extended letterplace correspondence for nongraded
noncommutative ideals and related algorithms. Int. J. Algebra Comput. 24, 8
(2014), 1157–1182.

[10] Roberto La Scala and Viktor Levandovskyy. 2009. Letterplace ideals and non-
commutative Gröbner bases. Journal of Symbolic Computation 44, 10 (2009),
1374–1393. https://doi.org/10.1016/j.jsc.2009.03.002

[11] Roberto La Scala and Viktor Levandovskyy. 2013. Skew polynomial rings, Gröbner
bases and the letterplace embedding of the free associative algebra. JSC 48, 1
(2013), 110–131. http://dx.doi.org/10.1016/j.jsc.2012.05.003

[12] V. Levandovskyy. 2005. Non–commutative computer algebra for polynomial alge-

bras: Gröbner bases, applications and implementation. Doctoral thesis, Universität
Kaiserslautern.

[13] Viktor Levandovskyy, Karim Abou Zeid, and Hans Schönemann. 2020. Singu-
lar:Letterplace — A Singular 4-1-2 Subsystem for Non-commutative Finitely
Presented Algebras. http://www.singular.uni-kl.de.

[14] Viktor Levandovskyy, Grischa Studzinski, and Benjamin Schnitzler. 2013. En-
hanced Computations of Gröbner Bases in Free Algebras as a New Application
of the Letterplace Paradigm. In Proc. of the International Symposium on Symbolic

and Algebraic Computation (ISSAC’13), Manuel Kauers (Ed.). ACM Press, 259 –
266.

9

http://felix.hgb-leipzig.de
https://homalg-project.github.io/homalg_project/homalg/
https://arxiv.org/abs/1906.08543
https://arxiv.org/abs/1609.04257
https://arxiv.org/abs/1811.05736
https://doi.org/10.1007/978-3-319-24021-3_21
https://doi.org/10.1016/j.jsc.2009.03.002
http://dx.doi.org/10.1016/j.jsc.2012.05.003
http://www.singular.uni-kl.de


[15] Huishi Li. 2012. Algebras Defined by Monic Gröbner Bases over Rings. Interna-
tional Mathematical Forum 7 (2012), 1427–1450.

[16] Daniel Lichtblau. 2012. Effective computation of strong Gröbner bases over
Euclidean domains. Illinois Journal of Mathematics 56 (2012), 177–194.

[17] Thomas Markwig, Yue Ren, and Oliver Wienand. 2015. Standard Bases in mixed
Power Series and Polynomial Rings over Rings. Journal of Symbolic Computation

79 (09 2015). https://doi.org/10.1016/j.jsc.2016.08.009
[18] Teo Mora. 2016. Solving Polynomial Equation Systems IV: Volume 4, Buchberger

Theory and Beyond (1st ed.). Cambridge University Press.

[19] Franz Pauer. 2007. Gröbner bases with coefficients in rings. Journal of Symbolic

Computation 42 (2007), 1003 – 1011. https://doi.org/10.1016/j.jsc.2007.06.006
[20] F. Leon Pritchard. 1996. The ideal membership problem in non-commutative

polynomial rings. J. Symb. Comput. 22, 1 (1996), 27–48. https://doi.org/10.1006/
jsco.1996.0040

[21] G. Studzinski. 2013. Implementation and Applications of Fundamental Algorithms

relying on Gröbner Bases in Free Associative Algebras. Doctoral thesis, RWTH
Aachen University.

10

https://doi.org/10.1016/j.jsc.2016.08.009
https://doi.org/10.1016/j.jsc.2007.06.006
https://doi.org/10.1006/jsco.1996.0040
https://doi.org/10.1006/jsco.1996.0040

	Abstract
	1 Gröbner basics
	2 Non-commutative Gröbner Bases
	3 Critical Pairs
	4 Examples
	5 Implementation
	6 Conclusion and Future Work
	7 Acknowledgements
	References

