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Abstract

Recently, Iwahori-Hecke algebras were associated to Kac-Moody groups over non-
Archimedean local fields. In a previous paper, we introduced principal series representa-
tions for these algebras and partially generalized Kato’s irreducibility criterion. In this
paper, we study how some of these representations decompose when they are reducible
and deduce information on the irreducible representations of these algebras.

1 Introduction

The reductive case

Let G be a split reductive group over a non-Archimedean local field IC. To each open compact
subgroup K of G is associated a Hecke algebra H(K). Let I be the Iwahori subgroup of G.
Then the Hecke algebra H¢ associated with [ is called the Iwahori-Hecke algebra of G and
plays an important role in the representation theory of G. Its representations have been
extensively studied.

Let Y be the cocharacter lattice of G and let Tt be the set of nonzero algebra morphisms
from C[Y'] to C. By the Bernstein-Lusztig relations, H¢ contains the group algebra C[Y] of Y.
Thus if 7 € T, one can define the induced representation I of Hc. Let W' be the vectorial
(i.e finite) Weyl group of G. Then I, admits a basis indexed by W" and has dimension
|W"|. Representations of the form I, for 7 € T were introduced by Matsumoto in [Mat77]
and are called principal series representations. By [Mat77, (4.2.4) Théoréme|, every
irreducible representation of Hc is a quotient of I and embeds in I+, for some 7,7’ € T and
thus studying principal series representations enables to get information on the irreducible
representations of Hc.

Iwahori-Hecke algebras in the Kac-Moody case

Kac-Moody groups are infinite dimensional (if not reductive) generalizations of reductive
groups. Let now G be a split Kac-Moody group (for Tits definition) over a non-Archimedean
local field K. In [BIK11] and [BIKP16], Braverman, Kazhdan and Patnaik defined the spherical
Hecke algebra and the Iwahori-Hecke H¢ of G when G is affine. Bardy-Panse, Gaussent and



Rousseau generalized these constructions to the case where G is a general Kac-Moody group.
Very few is known on the representation theory of Hc (see [GR14] and [BPGRI16]).

Let Y be the cocharacter lattice of G and W be the Weyl group of G. The algebra
Hc can be embedded in the Bernstein-Lusztig algebra B*Hc. As a vector space BMHc is
Hywv c @ C[Y], where Hyyv ¢ is the Hecke algebra of the Coxeter group W* and C[Y] is the
group algebra of Y. It is equipped with a product % defined by some relations called the
Bernstein-Lusztig relations. The algebra Hc is then the subalgebra Hyyv ¢ @ C[Y ], where
Y+t =Y NT, where T is some convex cone (the Tits cone) of Y ® R (in the reductive case,
Yt =Y).

Weighted representations of B¢ and Hc

Let M be a representation of B“Hc (resp. Hc) and 7 € Tg (resp. T = Hom,,(C[Y1],C) \
{0}). We say that 7 is a weight of M if there exists m € M \ {0} such that 8.m = 7(0).m,
for every m € M (resp. 6 € C[YT]).

We call a representation M (resp. MT) of B2 H¢ (resp. Hc) weighted if for every m € M
(resp. m € M), C[Y].m (resp. C[Y"].m) is finite dimensional. In the reductive case, every
irreducible representation of BLHc = Hc is finite dimensional and is therefore weighted.
In the Kac-Moody (non reductive) case however, there always exist infinite dimensional
irreducible representations of BYH¢ or He (see [Heb18, Remark 5.11]). However, we do not
know if there exist non weighted irreducible representations of BYH¢ or He. In this paper,
we are mainly interested in the weighted representations.

As we shall see (see Proposition 3.1) if M is a weighted representation of BLH¢, then the
Hc-submodules of M are exactly the restrictions to H¢ of the BtHe-submodules of M. In
particular, M is BYH c-irreducible if and only if it is Hc-irreducible. We give a characterization
of the weighted representations of H¢ that can be extended to a representation of BXH¢ (see
Proposition 3.2). Depending on G, it may happen that every weighted representation of Hc¢
extends to a representation of BLH¢ (for example when G is affine or associated to a size 2
Kac-Moody matrix). In this case it is equivalent to study the weighted representations of
BL7 ¢ and the weighted representations of Hc. Note that we constructed in [Hch18, 4.2.1]
examples of weighted representations of H¢ which cannot be extended to representations of
BLHC.

We then restrict our study to the weighted representations of B*H¢ and more specifically
to the principal series representations of BXHc.

Principal series representations of B*H¢

In [Heb 18], we associated to each 7 € Tt a representation [, called a principal series rep-
resentation. A motivation to study these representations if that every weighted irreducible
representation of BX%¢ is the quotient of I, for some 7 € T¢ (see [Heh18, Proposition 3.8]).
In this paper, we study, under some assumptions on 7 € T, the submodules of I, and the
irreducible (weighted) representations admitting 7 as a weight.

The action of W on Y induces an action of W" on T¢. Let 7 € T and let W, be
the fixator of 7 in W". As we shall see (Lemma 5.3), W, decomposes as W, = Wiy x R,
where W(;) is some reflection subgroup of W, and R is a generalization of the “R-group”
introduced by Knapp and Stein in [[XS572|. Let ¢ be the residue cardinal of K and ®" be the
coroot system of G. Let Uy = {7 € T¢|r(a") # ¢, VoV € &V}, Then:

Theorem 1. (see [Héb18, Introduction, Theorem 3, 4|) Let 7 € T¢. Suppose that I, is
irreducible. Then:



1. R; = {1} (or equivalently W, = W)
2. T € Uc.

Moreover, if GG is associated with a size 2 Kac-Moody matrix, then I is irreducible if and
only if 7 satisfies (1) and (2).

When G is reductive, [, is irreducible if and only if 7 satisfies (1) and (2) by [Mat77,
Théoréme 4.3.5] and [[Kat81, Theorem 2.4].

One says that 7 is regular when W, = 1. We mainly focus on the following cases:
e 7 is regular,

e 7 € Uc and the Kac-Moody matrix defining G has size 2.

The case where 7 is regular

Let 7 € Tt be regular. There exists a set . C W such that (W",.%) is a Coxeter system.
Let G be the non-oriented graph defined as follows. Its vertices are the [, ., for w € W"
and for v, w € W there is an edge between v and w if w = sv for some s € .. If w € W
and s € .7, then dim Homeryy, —mod (L., Isw.r) = 1. We choose a nonzero intertwining map
A’LU,S’LU,T : Iw.T — ]sw.T-

A path I'in G is a finite sequence I' = (F(l), . ,F(k)) = (Lyyrs Lwyrs - - Ly, ) such that
for all i € [1,n — 1], w,-+1wz-_l € .. Then we define an intertwining map Ar : I, .» — Ly, +
by Ar = Ay, wpr © -+ © Ay, The path I' is said to be reduced if k = {(wpwi ).
Let v,w € W" and I' be any reduced path between [,, and [I,,. Then Ar # 0 and
HomBLHC_mOd([U.T, ]w..r) = CAF.

Let e = (Ly.r, Lsw.r), with w € W¥ and s € .. Then A, : I, — Is,., is an isomorphism
if and only if w.7(a¥) € C\ {¢.¢"'}. Let G be the diagram obtained from G by deleting
the edges e for which A, is not an isomorphism. We call a submodule M of I, strongly
indecomposable if for all family (M;);e; of submodules such that .., M; = M, there
exists j € J such that M; = M. Then we prove the following theorem (see Proposition 4.9
and Theorem 4.21):

Theorem 2. 1. Let w € W". Then there exists (up to isomorphism) a unique irreducible
representation M of BY%{ admitting w.7 as a weight. Let C'(w) be the connected
component of G containing I,,,. Then dim M = |C(w)| = [{v € W*|I,, ~ L,.}|
(this cardinal can be infinite) and the set of weights of M} is {v.7 € W'.7| I, €

w.T

C(w)}. In particular, for all v,w € WY, M ~ M if and only if C(v) = C(w).

T

2. For each connected component C of G, choose a vertex Ly, of C' and choose a reduced
path I's from I, to I;. Then the map C Ar, (Iwé.T) is a bijection from the set of

connected components of G to the set of strongly indecomposable submodules of I.

3. Let M be a submodule of I.. Let SI(M) (resp. MSI(M)) be the set of strongly
indecomposable submodules (resp. maximal strongly indecomposable submodules) of
M. Then M =3y ysian IV and if M C SI(M) is such that M = >y N, then

MSI(M) C M.



The case where 7 € U¢

We now assume that G is associated with a size 2 Kac-Moody matrix and we fix 7 € Uc.
Then for all w € W", I is isomorphic to I, ,. For J C Endsry,. mea(/;) a right ideal and
M C I, a submodule, we set:

J(I;) = ¢(I;) and Jy = {¢ € Endoryy, —moa(I-)|6(I;) C M}.
ped

Then (see Proposition 5.27, Theorem 5.34, Theorem 5.38 and Lemma 5.40):

Theorem 3. 1. The map M +— Jy, is a bijection from the set of submodules of I to the
set of right ideals of Enderyy._moea(f7). Its inverse is J — J(I;).

2. Endsry, (I;) is isomorphic to the group algebra C[R,|.
3. The set of possible R, is exactly {1}, Z/27Z, Z, the infinite dihedral group D..

4. The map M +— I./M is a surjection from the set of maximal submodules of I.. to the
set of irreducible representations of B'H ¢ admitting the weight 7. It is a bijection if
and only if every maximal right ideal of End([/;) is two-sided (which is the case when
R, is commutative). In this case these representations have dimension [W,||W"/W.|
(it can be infinite).

We conjecture that for the assumption on the size of the Kac-Moody matrix is useless for
the points (1), (2) and (4).

Frameworks Actually, following [BPGR16] we study Iwahori-Hecke algebras associated to
abstract masures. In particular our results also apply when G is an almost-split Kac-Moody
group over a non-Archimedean local field. In this case, most of the results of this introduction
are true but the formulas are more complicated (they are given in the paper). Point (2) of
Theorem 3 can fail. In sections 3 and 4 we work over a field F which can be different from
C.

The paper is organized as follows.

In section 2, we recall the definition of the Iwahori-Hecke algebras and of the principal
series representations.

In section 3, we introduce the weighted representations and study the links between the
weighted representations of H¢ and those of BMHc.

In section 4, we study I, for 7 € Tt regular and prove Theorem 2.

In section 5, we study I, for 7 € U and prove Theorem 3.
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2 Iwahori-Hecke algebras

Let G be a Kac-Moody group over a non-archimedean local field. Then Gaussent and
Rousseau constructed a space Z, called a masure on which G acts, generalizing the con-
struction of the Bruhat-Tits buildings (see [GROg|, [Roul6] and [Roul7]). In [BPGRI10]
Bardy-Panse, Gaussent and Rousseau attached an Iwahori-Hecke algebra Hz to each masure
satisfying certain conditions and to each ring R. They in particular attach an Iwahori-Hecke
algebra to each almost-split Kac-Moody group over a local field. The algebra Hx is an algebra
of functions defined on some pairs of chambers of the masure, equipped with a convolution
product. Then they prove that under some additional hypothesis on the ring R (which are
satisfied by R and C), Hr admits a Bernstein-Lusztig presentation. In this paper, we will
only use the Bernstein-Lusztig presentation of Hz and we do not introduce masures. We
however introduce the standard apartment of a masure. We restrict our study to the case

where R = F is a field.

2.1 Standard apartment of a masure

A Kac-Moody matrix (or generalized Cartan matrix) is a square matrix A = (a;;):jer
indexed by a finite set I, with integral coefficients, and such that :

(@) ¥ (i,5) € 12, (i # ) = (ai; < 0);
(¢4i) V (i,7) € I?, (a;; = 0) < (a;; = 0).

A root generating system is a 5-tuple S = (A, X, Y, (®)ier, (@) )icr) made of a Kac-Moody
matrix A indexed by the finite set I, of two dual free Z-modules X and Y of finite rank,
and of a free family («;);e; (respectively (o) )icr) of elements in X (resp. Y) called simple
roots (resp. simple coroots) that satisfy a;; = «o;(q;) for all 4,5 in /. Elements of X
(respectively of Y') are called characters (resp. cocharacters).



Fix such a root generating system S = (A4, XY, (;)ier, () )icr) and set A := Y @ R.
Each element of X induces a linear form on A, hence X can be seen as a subset of the dual
A*. In particular, the «;’s (with ¢ € I') will be seen as linear forms on A. This allows us to
define, for any ¢ € I, an involution r; of A by setting 7;(v) := v — a;(v)a; for any v € A. Let
& = {r;|i € I} be the (finite) set of simple reflections. One defines the Weyl group of
S as the subgroup W of GL(A) generated by .. The pair (W",.%) is a Coxeter system,
hence we can consider the length ¢(w) with respect to . of any element w of W*. If s € .7,
s = r; for some unique i € I. We set oy = o; and o) = ).

The following formula defines an action of the Weyl group W" on A*:

VreAweW' achA* (wa)lz):=alw o).

Let @ := {w.oy|(w,i) € W¥ x I} (resp. @ = {w.o)|(w,i) € W" x I}) be the set of real
roots (resp. real coroots): then ® (resp. ®V) is a subset of the root lattice Q7 := @ Loy
(resp. coroot lattice Qy = @, ; Za;’). By [[Kum02, 1.2.2 (2)], one has Ra’ N &Y :Z{ej:av}
and RaN® = {+a} for all a¥ € &Y and «a € P.

As in the reductive case, define the fundamental chamber as C} := {v € A | Vs €
S, as(v) > 0}.

Let T := U w.C7 be the Tits cone. This is a convex cone (see [Kum02, 1.4]).

weWv

Onesets Yt =Y NT.
Remark 2.1. By [Kac9/, §4.9] and [Kac9/, § 5.8] the following conditions are equivalent:

1. the Kac-Moody matriz A is of finite type (i.e. is a Cartan matriz),
2. A=T
3. WV is finite.

2.2 Recalls on Coxeter groups
2.2.1 Bruhat order

Let (W, -#) be a Coxeter system. We equip it with the Bruhat order <y, (see [BB05,
Definition 2.1.1]). We have the following characterization (see [BB05, Corollary 2.2.3|): let
u,w € Wy. Then u <y, w if and only if every reduced expression for w has a subword that
is a reduced expression for u if and only if there exists a reduced expression for w whose
subword is a reduced expression for u. By [BB05, Proposition 2.2.9], (Wy, <w,) is a directed
poset, i.e for every finite set £ C W), there exists w € W) such that v <y, w for all v € E.

We write < instead of <yw. For u,v € W@, we denote by [u,v], [u,v), ... the sets
{we W lu<w<v}, {fweW'|lu<w<ov}, ...

2.2.2 Reflections and coroots

Let Z = {wsw Hw € W? s € ./} be the set of reflections of W*. Let r € #Z. Write
r =wsw ', where w € W? s € . and ws > w (which is possible because if ws < w, then
r = (ws)s(ws)™). Then one sets o, = w.as € O (resp. o = w.a) € ®Y). This is well
defined by the lemma below.

Lemma 2.2. (see [Hch18, Lemma 2.2]) Let w,w' € W" and s,s" € . be such that wsw™" =

w's'w' ™t and ws > w, w's’ > w'. Then w.a; = w'.ay € Oy and w.a) = w'.a, € PY.
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Lemma 2.3. (see [Hcb18, Lemma 2.3]) Let r,r' € Z and w € W? be such that w.c, =
or w.ay = ay,. Then wrw™ =1r".

Let r € Z. Then for all x € A, one has:

r(z) =x — a.(z)a).

Let a¥ € ®V. One sets rov = wsw™! where (w,s) € W* x . is such that o¥ = w.aY. This
is well defined, by Lemma 2.3. Thus " + r,v and r — « induce bijections ®Y — # and
X — Y.

For w € W, set Nov(w) = {a" € ®Y|w.a¥ € PV}

Lemma 2.4. ([Kum02, Lemma 1.3.14]) Let w € W". Then |Ngv(w)| = {(w) and if w =

S1...5p is a reduced expression, then Nov(w) = {o) ,sp.0) ... 50 ... s9.00) }.

2.3 Iwahori-Hecke algebras

In this subsection, we give the definition of the Iwahori-Hecke algebra via its Bernstein-Lusztig
presentation.

2.3.1 The algebra BLH(T%)

Let Ry = Z[(0s)ser, (0))ser|, where (04)se.r, (0L)ser are two families of indeterminates
satisfying the following relations:

o if ay(Y) = Z, then o, = 0’;

e if 5,t € . are conjugate (i.e. such that a(a;) = ay(a)) = —1), then o5 = 0, = 0, =

/
o

Definition 2.5. Let F be a field of characteristic 0 and f : Ry — F be a morphism such
that f(os), f(ol) € F*, for every s € .. We write o or ol instead of f(os), f(ol). Let

S S

Hww r be the Hecke algebra of the Coxeter group W' over F, that is:
e as a vector space, Hwo 5 = @, cppo F Hy, where H,,, w € WY are symbols,

Hg, if (sw) =0(w)+1

Vse.SNweW", Hyx H, = i
[ S € ’ we ’ . {(Us - Us_l)Hw + st 1f g(S’LU) = e(w) o 1

Let F[Y] be the group algebra of Y over F, that is:

e as a vector space, F[Y] = @,y FZ*, where the Z*, A\ € Y are symbols,

o forall \,p €Y, 7% 71 = 7 0,

We denote by F(Y) its field of fractions. For § = LacrmZt o F(Y) and w € W, set

N Z:/\e}’bAZA
wg . — Z)\GY axZ"
T Xaey bazwrs

Let PYH(Tx) be the algebra defined as follows:

e as a vector space, BYH(Tx) = F(Y) ® Hwo r (we write 0 x h instead of § ® h for
e F(Y)and h € Hyo 5),



o BLY(T%) is equipped with the unique product x which turns it into an associative
algebra and such that, for 6 € F(Y) and s € ., one has:

Hy%0— 0% H, = Q,(Z)(0 —°0),

-1 / =1\ r—aY
—0. —0 7«
where Q,(7) = Zx=0s JHoice, D22

By [Heb18, Proposition 2.10], such an algebra exists and is unique.

2.3.2 The Bernstein-Lusztig Hecke algebra and the Iwahori-Hecke algebra
Let CF ={z € Alai(z) > Vi € I'}, T = e w.@? be the Tits cone and YT =Y NT.

Definition 2.6. Let F be a field of characteristic O and f : Ry — F be a morphism
such that f(oy), f(ol) € F*, for every s € .. The Bernstein-Lusztig-Hecke alge-
bra of (A, (0.)ser, (0L)scsr) over F is the subalgebra ""Hyr = @,y pens FZ2* * Hy =
Dircvwew F Hu * Z* of B (Tr). The Iwahori-Hecke algebra of (A, (0s)scr,(0))ses)
over F is the subalgebra Hr = @ ey + wewe FZ « H, = DBircy+ wewe FZ*x Hy, of B¥"H .

Note that for G reductive, we recover the usual Iwahori-Hecke algebra of G, since T = A.

Remark 2.7. 1. The algebra BYHx was first defined in [BPGR16, Theorem 6.2 without
defining BYH(Tx). Let K be a non-Archimedean local field and q be its residue cardinal.
Let G be the minimal Kac-Moody group associated with S = (A, X, Y, (;)ier, () )icr)
and G = G(K) (see [Rém02, Section 8] or [11t87] for the definition). Let F to be a
field containing Z[\/@ﬂ] and take f(o,) = f(o)) = \/q for all s € . Then Hr is the
Twahori-Hecke algebra of G (see [BPGR10, Definition 2.5 and 6.6 Proposition/). In
the case where G is an untwisted affine Kac-Moody group, these algebras were intro-
duced in [BKP16]. Note also that our frameworks is more general than the one of split
Kac-Moody groups over local fields. It enables for ezample to study the Iwahori-Hecke
algebras associated to almost split Kac-Moody groups over local fields, as in [BPGR16].
In this case we do not have necessarily oy = o, = o, = o, for all s,t € #. Most of our
results remain true in this case (the only result where we need such an assumption is
Proposition 5.27) but the formulas are slightly more complicated.

2. Let s € .. Then if o5 = ol, Qs(Z) = (0s=0:!)

1-z-od
3. Lets € . and 0 € FY]. Then Qs(Z)(0—*0) € F[Y] and if moreover 0 € F[Y], then
Q.(Z)(0 —20) € FIYT|. Indeed, let \ € Y. Then Q4 (2)(Z* — Z5*) = Q4(2).Z (1 —
Z=esWNeady - Assume that o, = o'.. Then

(as(N)—1
Z=ed if ag(N) >0
1 — Z~Xad B §=0
1— 7 —as(N)—1
— 2% Y 2% i a,(\) <0,
\ 7=0

and thus Q4(2)(Z* — Z**) € F[Y]. Assume o, # o5. Then a,(Y) = 2Z and a
similar computation enables to conclude. In particular, B*Hxr and Hr are subalgebras
Of BLH(T}').
Lemma 2.8. (see [Hch15, Lemma 2.8]) Let§ € F[Y] andw € W*. Then 6% H,,—H,+0" " €
BLy Y = D, H.F[Y]. In particular, BLyZ" = D.<w HLC[Y] is a left finitely generated
F[Y]-submodule of B\H £.



2.4 Principal series representations

In this subsection, we introduce the principal series representations of BVH .

We now fix (A, (05)sc.s, (0%)se.s) as in Subsection 2.3 and a field F as in Definition 2.6. Let
H 7 and BVH 7 be the Iwahori-Hecke and the Bernstein-Lusztig Hecke algebras of (A, (04)sc.s, (04)se.)
over F.

Let T = Homg, (Y, F*) be the group of group morphisms from Y to F*. Let 7 € Tx.
Then 7 induces an algebra morphism 7 : F[Y] — F by the formula 7(3,.y axZ?) =
> ey axt(A), for 3 ayZ* € F[Y]. This equips F with the structure of an F[Y]-module.

Let I, = IndBLHf(T) = By ®7y) F. As a vector space, I, = D, cwo FV-, where v,
is some symbol. The actions of B'Hr on I is as follows. Let h = > .o Hy Py € PVH g,
where P, € F[Y] for all w € W". Then h.v, = > o 7(Py)Hy,v,. In particular, I; is a
principal B¥H r-module generated by v..

We regard the elements of F[Y] as polynomial functions on 7 by setting:

T(Z axZ*) = Z ayt(A),

€Y €Y

for all (ay) € F&). The ring F[Y] is a unique factorization domain. Let § € F(Y) and
(f,g) € FIY] x F[Y]* be such that § = g and f and g are coprime. Set D(f) = {7 €

Tr|0(g) # 0}. Then we regard 6 as a map from D(f) to F by setting 0(7) = % for all
T € D(0).

For w € W*, let ll : BLH(Tx) — F(Y') be defined by 7/ (3", cyro Huwby) = by If 7 € T,
let F(Y), = {£|f,g € F[Y] and g(7) # 0} C F(Y). Let "'H(Tr), = B,cppo HuF(Y)7 C
BL7{(T¥). This is a not a subalgebra of B“H(T%) (consider for example — * H, = H, *
ﬁ + ... for some well chosen A € Y, s € . and 7 € Tx). It is however an Hyv r —
F(Y), bimodule. For 7 € Tr, we define ev, : BYH(T%), — Hw. r by ev.(h) = h(r) =
Y wews Huwbw(T) if ho= 3" o Hybyw € H(Y),. This is a morphism of Hyv r — F(Y),-
bimodule.

2.5 Weights and intertwining operators

In this subsection, we recall results on intertwining operators and weights from [Héb18] and
prove general facts on the weights of BYH r-modules.

If M, M’ is an BYH z-module, we write Hom(M, M’) the space of BYH r-module morphisms
from M to M’', End(M) the algebra of ACz-module endomorphisms ...

Let M be a B¥H z-module. For 7 € T, set

M(7) = {m € M|f.m = 7(0).m V0 € F[Y]}, Wt(M) = {7 € Tx|M(7) # {0}}

and
M(7,gen) = {m € M|3k € N[V € F[Y], (0 — 7(6))F.m = 0} D M(7).

Let M be a PYH z-module and 7 € T. For x € M(7) define T, : I, = M by Y, (u.v,) =
w.z, for all u € B¥H . Then YT, is well defined. Indeed, let u € B*H  be such that w.v, = 0.
Then u € F[Y] and 7(u) = 0. Therefore u.x = 0 and hence Y, is well defined. The following
lemma is then easy to prove.

Lemma 2.9. (Frobenius reciprocity, see [KatS1, Proposition 1.10]) Let M be a BVH x-module,
T € Tr and x € M(71). Then the map Y : M(7) — Hom(I,, M) mapping each x € M(T) to
Y, is a vector space isomorphism and Y=1(f) = f(v,) for all f € Hom(I., M).
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Proposition 2.10. Let 7,7 € Tx. Then:
1. Hom(I,, I/) # {0} if and only if 7" € W".T.

2. If T € T 1s regqular, then

and for w € W, one has

dim Hom(/Z, -, I;) = dim I (w.T) = 1.

Proof. This is a consequence of [Héb 18, Propositions 3.4, 3.10 and 3.5 (2)]. O

Lemma 2.11. Let M be a B¥H z-module and T € Wt(M). Let w € W* be such that I, is
isomorphic to I.. Then w.t € Wt(M).

Proof. Let x € M(7) \ {0}. Let ¢ : I, - M be defined by ¢(h.v,) = h.z for all h € BVH x.
By [Héb18, Lemma 3.6], ¢ is well defined. Let ¢ : [, — I. be an isomorphism. Then
po1p #0. One has I, = B*H r.v,., and thus ¢ o)(v,.,) € M(w.7)\ {0}, which proves the

lemma. O

Proposition 2.12. 1. Let 7 € T and M be a proper submodule of I... Then there exists
a mazimal submodule M of I, containing M.

2. There exists an irreducible representation M of BYHz such that T € Wt(M).

3. The map M w— I./M, from the set of maximal submodules of I, to the set of isomor-
phism classes of irreducible representations admitting T as a weight is surjective.

Proof. Let . (M) be the set of proper submodules of I, containing M. Let J be a totally
ordered set and (M;);e; be an increasing family of .#(M). Then J,;.; M; is a submodule
of I containing M. Moreover, v, ¢ M; for all j € J and thus v, & U;c; M;: U;c; M; # L.
By Zorn’s lemma we deduce that .Z (M) admits a maximal element, which proves (1).

Let M be a maximal submodule of I.. Let M" = I./M. Then M’ is irreducible and the
image of v, is a nonzero element of M’(7), which proves (2).

Let M be an irreducible representation of B:H r admitting 7 as a weight. By [Hch18,
Proposition 3.8|, there exists a surjective morphism of BY“H r-modules ¢ : I, — M. Then
M ~ I/ ker(¢) and ker(¢) is a maximal submodule of I.. O

Set By = 03Hs — 02 € Hyv 7. One has B2 = —(1 + 02)B;. Let (, = —0,Q4(Z) + 0% €
F(Y) C BYH(T¥). When o, = o, = /g for all s € .7, we have ¢, = 11__‘122:&&; € F(Y). Let

F, = B, + ¢, € "MH(T5).

Let a¥ € @Y. Write oY = w.a for w € WY and s € .. We set (v = ().

Let oY € &Y. Write @« = w.a), with w € W* and s € . We set o,v = 0, and
o!v = w.ol. This is well defined by Lemma 2.4 and by the relations on the o, t € .7 (see
Subsection 2.3).

Let w e W". Let w = s1...s, be a reduced expression of w. Set
Fw = Fs'r ttt Fsl = (Bsr _'_ Cs'r) ttt (le + C31> E BLH(T-F)

By the lemma below, this does not depend on the choice of the reduced expression of w.
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Lemma 2.13. (see [Hcéb18, Lemma 5.14]) Let w € W".

1. The element F,, € BVH(Tx) is well defined, i.e it does not depend on the choice of a
reduced expression for w.

2. There exists a € F* such that F,, — aH, € ®*H(Tr)<v =P, _,, H,F(Y).

v<w

3. If0 e F(Y), then 0% F, = F, ™ 0.

4. If T € Tr is such that (sv € F(Y), for all B¥ € Ngv(w), then F, € BVH(TF), and
Fy(r).v, € I.(w.T).

5. Let 7 € Tx®. Then F,, € B'H(T¥),.

3 Weighted representations of " r and Hr

In this section, the field F is not necessarily C. We set BL’H?T = BL¥r and BYH, = Hr,
Let € € {+,0}. A F[Y|-module M is called weighted if for all z € M, F[Y].x is a finite
dimensional. A BYH%-module is called weighted if the induced F[Y]-module is.

In this section, we characterize the weighted representations of H which can be extended
to a representation of BLH x (see Proposition 3.2) . We also prove that if M is a weighted
representation of B 7, then the Hz submodules of M are exactly the restrictions to Hr of
the BMH r-submodules of M (see Proposition 3.1).

Proposition 3.1. Let M be a weighted BYH r-module. Then a subset M' C M is an Hz-
submodule of M if and only if it is a BYH z-submodule of M.

Proof. Let M' C M be an Hz-submodule of M. Let x € M' and M, = F[Y*].z. For
A€ YT define ¢y, : M. — M. by ¢px.(y) = Z>.y, for y € M. Then ¢, , is injective and as
M, is finite dimensional, ¢, is an isomorphism. Let y = (¢y,) '(z). Then Z*.y = x and
y=Z*x € M. Let p €Y. By writing u = Ay — A\_, with A\, \_ € Y*, we deduce that
Zt.x € M, C M. Therefore M is stable under the action of Hy» r and of F[Y]| and hence
M is a B"H r-module. O

Proposition 3.2. Let M be a weighted representation of Hx. Then the following are equiv-
alent:

1. M is the restriction of a representation of B*H r,
2. Z2x #£0, for all N € Yt and x € M \ {0},
3. for every T € Wt(M), (Y ") C F*.

The condition is necessary because if M is a B“H r-module, one has x = Z=*.Z* .z, for
all A € Y. In the sequel of this section, we prove that this condition is indeed sufficient.
The idea of our proof is to extend the action of F[Y*] to an action of F[Y] and then to
define an action of B*H . The difficulty is then to prove that it is indeed an action, i.e that
(h*h').x = h.(W.x) for every h,h/ € BLHr and z € M.

Lemma 3.3. Lete € {0, +} and M be a weighted F[Y |-module. Then M = €D, cyy ) M (7, gen).
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Proof. One has }_ v M(7,gen) = D, cwinn M (7, gen).
Let x € M and M, = F[Y].xz. Then by [Héb18, Lemma 3.1,

r €M, = @ M, (7, gen) C @ M(T,gen).

TEWt(My) TeEWt(M)
Thus @, cwia) M (7, gen) = M, which proves the lemma. O

Lemma 3.4. Let M be a weighted F[Y |-module. Suppose that there exists X € Y and
x € M\ {0} such that Z*.x = 0. Then there exists T € Wt(M) such that 7(\) = 0.

Proof. By Lemma 3.3, one can assume that = € M(7, gen), for some 7 € Wt(M). Let k € N*
be such that (Z* — 7(A\)Id)*.x = 0. Then (Z* — 7(M\)Id)*.z = Z?:o (';)T()\)jZ(k_j)’\.x =

7(A\)*.2z = 0 and thus 7(\) = 0. O

Lemma 3.5. Let M be a weighted F[Y t]-module. Suppose that for allT € Wt(M), 7(Y+) C
F*. Then there exists a unique action of F[Y] on M which induces the action of F[Y ] on
M.

Proof. We begin by proving the uniqueness of such an action. Suppose that we can extend
.to F[Y]. For A € Y, define ¢ : M — M by ¢r(m) = Z*m, for A € Y+ and m € M.
Let A € Y. Then ¢, is a bijection and its inverse is ¢_). Let now pu € Y and m € M.
Write o = Ay — A_, with Ay, A_ € Y*. Then Z¥.m = ¢, (((;S,\f)_l(m)), which proves the
uniqueness of such an action.

Suppose now that for every 7 € Wt(M), 7(YT) C F*. Let A € YT and x € M. Let
M, = F[Y*].z and ¢y, : M, — M, be defined by ¢ .(y) = Z*.y for all y € M,. Then by
Lemma 3.4, ¢, is injective and by assumption, M, is finite dimensional. Thus ¢, , is an
isomorphism. Thus the map ¢ : M — M defined by ¢, (z) = Z*.x for all x € M is surjective.
By Lemma 3.4, ¢, is an isomorphism. One sets ¢_, = ¢,'. Then (¢,,),cy+ is commutative
and thus (¢4,),ey+ is commutative. If p € Y, p = py — p—, with p_, uy € Y*, one sets
¢y = ¢u, ©¢_,_. Then ¢, does not depend on the choice of pi_, piy such that py —p_ =p
and (¢,),cy is commutative. One has ¢y 0 ¢, = ¢4, for all \,p € Y. For p € Y, one sets
Ztx = ¢,(x). Then (Z*.ZM).x = Z*.(Z".z) for all A\, n € Y, and thus this defines an action
of F[Y] on M. O

We now fix a weighted representation M of Hz such that Z*.z # 0 for all A € Y+ and
x € M\ {0}. Using Lemma 3.5, we equip M with the structure of an F[Y]-module. For
h = ZAGY,weW“ awH,Z* € BvHz, and © € M, one sets h.x = ZAGY,weW“ awrHy.(Z.7).
We now prove that M is a B r-module by proving that for all h, h’ € B*H z and all x € M,
one has (h*xh').x = h.(h.z).

Let w € WY and X € Y. Using Lemma 2.8, we write Z* x H,, = >
(Rf;\,w)vﬁw € }—[Y][Lwl

H, * R . where

v<w VW

Lemma 3.6. Let \,v € Y and w € W". Then:

> H, xR, «R), =Y H,xR/

u<v<w v<w
Proof. This follows from the associativity of x: Z¥ * (Z* x H,) = Z"** x H,,. O

Lemma 3.7. Let z € M, w € WY and A\ €Y. Then (Z** H,).x = Z*.(H,.7).
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Proof. Let v € Y*. Then:

7".((2** Hy,).x) = 2°.( ) H,.(R)

v<w

=> (2" H,).(R},,x)

v<w

- Z Z(Hu * Iy, Riw).x

v<w uv

ZH « RV,

v<w

We now assume that v + A € Y. Such a v exists. Indeed, one can choose 1/ € Y N Cy
and take v = N/, for N € N large enough. Then

7' (2 (Hyx)) = 2P (Hyx) = () Hyx RN .o =2".((2* « Hy).x).

v<w
Therefore (Z*.H,).x = Z*.(H,.7). O

We can now prove Proposition 3.2.

We have to prove that for all h,h' € P*Hx, and = € M, one has (h * b').x = h.(h.z).
Let u,o € WY \p € Y and x € M. Write Z* x H, = > wewr vey GwrHwZ”. Then
(H,Z*) % (H,Z") = ZwEW’“,VGY Ay Hy % Hyy % ZFT . Therefore

(HZ s HZ")x = Y ay,Hy,x Hy (27 2)

weWv veY
- Hu( > aw,yﬂw.(ZV.(Zﬂ.x)))
wEW’”,uEY
=H,.(Z*« H,) )
= H,. (ZA.(H by Lemma 3.7

= (H,*2").(H,.(Z “x))
= (H, * Z").((H, * Z").z),

which proves the proposition.

Remark 3.8. By [Hch15, Lemma 4.5], if T =T U N,es ker(ay), then for every nonzero al-
gebra morphism T : F[Y ] — F, one has (Y ™) C F*. Therefore in this case, every weighted
representation of Hr extends to a representation of B“H z. This is the case for example when
Hz is associated to an affine Kac-Moody group or to a size 2 Kac-Moody matriz. By [Heb18,
Lemma 4.9/, there exist Kac-Moody matrices for which there exist weighted representations
of Hx which do not extend to representations of BVH r.

4 Decomposition of regular principal series representa-
tions

In this section, the field F is not necessarily C. Let 7 € Tx. We call 7 regular if W, = {1},
that is if for all w € WY, w.7 = 7 implies w = 1. Let 7 € T be regular. In this section, we
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describe the submodules of I, and prove that there exists a unique irreducible representation
of BYH  admitting 7 as a weight. The main tools that we use are the weights of the sumodules
and the intertwining operators I, , — I, for w,w’ € W".

In subsection 4.1, we introduce, for 7 € T'r regular, the graph of 7, whose vertices are the
L, -, for w € W and a semi-distance on it.

In subsection 4.2, we study the irreducible representations admitting 7 as a weight.

In subsection 4.3, we study the strongly indecomposable submodules of I and prove that
the sumbodules of I, can be written as sums of strongly indecomposable submodules.

In subsection 4.4, we give a way to compute the weights of a submodule.

In subsection 4.5, we apply the results of this section to some examples.

4.1 Graph and semi-distance associated to I,

Let 7 € T be regular. By Lemma 2.9 and Proposition 2.10, one has dim Hom(Z,, -, L,.-) = 1,
for all w,w" € W". For every w,w’ € W, we fix Ay, € Hom(Iy ,, L) \ {0}.

The graph of morphisms G, of 7 is the non-oriented graph defined as follows. Its
vertices are the I, ., for w € W". Two vertices I, .., I/, are joined by an edge if and only
if £(w'~'w) = 1.

A path in G is a finite sequence (1, ;)icp1,n] € (G-)", where n € N and wiwijrll e < for
alli € [1,n—1]. Let n e Nand I" = (I, +, ..., [, ») be a path in G.. We say that I" is an
intertwining path if Ap := A, | w,r°...0 Ay wyr : Luy+ — Ly, - is nONZETO.

The graph of isomorphisms G, is the graph obtained from G, by deleting the edges
(lyrs Lsws), w € WY s € . such that A, g, is not an isomorphism (this is equivalent
to assuming that Ag, ., . is not an isomorphism since dim Hom(/,, ;, I, ) = 1). Note that
by [Heb18, Lemma 54|, Ay swr is an isomorphism if and only w.r((s)w.7(°¢s) # 0 (or
equivalently w.r(a)) & {q,¢"'} in the split case).

If I" is an path in G,, we set

(1) = [{i € [1,n — 1]|Aw, w,,,.~) is not an isomorphim}|.

If Py, P, are two vertices of G, then we set d(Py, ) = {4(I'), where I is any intertwining
path joining P; to P,. The aim of this subsection is to prove that this is well defined. For
this we prove the following:

e there exists an intertwining path I" joining P; to P, (see Proposition 4.2)
e (4(I') is independent of the choice of such a path (see Proposition 4.7).

Our proof is based on the “word property” in Coxeter groups. Note that we will prove
that d is symmetric and satisfies the triangle inequality (see Proposition 4.7), but in general,
it is not a distance (for example if I,,, ~ I, for every w € W, then d(P, P') = 0, for every
P, P" € G,). However it induces a distance on the set of connected components of Q~T. This
semi-distance will enable us to study the strongly indecomposable submodules of I,.

4.1.1 Existence of intertwining paths between two vertices

We begin by proving the existence of intertwining paths between any two vertices of G,.
Recall that Hyo 7 = @ eypo FHuw C B-Hr. For w € W, set My » = @,-,, FH, and
%;;127]: - @v<w fHU
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Lemma 4.1. Let w € W" and s € . be such that ws > w. Then:
(Hive 7 \ Hi 2) % (Mo 2 \ Hiho ) C Higoe \ Hittor

Proof. This follows from the fact that [1,w].[1,s] C [1,ws] and that [1,w).sU[1l,w] C [1,ws].

U
Proposition 4.2. (see [Kal81, (1.21)]). LetT € T be reqular. Letw € WY andw = sy, ... 51
be a reduced writing of w, where k € N and sy,...,s, € . Forj € [1,k], setw; = sj_1...51
(where we set so...s1 = 1) and 7; = w;.t. Then I' = (I, Ir,, ..., 1) is an intertwining

path joining I to I, .
Proof. Let j € [1,k —1]. By Lemma 2.13 (4) and (5),
Tj = st(sj'Tj)VSj-Tj = FSj (Tj+1)VTj+1 € ITj+1 (Tj)'

For 7' € Tr and w € W, set 15" = Docw F Vo and [5Y = @U<w Fv.r.

Set f; = Yy, 0...07Y, € Hom(/, I +1) (Where the Y., : I, — I, are defined
in Lemma 2.9). Let P; : “f;(v;) € IT;AH \ ITHf ”. Then P; is true by Lemma 2.13

(2). Let Jj € [[1 k — 2] and assume that P; is true. Write f;(v;) = h.v,,,, where h €

’H} V{ful \7—[; J“. Then one has Y, (f;(v,)) = h.Ta,,, (vs,,,). Write zj41 = W .v,,,,, where

ne(H ;s{,ﬁ \ F).Ve,. Then fji1(v.) = h.W v, . By Lemma 4.1, we deduce that P;,, is
true. Thus Pj_; is true and in particular, fi_1(v;) # 0, which proves the lemma. O

4.1.2 Independence of the choice of a path

We now prove that if I, I, are two vertices of G, and I',I" are intertwining paths joining
them, then (4 (I") = £.(I").

Let (W?)* = W For w* = (s1,...,s,) € (W?)*, we set m(w*) = s,...s, € WY, For
s,t € . denote by m(s,t) the order of st in W". If m(s,t) is finite, we denote by wg(s,?)
the m(s, t)-tuple (s,¢,s,¢...). One has 7(w(s, 1)) = m(w(t,s)) =: wo(s,t). If w e W and
I'= (Lo,rs Lugrs - - 5 Lu, ») is & path, we set ' = (wowi !, ..., ww, ;). Let w*, @* € (W?)*.
We say that w* is obtained from w* by a braid-move if there exist s,t € .% such that
m(s,t) is finite and u*, v* € (W")* such that

w* = (u, wy(s,t),v") and 0* = (u*, wg(t, s),v").
Lemma 4.3. Let 7 € Tx be reqular. Let s,t € .7 be such that s # t and m(s,t) is finite. Let
Fs == (IT7 [S.T7 ]ts.7'7 cee Iwo(st ) and Ft (L’u ]t.T7 [st.T7 ceey [wo(s,t).'r)-
Then €¢<FS) = @(Ft) and AFS S ./T*Apt.
Proof. Write I's = (I_(s,...,I ) and I'y = (I_w),...,1 ). Let us prove that
1 Tk 1 Tk
L.=1>~1u=1I1,,ifandonly if I ) >~ 1 @ . (1)
T1 T2 Tk Tk—1
For u € ., set

(0w —oyt)+ (o), — o T

U U

R,(T) = -0, T2

+ o2 e F(T),
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where T' is an indeterminate. By [H¢b18, Lemma 5.4] | for 7/ € Tx and v € .7, I+ is not
isomorphic to I, . if and only if R, (T’(aZ))Ru (T’(—aZ)) =0.

By [[Kum02, 1.3.21 Proposition|, m(s,t) € {2,3,4,6}. Suppose m(s,t) = 3. Then k = 4,
T,Et) = tst.T and 7',2121 = st.7. Thus I o) ~ I ) if and only if Ry(st.7(ay)) Ry (st.m(—)) = 0.
Moreover sts = tst, thus s and ¢ arg conjugz;te and hence R, = R;, by assumptions on the
Ou, 00, u € .. By Lemma 2.2, ts.of = o), which proves (1).

Suppose m(s,t) is even. Set w = swy(s,t) = wo(s,t)s. Then k = m(s,t) + 1, T,gt) =
wo(s,t).7 and 7‘,@1 = w.T. Thus ITlgt) ~ ]Tét)l if and only if R,(w.m(a))Rs(w.m(—ay)) = 0.

1 !' = s and thus by Lemma 2.2,

Moreover, w = w™' and ws = sw = wy(s,t). Thus wsw™
VAV wh
w.o) = ), which proves (1).

We deduce that (1) holds in both cases. By applying (1) to

Fs(v> = ([U.T7 ]SU.T7 ]ts’l}.7'7 ceey ]wo(s,t)v.r) and Ft(v> = ([U.T7 ]tU.T7 [stU.T7 sy ]wo(s,t)v.r)v

for every v € (s,t), we deduce that (x(I';) = ¢x(I';). By Proposition 4.2, I'; and I'; are
intertwining paths and as dim Hom(Z, -, Iywy(syv.r) = 1, one has F*Ap, = F*Ar,. O

We deduce the following lemma:

Lemma 4.4. Let w,w' € W" and T, T be two paths joining Ly+ to I, ~. We assume that r*
is obtained from I'* by a braid-move. Then {x(I') = (x(T') and T is an intertwining path if
and only if I' is an intertwining path.

Let w*,w* € (W")*. We say that w* is obtained from w* by a nil-move if there exist
u* vt € (WY)* and s € . such that w* = (u*, s, s,v*) and w* = (u*, v*).

Lemma 4.5. Let 7 € Tx be reqular. Let u,v € WY be such that I,. and I,, are not
isomorphic. Then A, 70 Ay, = 0.

Proof. We have A, , .0 A,., € End(f,,) = FId and A,, . 0 A,,, € Hom(/,,) = FId.
Write Ay pr0 Ayur =7Id and A, ., 0 Ay s = '1d, with v, € F. As I, and I, , are not
isomorphic, we have v+ = 0. Exchanging u and v if necessary, we may assume v = 0. Then
ApuroAyproAyur=0=79A4,,, and hence v = 0, which proves the lemma. O

Lemma 4.6. Let w,w' € W¥ ~and I, T be two paths joining L, to L .. We assume that I is
an intertwining path and that T is obtained from I'* by a nil-move. Then I is an intertwining

path and Lx(T) = ().

Proof. Write I'* = (u*,v*) and T* = (u*,s,s,v*), with u*,v* € (W?)* and s € .. Set
u=m(u*) and 7(v*).
As I' is an intertwining path, one has:

Auflw,vfluflw,T © Asuflw,uflw,T o Auflw,suflw,ﬂ- o Aw,uflwﬂ' % 0.

By Lemma 4.5 we deduce that Ag,-1,,-14, and A,-1,, g1, are isomorphisms and that
A1 u—1wr © Ayt su-1wr € F*Id. Therefore A,-1y 14107 © Ay y-10, 7# 0, and the
lemma follows. !

If w e WY we denote by C (w) the connected component of Q~T containing [, ;.

Proposition 4.7. 1. Let w,w’ € WY, Then if I'1,'y are two intertwining paths joining
Ly + to Ly-, one has £yx(I'y) = £x(T).
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2. If w e W then C(w) = {Ly.|w € W*| Iy, ~ I,.}.
3. Ifw,w" € WY, then every path I' in G, joining L, » to L, . satisfies (x(I') > d(Ly.ry L ).

4. The map d : G; X G, — N is symmetric and satisfies the triangle inequality. More-
over it induces a distance on the set C of connected components of G,, by setting
d(C(w), C(w") = d(Ly.r, Lur +) for w,w' € W*.

Proof. (1) By the word property (|[BB05, Theorem 3.3.1]), there exist nj,ny € N and se-
quences Fgl) = Fl,...,l“gnl), Fgl) = Fg,...,Fgm) of paths such that Pﬁ"l’ = F;m) and
for all i € {1,2} and j € [1,n; — 1], TY*Y is obtained from T'¥) by a nil-move or a
braid-move and such that I has length ¢(ww="). Then by Lemma 4.4 and Lemma 4.6,
04(D1) = (D)) = £,4(0y) = £,(0Y™)), which proves (1).

(2) Let I, € C’(w) Then there exists a path I' from [, ; to I, , composed uniquely of
isomorphisms and thus I,,, ; >~ I,,-. Let w; € W be such that I,, , is isomorphic to I, ;.
Let I be an intertwining path joining w;.7 to w.7, which exists by Proposition 4.2. Write
I'= (Tuyry Lgrs -+ oy Lupyr). Then Ap = Ay w7 © -2 0 Ay o+ 18 an isomorphism and thus
for all i € [1,k —1], Ay, w,,,+ is an isomorphism. Therefore I' is contained in C'(w) and thus
Iy, € C(w), which proves (2).

(3), (4) Let w,w’ € W". Let us prove that d(I .+, Ly.r) = d(Ly .+, I,+). Maybe considering
7 =w'.7 and ww'~!, we may assume that w’ = 1. Let w = s}, . ..s; be a reduced writing of w,
with sq,...,s, € .. Then by Proposition 4.2, I' = (I, Is, +,. .., I, s,.-) is an intertwining
path joining I, to I,, . By Proposition 4.2, I" := (I5, s+ Is;_ ;.17 - -+ I-) is an intertwining
path from I, , to I;. As for all w € W" and s € ., dimHom (1 +, [sr) = 1, Ay s - is an
isomorphism if and only if Ay, ., - is an isomorphism. Therefore (4 (I") = £.(I") and hence
d(l;,1y-) =d(ly,, I;): dis symmetric.

Let w,w" € W? and I" be a path from I, , to .. We may assume that w’ = 1. Then
using the word property we can transform I' into a path I of length ¢(w), by using nil-moves
and braid-moves. By Proposition 4.2, I is then an intertwining path. For each braid-move,
{ remains unchanged (by Lemma 4.4) and for each nil-move £, either remain unchanged or
decrease by 2. Thus (x(I') > d(I;, ;).

Let w,w" € W', Let I" (resp. I") be an intertwining path between I, and I, , (resp.
between I, and I, ). Then the concatenation I of I' and I" is a path between I, and
Ly - and thus d(I;, L, ;) < lx(I") = d(I;, Iy ) + d(Iy .+, Ly+), which proves that d satisfies
the triangle inequality. By (2), for w,w’ € W, d(Ily.,, I -) = 0 if and only if [, , ~ [,
which proves that d induces a distance on the set of connected components of G,. O

4.2 Irreducible representation admitting 7 as a weight

Let 7 € T% be regular. In this section, we prove the existence of a unique irreducible
representation M of BYH » admitting 7 as a weight. We describe it as a quotient of I,.

Lemma 4.8. (see [Rog85, Corollary 3.3]) There exists a unique maximal submodule M™*
of I..

Proof. Using Proposition 2.10 (2) we choose a basis (§,)wewr of I, such that &, € I (w.7)
for all w € W". Let «' : I. — F be defined by 7'(3°, e @wéw) = a1, for all (a,) € FW),
Let M be a submodule of I,. Then M(7) C I;(1) = Fv,. Thus M is a proper submodule
of I if and only if M(7) = {0}. Therefore the sum of all the proper submodules of I, is a
proper submodule of I, which proves the lemma. O
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Let w € WY and 7/ = w.7. Then M := [, /M%* is an irreducible B“H z-module.
We define ~ on W" by w ~ w' if I, ~ I, for all w,w’ € W". This is an equivalence
relation. If w € WY we denote its class by [w].

Proposition 4.9. (see [Rog85, Proposition 3.5])

1. Let M be an irreducible BYH x-module such that M(7) # {0}. Then M ~ M.

2. The set of weights of M™ is Wt(M™) = [1].7 and dim M™ = |[1]|. In particular, if
w € W, then M™ is isomorphic to MQUHT if and only if w ~ 1.

Proof. Let x € M(7)\{0}. By Lemma 2.9 there exists ¢ :€ Hom(/,, M) such that ¢(v,) = .
By Lemma 4.8, ker ¢ C M™* and thus ¢ induces a nonzero map ¢ : I, /M™> = M™ — M.
As M and M are irreducible, ¢ is an isomorphism, which proves (1).

By Lemma 2.11, [1].7 € Wt(M™). Let w € W* be such that I,,, is not isomorphic to I,.
Let ¢ = Ayi1r : Iy — L. Then by Lemma 4.5, ¢(1,,-)(7) = 0. Therefore, ¢(1,,,) C MM
and hence M™(w.t) # 0. By Proposition 2.10 (2) we deduce that M™*(w.r) = I (w.T)
and hence w.T ¢ Wt(M™), which proves (2). O

Remark 4.10. Let M be an irreducible B“H r-module such that for somew € WY, M C I, ,.
Then there exists w' € WY such that M is isomorphic to M _. However, there can exist
w € W? such that M™*_is not contained in any L. This is the case for example if M™*_ is

w.T

finite dimensional, by [Héb18, Proposition 3.12].

4.3 Strongly indecomposable submodules of I,

Definition 4.11. Let M be a submodule of B*H . One says that M is indecomposable if
for all submodules My, My of M such that My & My = M, one has My = M or My = M.
We say that M is strongly indecomposable if for every family (M;);c; of submodules
of M,
Y Mj=M = FjeJ| Mj=M.
j€J
A B r-module M is strongly indecomposable if and only if there exists a proper sub-
module M., containing every proper submodule of M.
Let 7 € Tr be regular. Recall that if w,w’ € W", A, ., is an (arbitrary) element of
Hom(Zy., Iy ) \{0}. If w e W, we set My, » = Ap1,(Lyr) C ;.
In this subsection, we prove that the strongly indecomposable submodules of I are exactly

the M, ., for w € W (see Lemma 4.12 and Lemma 4.18). We then study how a submodule of
I can be decomposed as a sum of strongly indecomposable submodules (see Theorem 4.21).

4.3.1 Characterization of the strongly indecomposable submodules of I,

Lemma 4.12. Let w € W". Then M, = Ay1-(Lyr) is strongly indecomposable.

Proof. Let (M;j);e; be a family of submodules of M, . such that M, , = ZjEJ M;. For
j€J,set N = (Ap1,) ' (M;). Let x € I, and y = A, 1 -(x). Write y = Z]EJ yj, where
y; € M; for all j € J. For j € J such that y; # 0, choose z; € N; such that A, ;1 .(z;) = y;.
For j € J such that y; = 0, set z; = 0. Then  — ., x; € ker(Ay1-). Let j € J. Then
ker(Ay1,,) C N; and thus z € ZjEJ N;. Therefore ZJ.GJ N; = I,,.. By Lemma 4.8, there
exists j € J such that N; = I,, .. Then M; = M,, -, which proves the lemma. ]
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Lemma 4.13. Let M C I, and w € W" be such that w.t € Wt(M). Then M,, . C M.

Proof. By Lemma 2.9, there exists a nonzero intertwiner f : I, — M. Then f € Hom(I, ,, I,) =
F Ay, which proves the lemma. ]

Lemma 4.14. Letw,w’ € W" be such that w'.T € Wt(M,,+). Then My, -(w'.T) = Ap1+ (Iw.T(w’.T)).
In particular, Ay 1+ € F*Apir0 A r

Proof. As A1, is a BYHz-module morphism, it is an F[Y]-module morphism and thus
My (W'.T) D Apir ([w,q—(w,ﬂ')). Let y € My, ,(w'.7) and = € (Ay1,)" ({y}). Using Propo-
sition 2.10, write x = ZUEW” x,, where for every v € W" z, € I,,(v.T). Then for all
ve WU\{w'}, Ay1-(x,) € I;(v.7) and thus A, ,(x,) = 0. Consequently, y = A1 ,(x) =
Ap1-(Tw) € Apir ([w,T(w’.T)) and thus M, ,(w'.7) = Ay 1. ([w,T(w’.T)).

By Proposition 2.10 (2), M, (w'.7) = L;(w'.7). Let y = Ay 1.(Vuw ). Then there
exists © € [, ,(w'.T) such that y = A, 1.(z). Then there exists v € F* such that = =
YAw wr(Vuw 7). Therefore y = Ay 17 0 Ay r(Var.ry). In particular, Ay 17 0 Ay # 0 and
thus Aw’,l,’r S ]:*Aw,l;r o Aw/,w;r. ]

Lemma 4.15. Let w,w" € W*. Then I, ~ Ly, if and only if My, ; = My -
Proof. One has w'.t € Wt(M,, ») and w.7 € Wt(M,y ). Thus by Lemma 4.14 one has:
-F*Aw’,l,T = f*Aw,l,T o Aw’,w,ﬂ- = f*Aw’,l,T o Aw,w’,ﬂ- o Aw’,w,ﬂ--

By Lemma 4.5 we deduce that A, . . and A, . are isomorphisms, which proves the lemma.
O

Lemma 4.16. Let w' € WY and w.r € Wt(My ) (i.e My C My ). Then d(1y.,,1;) =
A1y, Ly +)+d(Ly -, I). In particular, d(1y,, I.) > d(Ly .., 1) and the equality holds if and
Only Zf Mw,ﬂ' - Mw’,r

Proof. By Lemma 4.14, one has F*A,, 1, = F*Ay170Ap w . Therefore if I'; is an intertwin-
ing path from I, . to I,s, and I'y is an intertwining path from I, to I, the concatenation of
I'y and I'y is an intertwining path from 7, . to I,. Thus d({,.,, ;) = d(Ly.r, Ly 7)+d(Ly 7, 1),

Thus d(1y.+, I;) > d(Iy -, I;) and the equality holds if and only if d(1, -, L.,) = 0 if and
only if M, = My, by Lemma 4.15. ]

Lemma 4.17. 1. Let M be a submodule of I.. Then M = @ 1cyiary M(T') = Dcwiian L (7).
2. Let M be a family of submodules of I.. Then Wt(>_ e V) = Uyes WEIV).

Proof. (1) By [Heb18, Lemma 3.3 2.], one has M = €D, ey M (7', gen). By Proposi-
tion 2.10, for all 7" € Wt(M), M(7',gen) C I(7',gen) = I(7') and thus M (7', gen) = M(7'),
which proves (i).

(2) By (1), @rewor (7)) D 2 nem N = 2 nem ZT’EWt(N) L(7') = ZT’EUNeM Wt(N) L(7'),
which proves (2). O

Lemma 4.18. Let M C I. be a strongly indecomposable submodule. Then there exists
w € WY such that M = M, .. More precisely, let n = min{d(I,,,I;)|v.T € Wt(M)} and
w.t € Wt(M) be such that d(1.-,1;) =n. Then M = M,, ..
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Proof. By Lemma 4.13, My, + >, FEWH(M)\Wt (M) My, C M and thus by Lemma 4.17
and Proposition 2.10,
M, + > My, = M.
W' TEWH(M)\Wt(My +)
Let w’.7 € Wt(M) be such that Wt(M,, ;) 3 w.T. Then by Lemma 4.13, M, » D M, ..
By Lemma 4.16 and by definition of w, one has d(Iy ., I;) < d(Iy+, I;) < d(Iy .+, L), thus
My = My, and in particular, w'.7 € Wt( wr). As

Wt( Z Mw’;r) = U Wt(Mw’,T)

W TEWL(M)\Wt(My +) w T EWH(M)\Wt(My 7 )

we deduce that Zw,_Te\)Vt(M)\Wt(Mw ) M,y . does not contain M, .. As M is strongly inde-
composable we deduce that M = M,, ;, which proves the lemma. O

4.3.2 Semi-distance on G, and ascending chains of strongly indecomposable sub-
modules

Proposition 4.19. Let w' € WY and w.r € Wt(My ) (i.e My, C My ). Let n =
d(1yry Ly ) and My, ..., My be a sequence of strongly mdecomposable submodules of I such
that

My, =M, C My C ... C My, = My ..

Then k < n + 1 and there exist strongly indecomposable submodules M, ..., M! and o :
[1,k] — [1,n] strictly increasing such that

My C My G ... C My, o(1)=1,0(k) =n+1 and M; = My, fori € [1,k].

Proof. By Lemma 4.18 there exist wy, ..., w, € W" such that for all i € [1, k], M; = M, -,
Then wy_1.7 € Wt(My_1) C Wt(M},) and by Lemma 4.14, Ay, 1,0 Aw, jwpr € F Awy 1.0
By induction,

07# Aup1r 0 Awy s © - - - Awy e € F A 11 (2)

Set wi41 = 1. For ¢ € [1,k], choose an intertwining path I'; from I, . to I, ,, whose
existence is provided by Proposition 4.2. Let I" (resp. I) be the concatenation of I'y,
o, ..., Tk (vesp. T'q, I'y, ..., T'k). Then by (2), IV and thus I" are intertwining paths from
I, - to I, . Therefore,

n = d(le-T’ ]wk-’f') - d([wl-T? Iwz-‘r) +.o+ d(Iwkfl-T’ ]wk-T)' (3)

By Lemma 4.16 we deduce that n > k.
Write I' = (Lo, 7, ..., L, .r), where m € N and vy, ..., v,, € W*. Let K = {i € [1,m —
1| I, % I, , .-} Then by definition, |K| = n. For i € K, set M, = M, .+ and set M,,

M,,, . Write KU{m} = {k1,... . kot1}, k1 < ... < ky41and fori € [1,n+ 1]] set M/ = Mk
As I" is an intertwining path, one has M{ C Mj; C ... C M, ., and by Lemma 4.16, the
inclusions are strict. By definition, M| ~ M,, , = M1 and M;L L~ M, , = M. Set

o(l)=1and fori € [1,k —1], o(i+ 1) = 0(i) + d(Lw,.7s Lu;.r 7). By (3), o(k) =n+ 1. Let
i € [1,k] and assume that M!;(i) = M;. As lx(1;) = d(Lw;.rs Loy 1), M(’I(ZJrl M; .1 and the
proposition follows. O
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4.3.3 Decomposition of submodules as sums of strongly indecomposable sub-
modules

Lemma 4.20. Let J be a totally ordered set and (M;);jes be an increasing family of strongly
indecomposable submodules of 1.. Then (M;);ey is stationary.

Proof. Let M = % ._; M;. Let n = min{d(l,,I;)[v.T € Wt(M)} and w.r € Wt(M) be
such that d(1 -, I;) = n. One has Wt(M) = [, ; Wt(M;) and thus there exists k € J such
that w.r € Wt(My). By Lemma 4.18, My = M, .. Let k' € J be such that ¥’ > k and
w' € WV be such that M, = M,y ,, which exists by Lemma 4.18. Then M, , C M, , and
by Lemma 4.16, M,, ; = M,y ; = M}, = M;s, which proves the lemma. ]

Theorem 4.21. Let 7 € T be reqular. Let WY (1) = WV/ ~ where w ~ w' if and only if
Ly, 1Ly, forw,w € WY, Then:

(i) The map from W?(T) to the set of strongly indecomposable submodules of 1., which
maps each [w], € WY (1) to My, » = Aw1+(Ly~) is well defined and is a bijection.

Let M be a submodule of I, and SI(M) (resp. MSI(M)) be the set of (resp. maximal)
strongly indecomposable submodules of I.. Then:

(it) One has M =3y csian V-
(iii) Suppose that M =3 .\ N, where M C SI(M). Then M D> MSI(M).

Proof. (i) is a consequence of Lemma 4.12, Lemma 4.12 and Lemma 4.15.
(ii) Let w.r € Wt(M). Then by definition of M,, , and Lemma 4.13, M (w.7) C M,, . C
M. Thus by Lemma 4.12 and Lemma 4.17, M D > ycqiin N D 2oy rewsan M (w.7) D M.
(iii) Let N € MSI(M). By Lemma 4.18, there exists w € W such that N = M,, ;. Then
M, C M, thus by Lemma 4.17 (ii), w.7 € Wt(M) = [Jyer Wt(V). Let N € M be such
that w.r € Wt(N). Then M, C N C M and thus N = M, ;. Therefore M,, . € M, which
completes the proof of the theorem. O

4.4 Weights of the submodules of I,

Let 7 € T be regular. We proved in Lemma 4.17 that a submodule of I, is completely
determined by its weights. In this subsection, we give a method to determine the weights of
the submodules M,, ,, for w € W, from the graph G,.

Lemma 4.22. Let M and M’ be submodules of I.. Then Wt(M NM') = Wt(M) Wt (M').

Proof. One has Wt(M N M'") € Wt(M) N Wt(M'). Let w.r € Wt(M) N Wt(M'). Then by
Proposition 2.10, 1 < dim M (w.7) < dim I (w.7) = 1 and 1 < dim M'(w.7) < dim I.(w.T) =
1. Thus M'(w.t) = M(w.T) = I.(w.r) C M N M. Hence w.t € Wt(M N M’), which proves
the lemma. O

Lemma 4.23. Let w € WV. Then Wt(Ker(AwJ,T)) LWt (Im(AwJ,T)) =Wv.r.

Proof. Using Proposition 2.10, we write I, = @, oo F&o (xesp. Ly = @, ey FE,) where
for all v € WV, &, € I.(v.1) \ {0} (resp. & € I,.(v.T)\ {0}). Let v.r € W¥.7. Suppose
v.7 € Wt (Im(AwJ,T)). Then ¢, € Im(A, 1) and by Lemma 4.14, there exists x € I, .(v.T)
such that A, 1 ,(z) = &. Then z € F*¢ and thus £ ¢ Ker(A,1.). Suppose now v.7 ¢
Wt(Im(Aw,LT)). As Ay1-(&) € F&, we necessarily have A, 1,(¢)) = 0 and thus v.7 €
Ker(Ay1,7), which proves the lemma. O
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Proposition 4.24. 1. Let w € WY and s € .. We assume that I, . is not isomorphic
to Isy.,. Let f = Aw,sw.T Ly — Igwr. Then:

Wt (Im(f)) = {uw.r|u € W*us > u} and Wt(Ker(f)) = {uw.t|u € W’|us < u}.

2. Let wy, ..., Wy € WY, Fori € [1,n—1], set f; = Aw, w7 Then:

Wt(Im(f0...0 f1)) = [ \Wt(Im(f;)) and Wt(Ker(f,o0...0 f1)) = U Wt (Ker(f:)).

i=1

Proof. Maybe considering 7 = w.7, we may assume that w = 1. Let f' = A1, : [i, —
I.. Let w € W" be such that us > u. Let 7 = w.7. Let u=!' = s;...5; be a reduced
writing of u™!, with si,...,s; € .. Then su™! = ss;...s; is a reduced writing. Let
I'=(lz1s 7., 1 5.7 Iss,..5..7). Then by Proposition 4.2, I' is an intertwining path from
I-=1,,to I, and I' contains /.. Thus

0# Ar = Aisu170 A0 0y, o5 = FOAUs 1y, o 5) EF fOoAurs

As I, = B"Hr v, . we deduce that {0} # f(Au1+(Vur)) € Lyr(u.T).

In particular u.7 € Wt(Im(f)). By Lemma 4.23 we deduce that Wt(ker(f)) C {u.t|u €
W@ us < u}.

Let now v € W be such that us < u. Let v/ = us and 7/ = s.7. Then by the result we
just proved applied to 7/, we have u/.7 € Im(f’). Moreover by Lemma 4.5, f o f' = 0. Thus
w7 = u.t € Wt(Ker(f)), which proves the reverse inclusion and proves (1).

Let i € [1,n 4 1]. Using Proposition 2.10, we write I, , = @,y FE,, where & €
Ly +(v.7), for v € W?. Let v.r € U, Wt(Ker(f;)) and let ¢ € [1,n] be such that v.7 €
Wt(Ker(f,-)). Then f;_yo...f1(&) € I, -(v.7) and thus f;o fiyo...f1(£!) = 0. Hence
fno...ofi(€l) =0 and thus v.7 € Wt(Ker(fn 0...0 fl)).

Let v.r € W.r \ UL, Wt(Ker(f;)). Let i € [1,n], fio...o fi(&) € F&. Suppose
that f;_1o...0 f1(€!) € F*¢&. Then by assumption, f;o...o f1(£!) # 0 and thus v.7 ¢
Wt (Ker(f, o...0 f1)). Consequently Wt(Ker(f,o...0 f1)) = U~ Wt(Ker(f;)) and we
conclude with Lemma 4.23. O

Remark 4.25. Suppose that for all s,t € % such that s # t, the order of st is infinite (this is
the case if and only if for all s,t € % such that s # t, the coefficients of the Kac-Moody matrix
satisfy asq ars > 4, by [Kum02, 1.83.21 Proposition]). Then for all strongly indecomposable
submodules M, M' of I, one has MNM' = {0}, M C M' or M' C M. Therefore the strongly
indecomposable submodules of I are exactly the indecomposable submodules of I, and one
can replace the sums by direct sums in Theorem 4.21.

Indeed, let w € W". Let w = si...s1 be the (unique) reduced writing of w, where
S1y...,8, € L. Fori € [Lk], set fi = As; 51,50 1507~ Lhen Ay1. = fro...o fi. If for
all i € [1,k], fi is an isomorphism, then M, , = I.. Otherwise, let n be the maximum of
the i € [1,k] such that f; is not an isomorphism. Then Wt(M,, ) is the set of v.T € WV.T
such that the reduced writing of v ends up with s, ...s1. Indeed, let W' = $,8,_1...571.
One has My, = fro...0 filus) = fno...o fi(ly). By Proposition 4.24, Wt(M,, .) =
ﬂ?zl\Nt(Im(fi)). Moreover by Proposition 4.24, if i € [1,n] is such that f; is not an
1somorphism, then Wt (Im(fz)) 1s the set of v.17 such that the reduced writing of v € W ends
up with s; ... s1.

Note that it is not true in general, see Example 4.26.
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4.5 Examples
4.5.1 The trivial and the Steinberg representations

Assume for simplicity that 7 = C and that there exists ¢ € R.; such that o, = o, = o,
for all s € .. Let e € {—1,1}. Let 7. € Tt be such that 7.(aY) = 0, for all s € . (such
a 7. exists by |[Hcb18, Lemma 6.2]). Then 7. is regular, as proved in the proof of [Heb18,
Lemma A.1]. By [Héb18, Lemma A.1], I, admits a unique maximal proper submodule M..
Moreover, M, has codimension 1. Then I, /M, is the trivial representation if ¢ = 1 and
the Steinberg representation if e = —1.

2 -1
-1 2
example for G = SLg). Write ¥ = {s,t}. Then s.f = t.o) = o + «. Thus we have the
following graph:

Example 4.26. Suppose that the Kac-Moody matrix A is (this is the case for

#

~
< > Is.'r6 < > Its.T6

~ .

It.‘re — st.Te ~ ]tst.rs - Ists.'r6

I,

€

By Proposition 4.24, one has Wt(Ms.,) = {s.1.,ts.7, sts.t. = tst.r.}, Wt(M;,.) =
{t.1e,st.re,sts.t. = tstr.}. Let T = (Igpsr, Lisres Lsry In) and U = (Lisprs LIsprey Lpmes 17
Then I' and I" are intertwining maps and thus Mgy .. and thus Mys, C M, O M.
By Lemma 4.22, we deduce that {0} € Wt(Mgs .. ) C Wt(Ms... ) N Wt(M, .. ). Consequently
Wt(Msts - ) = {sts.7.}. The proper submodules of I, are M ., My ., Mgs . and My ., +M,; ..
Note that M ;. + M, .. is indecomposable, but not strongly indecomposable.

Example 4.27. We assume that the order of st is infinite for all s,t € % such that s # t.
Then every element of WV admits a unique reduced writing. Let e € {—1,1}.

1. The proper strongly indecomposable submodules of I are exactly the M. = A1, (Is.+.),
forse .. If s €., then Wt(Ms,,) is the set of w.T. such that the reduced writing of
w e WY ends up with an s.

2. The proper submodules of 1., are exactly the @, ,» M. such that /" C 7.
Proof. As ®V C @,., Na] U -, , Na/, one has
{aV € ®V|r.(aY) € {0, 07%}} = {£a)|s € S}

Let w € WY and s € % be such that I, ., is not isomorphic to I, ... Then by [Heb18,
Lemma 5.4], 7.(w.a)) € {0?,072}. Thus w.al = nay, where n € {—1,1} and t € .¥.
Iftn =1, set w = wand if n = —1, set w' = tw. By [Kum02, 1.3.11 Theorem (b5)],
w's = tw'. Suppose w’ # 1. Let w’ = s1...s; be the reduced writing of w’, with & > 1
and sq,...,5; € . Then sw' = w't = ss1...8; = s1...s5;t. If L(w's) = {(w') + 1, then
these writings are reduced and thus s = s; and ¢t = s; by the uniqueness of the writing.
This is impossible and thus ¢(w's) = ¢(w’) — 1. But then s = s; and t = s; and hence
w's = 89...8, = 81...8,_1 1s a reduced writing. Thus s; = s3: a contradiction. Therefore
w' =1 and s =t. Thus w € {1,s}. Moreover, the graph G, is a homogeneous tree with
valency |.”| + 1. Therefore the graph of isomorphisms G,, of 7. has exactly |.#’| + 1 connected
components: the component containing I, and the components containing I .., for s € ..
By Lemma 4.18 we deduce that the proper strongly indecomposable submodules of I, are
exactly the M, ., for s € .. Using Proposition 4.24 we deduce (1), which implies (2), by
Remark 4.25. O
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4.5.2 Some representations of gig

Suppose that A is associated with the affine Kac-Moody matrix A = < 22 _22) Then A is

the affine Kac-Moody matrix associated with the Cartan matrix (2). Let X = Za =7 and
Y = Za" = Z for some symbols a, a”. Let X = X@®ZSBZS and Y =Y & Zc & Zd, where
9,d', ¢,d are symbols, 6(d) =1, 5(0) d(a) =0and a(c) = a(d) = 0. By [Kum02, 13.1], we
can take oy = 0 —av and o = c—«” and then ® = {£a+kd|k € Z}, PV = {+a' +kc|k € Z}
and ¢ is invariant under the action of W".

Let a € C§ be such that a —d € Ra” @ Re. For w € W", w.a € w.C}y. Write w.a =
d+ zya’ + yye. Let w # w' € WY Then w.a € w.C§ and w'.a € w'.C}. Moreover,
w.C7 =w.C’+Re # w'.C} = w'.C} + Re and thus (z.,)wew is injective.

Let 7 € T¢ be such that 7(a¥) = 0% and 7(c) = 1. Then (w_l'T(a))weW” is injective and
thus 7 is regular. Moreover, 7(3") = 7(a") = o2 for all ¥ € ®V. Thus by [H¢h18, Lemma
5.4] for all w # w' € W", I, and I, are not isomorphic. Write . = {s,t}. Then W" is
the infinite dihedral group. The graph of I, is thus:

# # # # # #

Its.r < >

[st.'r [t.T IT [8.7'

Therefore I, admits not irreducible submodule. The family (Mn - )nen is a strictly decreas-
ing sequence of submodules and thus I is not artinian. By Proposition 4.9, for every w € W,
M is one dimensional and thus w.T extends uniquely to a one-dimensional representation

of BL’HC.

5 Study of I, for 7 € Ue

We now assume that F = C and that |os| > 1,0,

> 1 for all s € .. The ring C[Y] is a

num

. . . . \Vi . o \V num an . .
unique factorization domain. For o, write (,v = Cie where (2V™, (S" € F[Y] are pairwise
«@
. . . AV
coprime. For example if oY € ®Y is such that o,v = 0/, we can take 3‘3“ =1—-277" and

in any case we will choose (3" among {1 — Z=*" 14+ 2" 1 -z},

Let U be the set of 7 € T¢ such that for all o € &Y, 7((2¥™) # 0. When o, = 0}, = /g
for all s € .7, then U = {7 € Tc|T(a”) # ¢, Yo € ®V}. By [Hcb18, Lemma 5.4], if 7 € U,
then I, , ~ I for all w € W7,

Let 7 € Uc. The aim of this section is to study the submodules of I, (see Theorem 5.34)
and then to deduce a description of the irreducible representations of B*H¢ admitting 7 as a
weight (see Theorem 5.38).

The proof of Theorem 5.34 is based on the study of the weights of the submodules of I.
Let M be a submodule of I,. As I, ~ [, for every w € W", it suffices to study M (7). In
order to study it, we first study M (7, gen) and I.(7,gen).

To describe I.(7,gen), we begin by proving a decomposition W, = R, x W(;), where
W7y is some reflection subgroup of W, and R, is the generalization of the R-group (see
Lemma 5.3). The group W, is a Coxeter group for some set of simple reflections .. We
proved in [Héb18, Lemma 6.21] that if » = rgv € .7, then K, = Frg — (v is an element of
BL(T¢),. Using products of K,, for r € .7,, we describe the “Wir-part” I.(1,gen, Wiry) of
I,(7,gen). We prove that if wg € R,, then F,,, € BYH(T¢), (see Lemma 5.7), which enables
us to define an element ), € End(/;). Combining the vy, wg € R, and I.(7, gen, W(;)),
we deduce a description of I.(7, gen) (see Proposition 5.13).
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In subsection 5.1 we define, for 7 € T a group R, such that W, decomposes as W, =
R, x W(;). We then associate to each wgr € R, an element v, € End(/,).

In subsection 5.2 we study I.(7,gen), for 7 € Uc. In the case where the Kac-Moody
matrix has size 2, we deduce a description of I.(7), using the v, wg € R,. We conjecture
that this description remains valid in the general case (see Conjecture 5.16). We then restrict
our study to the 7 € Uc satisfying this conjecture.

In subsection 5.3, we study the weight spaces and generalized weight spaces of the sub-
modules and quotients of I..

In subsection 5.4, we study End([,) and describe it as the group algebra of R, under
some additional assumptions (for example when BYH¢ is associated to a split Kac-Moody
group), using the vy, wg € R,.

In subsection 5.5, we establish a bijection between the right ideals of End(7;) and the
submodules of I..

In subsection 5.6 we describe the irreducible representations admitting 7 as a weight.

5.1 The R-group
5.1.1 Definition of R, and decomposition of W,

In this subsection, we introduce a group generalizing the group called “the Knapp-Stein
R-group” in [Key82).
Recall that Z = {wsw™w € W?, s € #} is the set of reflections of W?°. For 7 € Tg, set
={weW’lwr=r1} &/, = {a € OY|CIM (1) = 0}, Z(ry = {r =rav € Z|a" € 0}
and
Wiy = (@) = ({r = rav € RICE(7) = 0}) € W™,

By [Heb1s, Remark 5.1], Wiy € W.. When a4(Y) = Z for all s € ., then W(;) =
(W, NZ).

By [Heblg, 6.4.1], (W, ;) is a Coxeter system, where .2 C Z is the set introduced
in [Héb18, Definition 6.11]. We denote by £, the corresponding length and by <, the corre-
sponding Bruhat order. By [Héb18, Lemma 6.12], for all w,w’ € WY such that w <, w’, one
has w < w'.

Definition 5.1. The R-group of 7 is the subgroup R, = {w € Wi[w.®/, = @7,  } of
W..

Lemma 5.2. Let w € WY and 7 € Te. Then wW,ow™ = W,,., w.dl) = &, and
w.W(T)w_l = Ww.r)- In particular, Wy is normal in W, and W, stabilizes <I>(VT).
Proof. The first equality is clear. Let 8Y € <I>(w ” Then

G (w.r) = 0= (" ¢EM)(T) = (Co% 5 )(7)-
Thus w3 € ®/, and hence @[, , C w.®,. Similarly &/, = = Q1,5 C w O,
and so <I>E’w7 = w.CI)E/T). We deduce that Z(,.,) = w.%(T).w_l. Consequently Wi,y =
w. Wi 0

Lemma 5.3. (see [KeyS2, I § 8 Theorem 1])
One has the following decomposition: W, = R, x Wy,
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Proof. Let w € W(;. Write w = 71...73, with & = £ (w) and r; € .7 for all © € [1,k].
Suppose k > 1. Let w' = ry...rg_;. Then by [Heb18, Lemma 6.12], w’ < w. One has
((w') = L(wry) < £(w) and thus by [[Kum02, 1.3.13 Lemma|, w.a;, € ®". Therefore, w ¢ R-
and we deduce that R, N Wy = {1}.

We now prove that W, = R..W(,y. Let n € N. We assume that {w € W [{(w) < n} C
R; Wy Let w € W, be such that /(w) < n + 1. Let us prove that w € R..Wy. If
w € RT, there is nothing to prove. Suppose that w ¢ R,. Then there exists o" € <I>(T)
such that w.aV € <I>E’T)7_. Let w = s1...8; be a reduced expression of w, where k = {(w)
and $1,...,s, € . Then by [Kum02, 1.3.14 Lemma|, there exists j € [1, k] such that
oV = s . SOy Let w' =s1...5j...5,. Then w = w'rov. As ¥ € @E’T), rov € Wiz, As
w' € {w e W [l(w) <n}, w' € R, W,y and thus w € R;.W(,y , which concludes the proof of
the lemma. O

5.1.2 Bruhat order

We now study how the Bruhat order behave when we multiply an element of W) by an
element of R.. We will use it to prove that some family of (7, gen) is free and thus to
describe I.(7,gen) (see Lemma 5.12 and Proposition 5.13).

Lemma 5.4. Let w €¢ WY andr € #Z. Then either wr > w or wr < w.

Proof. By [Kum02, 1.3.13 Lemma|, one has wr > w if and only if w.cy > 0. Suppose
w.a, < 0. Then wr.ay = —w.ay > 0 and thus wr < wr.r = w, which proves the lemma. [

For w € W,, we set N¢(v)(w) = Ngv(w) N P/

(- By Lemma 5.2, Ngv (w) = {a¥ €
O fJwar el }.

Lemma 5.5. Let wg € R; and v,w € Wy be such that v <; w. Then vwrp < wwg and
WRY < WRW.

Proof. Let w'" € W(;) and r € %) be such that w'r >, w’. Then by Lemma 5.2 and by
definition of R,:

N(I)E/T) (wa’r) = Nq>\/ (wa’r) N @E/T) = N(I)E/T) (’LU,’T’) 2 NCI)E/T) (wa ) NCI)E/T)( )

Therefore wrw'r £ wrw’ and by Lemma 5.4, wrw'r > wrw'.
By definition of the Bruhat order (see [BB05, Definition 2.1.1]), there exist ry,..., 7 €

H(r) such that v <, vr; <; vrry <; ... <, vrl .7, = w, which proves that wa > WRY.
By applying this result to wy', v™! and w™!, we deduce that wy'w™ > wzp'v™! and thus
(wp'w™) ™t = wwp > (wyz'v™) ™t = vwp, which proves the lemma. O

5.1.3 Endomorphisms associated to elements of R,

Lemma 5.6. Let wg € R;. Let WR = Sk ...S1 be a reduced expression of wg. Let j € [1,k]
and wj = S;_1...51. Thenw ay §é<I>V

Proof One has f(wr, o ) =k—-1< E( ) = k and thus by [Kum02, 1.3.13 Lemma],

w;! . <0 and by the deﬁmtlon of Ry, wi .o ¢ ) 0O

Lemma 5.7. Let wg € R,. Then F,, € PH(T¢),.
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Proof. Let wg = si...s; be a reduced writing of wg, where k = {(wg) and s1,...,s; € 7.

For j € [1,k], set w; = sj_;...s; € W*. Then by Lemma 5.6 applied to w3", wj_l.ozsj (VT)

for all j € [1,k]. Therefore 7(¢%% , ) # 0 and hence (,-1,, € C(Y),. Thus by
w; .asj+1 JoTTS5+41

Lemma 2.13 (4), F,,, € PYH(T¢),. Moreover, by Lemma 2.13 (4) and (2), as wg € W, one

has F,,(7)v, € I.(7) N (I=*#7 \ [=*%). Using Lemma 2.9 we deduce the lemma. O

€ End(/Z;) (this is well defined by Lemma 5.7).
CH,v,.

For wg € R:, we set ¢y, = Th, (r)v,
Then there exists a € C* such that vy, (v,) — aH,,v, € [S"F = P

Lemma 5.8. Let 7 € Uz and wg € R.. Then 1y, is invertible in End(I;) and its inverse is
m C*’QD —1.
Wr

Proof. By Lemma 5.7, there exists (6,) € (C(Y),)"") such that F,, = >,y Hu0,. Then
by Lemma 2.13 (3)

Fup*Fyr= Y H6,F, 0= HF, L', .

' veW® ' veWw
Let v € WP, Then “z 6, € C(Y)y,, = C(Y),. By Lemma 5.7, F,1 € BYH(Te),. As
BLH(T¢), is an Hye e — C(Y),-bimodule we deduce that F,, * F,1 € BLY(T¢),. By
[Heb18, Lemma 6.23], there exists P € C(Y), such that F,, * Fyor = P and P(7) # 0. Thus

¢w§1 (¢wR (VT)) - wwél (F“’R (T)VT) = Fyp(7) * ngl(T)VT = P(7)v,.

As I, = BYHc v, we deduce that ¢w1;1 is surjective and 1), is injective. The lemma follows
by symmetry. ' O

5.2 Generalized weight spaces of I, for 7 € Uc

Let 7 € Ug. In this subsection, we describe I.(7,gen) (see Proposition 5.13), using some
elements of BYH(T¢),. Under some additional assumption, we deduce a description of ()
in terms of the F,,(7)v,, for wg € R,. We conjecture (see Conjecture 5.16) that our
assumption is satisfied for every 7 € Uc. As we shall see (5.15), it is satisfied when PFH¢ is
associated with a size 2 Kac-Moody matrix. This subsection extends the results of [Héb18,
6.5] (in which the case 7 € U such that R, = {1} is treated) and is inspired by [Rec97]. To
generalize these results, we use the 9, for wg € R,.
For r € %, one sets K, = F, — (,y € B“H(1¢). By Lemma 2.13 we have:

O+ K, =K, «x0"+ (6" —0)( for all 0 € C(Y). (4)

For each w € W) we fix a reduced writing w = r1...74, with k = l(w) and ry,..., 7} €
S, and we set w = (r1,...,m). Let K, = K, ... K, € PH(T¢). In [H¢bh18, Lemma 6.25],
generalizing results of Reeder (|[RecO7, section 14|, we proved that K, € BVH(T¢),, for every
w € Wiy Weset K.(7) = @weW(T) CKy(T) C Hwo e

Recall that if h =) .o H,0, € BLY(Te),, ev.(h) = Y vew T(00)Hyy € Hypo .
Lemma 5.9. Let 0 € C(Y),, h € B*H(T¢), and x € I,(1). Then Oxev,(h).x =ev, (0*h).x.

Proof. Let w € W". Then by Lemma 2.8, one can write 6 x H,, = Y _. H,P, ¢, for some
P, w9 € ClY]. Let Q € C(Y),. One has ev,(0 x H,Q) = ngw 7(Pyws@Q)H,. One also has

Oxev (Hy*Q)=7(Q)> ,cp HoPowo. Hence Oxev (Hy,*Q)x=> . T(PyweQ)H,.xv =
ev, (0 H,).z, and the lemma follows by linearity. - O
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Notation 5.10. Let I.(7,gen, W(;)) = K.(7).v, = @wEW(T) CKy(T)v, and I.(1, W) =
I (7, gen, Wry) N I-(7).

We set m, = {0 € C[Y]|7(#) = 0}.
Lemma 5.11. 1. The space 1.(1,gen, W(;)) is a C[Y]-submodule of I.(7, gen).

2. Let x € I.(7,gen, W) \ {0}. Write v = ZweW(T) Ko (T)V,, where (a,) € CWo),
Let 0-(x) = max{{,(w)|lw € W(;) and a,, # 0}. Then for all 0y, ...,0; ()11 € m,, one
has 91 9@ )41 x = 0.

Proof. Let § € C(Y) and w € W;). Then by [[Hcb18, Lemma 6.25], there exists kyg €
D, ., K.C(Y), such that 0 x K, = K, **“ 0 + kyg. Suppose 6§ € C(Y),. Then by
Lemma 5.9,

0.(Ky(T).v:) = (0 % ev,(Ky)). vy = ev, (K * wg 4 kuwo) Ve = (T(0) Ky (T) + kuo(T)) .V,

and ky(0) € D,. ,CKy(7). Thus if 0 € m., 0.K,(7) € @, ,CKy(7). By induc-
tion on /,(w), we deduce that @,. , CK,(7).v, is a C[Y]-submodule of I, and that if
01, ... .00 (w)+1 € My, then 01 ...0, (w)41.-Kw(7).v; = 0. Therefore, K. (7).v. C I.(1,W(5)).
By [Bb Proposmon 2.2.9], for every finite subset F' of W(,y, there exists w € W,y such
that v <; w, for every v € F. Thus I.(7,gen, W(;)) is a C[Y]-submodule of I..

U

Lemma 5.12. Let w € W(;) and wg € R,. Then:
1. K, * F,, € ""H(T¢),,
2. Ky(7) Yw,(Ve) = ev (Ky x Fy ). Ve,

3. max <Supp(K&.¢wR(Vr))) = {wwr},

Proof. By [Hcb18, Lemma 6.26] K, € PYH(1¢),. Thus Ky = >, o Hy * Py, where (P,) €

(C(Y)T)(WU). Then by Lemma 2.13, Ky * Fy, = > o Hy * Fyp x B P,. Moreover Y2 P, €
(C(Y)w?j = C(Y),, for v € W¥. Thus by Lemma 5.7 and as BYH(T¢), is a right C(Y),-
submodule of PYH(T¢), we have K, % F,, € B*H(T¢),. Moreover,

eV (Ky# Fup) Ve = Y T(P)H, % Fup(7).ve = Ky (1) b (V7).

veW®
Write w = (r1,...,7%), with r1,...,r € . Then by definition of K, and by [Heb18,
Lemma 6.22], there exist (6,) € C(Y):%)r such that Ky =3 e o Fuox0,. By [Hch18, Lemma
6.23], we deduce that there exist (6,) € (C(Y) I= such that K, * F,,,, = > veli ) Foy 0.
By Lemma 5.5, for all w’ € [1,w),, w'wgr < wwg, thus by Lemma 2.13 (2), the coordinate
in H,, of K, * F,, in the basis (H,)yew is 0,, and hence 6,, € C(Y),. By |Heb18, Lemma
6.26], 0,,(7) # 0. Using [Hch18, Lemma 6.23] we deduce that 6,,(7) # 0, which proves (3). [

Proposition 5.13. 1. The family (K (7).t (VT))wGW( awoneRs is a C-basis of I(T, gen)

and one has the following decomposition of C[Y|-modules:

(7, gen) @ Yy (I (7, gen, W) = @ Yo, (K7 (7). V7).

wRER: wRER,
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2. One has I.(1) = @,,cr, Yun (L-(1,W(r))). In particular if I,(1,W()) = Cv,, then
IT(T) = @wRERT CFwR(T)VT'

Proof. By Lemma 5.12 (3), (KH(T)'¢wR(VT))weW(T),wReRT
Wr € Ry, Yy, Is a BLY{ --module morphism and thus it is a C[Y']-module morphism. There-
fore, by Lemma 5.11, Ky (7).%w,(v,) € I:(7,gen) for all w € W(;) and wg € R;. Let
x € I,(7,gen) and Wy, = max (supp(z)). Then by [H¢b18, Lemma 3.3], M C W,. Write
Wi = {wi,...,wg}, with k = |[Wy|. For i € [1,k], write w; = w'wj, with w' € W,
and w% € R,, which is possible by Lemma 5.3. Then by Lemma 5.12 (3) there exist
A, A € C* such that if y = 2 — YO, AilK i (7).4byi (v7), then for all v € supp(y),
there exists w € W such that v < w. Moreover, y € (7, gen). Thus by decreasing induc-
tion on max{{(w)|w € Wy} we deduce that I.(7,gen) C Ky (7)Y, (vs). By

wGW(T),wRGRT w
Lemma 5.11, vy, (L-(’T, gen, W(T))) is a C[Y]-module for all wgr € R., which proves (1).
Let © € I.(17) C I.(1,gen). Write z = ZweW(T),wReRT Ty With Ty, € Yy, (I (T, W(r))),
forwg € R;. By (1), ifwg € R., then 2, € I(T)Wu,, (I-(7, gen, W(r))) = tuy, (I (1, Wir))),
which concludes the proof of the proposition. O

is a free family. Moreover, if

Corollary 5.14. Suppose that I.(7,W)) = Cv,. Then for all ¢ € End(l.), there exist
k€N and ¢y, ..., ¢, € End(I,)* such that ¢ = >S5 .

Proof. Let ¢ € End([;) and = = ¢(v,) € I.(7). By Proposition 5.13, one can write x =
ZwReRT Ay Fup (T)Vy, where (ay,) € CE-), Then x = ZwReRT A Yuwy (V,) and thus ¢ =
ZwRE R, QuwrpVuwg- Using Lemma 5.8, we deduce the corollary. O

Lemma 5.15. Suppose that the Kac-Moody matriz A has size 2 and that WV is infinite.
Then I.(17, W) = Cv;.

Proof. If W(;y = {1}, then I.(7,W(;)) = Cv.. If (W,),.#;) is isomorphic to the infinite
dihedral group, then the proof of [[¢h18, Lemma 6.36] actually proves that I.(17, W(;)) = Cv,.
By [Heb1s, Lemma 6.37], as W,y is generated by reflections, the only remaining case is
the case where ., = {r} and W(,) = (r), for some reflection r. Then I.(7,gen, W) =
Cv, ® K, (1)v,. Thus it suffices to prove that K, (7)v, ¢ I,(7). Let § € C(Y),. Then by
Lemma 2.13 (3) we have

O« K.(T)v, = K.(1)x0"v, + (6" — 6)(,v,.

Let A € Y and suppose that § = Z*. Then by [[1¢h18, Lemma 6.32|, there exists a € C*
such that if r = rgv, (0" — 0)( v, = at(N)B(A)v,. Thus as 5(5") = 2 # 0 we deduce that
0% K,(1)v, ¢ CK,.(7)v,, which concludes the proof of the lemma. O

Conjecture 5.16. Let 7 € Uc. Then I.(1,W(;)) = Cv..

5.3 Generalized weight spaces of submodules and quotients for 7 €
Uc such that I.(17, W) = Cv,

Let M C I, be a submodule. We now study M (7, gen) and I./M(7,gen) and we deduce
results on I /M (7). The main results are Lemma 5.18, which in particular asserts that M is
generated by M (1) and Proposition 5.20, which enables to describe I, /M (7) as the image of
I.(7) by the canonical projection.
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5.3.1 Description of M(r,gen), for M C I,

Lemma 5.17. Suppose that I.(7, W) = Cv,. Let (z;)cs be a free family of I.(7). Then
(Kw(T)-2))jeswew,,, is a free family of I.(7,gen).

Proof. Let w € W,. Using Proposition 5.13 we define 7, : I.(7,gen) — I(7) as follows:

T Y BN un(V0) = D (Vo)

UGW(T),wRGRT U)REW(.,.)

for (ayw,) € CW B Let (a,;) € CWo*) be such that Z(v,j)EW( )% ay Ky (7). ;5 =
0. Let w € W(y. Then Ww(z(v’j)ew(T)XJav,jKQ(T).LUj) = Y jes@w;r; = 0 and thus
(@w,j)wew,,,jes = 0. Therefore (Ky(7).7;) is free. O

Recall that Kr(7) = @yew,, Ku(T) C Hwr

Lemma 5.18. Let M be a submodule of I,. Then M (1, gen) = vecte (K, (7).M(7)).

Proof. For x € I(7,gen), we denote by z,,, the projection of x on 1, ([T(T, gen, W;)) with
respect to the decomposition of Proposition 5.13. Let € M (7, gen). Let

n(z) = {wr € Br| 2wy # 0},

We prove the lemma by induction on n(z). Let m € N be such that for all x € M(7, gen)
such that n(z) < m, one has = € vecte (K- (7).M(7)).
Let x € I,(1,gen) be such that n(z) < m + 1. Let

k= min{k' € N|V(0y,...,01) € (m)*,0,... 0p.x=0}—1,

which is well defined by Lemma 5.11 (2) and Proposition 5.13. Let 6;,..., 6, € m, be such
that y := 0, ... 0.2 # 0. By definition of k, y € M (7). Write y = >, Vws(aw,Vv;), With
(ay,) € CU) which is possible by Proposition 5.13. Let wgr € R, be such that Ay, 7 0. By
Proposition 5.13, there exists h € K,(7) such that h.t,,(V:) = Ty,. Set & =z — ——h.y.
WR
Then 2 € M and .
IT=x— — Z Yy (Qpphvy).
awR ’URGRT

Thus # € M(r,gen) (by Proposition 5.13) and {vg € R;|Z,, # 0} C {vg € R;|lz,, #
0} \ {wgr}. By the induction assumption we deduce that & € K.(7).M (7). Therefore z €

vectc (K- (7).M (7)) and the lemma follows by induction.
U

5.3.2 Description of I, /M(t,gen) for M C I,

Lemma 5.19. Let M C M' C It be two B"He-modules. Let my @ I, — I./M be the
canonical projection. Then the restriction g : M'(1,gen) — M'/M(7,gen) of my is well
defined and induces an isomorphism of C[Y]-modules

M'(1,gen) /M (7, gen) = M'/M (7, gen).
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Proof. As my is a BYHc-module morphism, it is in particular a C[Y]-module morphism
and thus my (I,(7, gen)) C M'/M (1, gen), which proves that g is well defined. Let T €
M'/M(7,gen). Let x € 7,/ (F)NM’. By [[¢h18, Lemma 3.3], we can write z = > wew w, Tw.rs
where z,,, € M'(w.T,gen), for all w € WY/W,. Then for all w € W*/W,\ {1}, 7y (20,) €
M'(w.7, gen) and thus 7y (2,.-) = 0. Therefore 7y () = mp(2,) and thus my, (M’ (7, gen)) =
M'/M (7, gen). Moreover, ker(g) = MNM'(r,gen) = M (7, gen), which proves the lemma. [

Proposition 5.20. Let M be a submodule of I,. Let H be a complement of M(7) in I.(T).

1. Then we have the following decomposition of C[Y'|-submodules:

(7, gen) = vecte (Ko (7).M(7)) @ vecte (K. (7).H).

2. Letmy : I, — I./M be the canonical projection. Then the restriction f : vectc (/CT(’T).H) —
I./M(T,gen) of mys is well defined and is an isomorphism of C[Y|-modules.

3. One has I /M (1) = my(H) = 7y (I:(7)), dim H = dim I, /M (7) and dim I, /M (7, gen) =
\Wer | dim I /M (7).

Proof. (1) By Lemma 5.18, Lemma 5.17 and Proposition 5.13,
vecte (K- (7). H) + vecte (K, (7).M(7)) =vectc (K, (7).H) @ vecte (K, (7).M(7))
zvect(c<lC (7).(H® M(r ))
=vecte (K-(7).I:(7)) = I(7, gen).

Therefore vectc (K, (7).H) is a complement of M(r,gen) = vectc(K.(7).M(7)). For
w € Wiy, set KI¥ = @ ,e(1.4), KuC(Y)r and K2 = D, (1 ), CEu(7). Let 6 € C(Y); and
w € Wv. Then by [Hcéb18, Lemma 6.27|, there exists k9 € IC<w such that 0 x K, = K, *

"0+ kyp. By Lemma 5.9, we deduce that if € I.(7), then 6% K, (7).2 = ev (0% K,).x =
T(H)Ki( ).x + ev,(kyg).x. By induction on ¢(w), we deduce that if x € I.(7), then K (7).«
is a C[Y]-submodule of I, which proves (1).

(2) is a consequence of (1), of Lemma 5.18 and of Lemma 5.19 applied with M’ = I.

(3) By (2), f~H(I-/M(7)) = vectc(K,(7).H) Let € I(r) N vecte(K,(7).H). Write
x =h-+m, with h € H and m € M(7). Then x — h € vectc(K,(7).H) N K. (7).M(1) =0
(by (1)) and thus z = h € H. Therefore f(H) = my(H) = 7 (1-(7)) = I,/M (7). Therefore,
dim H = dim I./M (7). By (2) and by Lemma 5.17, dim I, /M (7, gen) = dim vectc (K, (7).H) =
|Wr|.|H|, which concludes the proof of the lemma. O

Corollary 5.21. Let M be a submodule of I, and wy : I, — I./M be the canonical projec-
tion. Then the map End(I;) — Hom(I,, I./M) defined by ¢ — mp o ¢ is surjective.

Proof. Let ¢ € Hom(I,,I,/M). Let T = ¢(v,) € I./M(7). Using Proposition 5.20 (3), we
choose x € I.(7) such that my(z) = T. Let ¢ € End(/;) be such that ¢(v,) = z, whose
existence if provided by Lemma 2.9. Then 7 0 ¢(v;) = ¢(v,) and as I, = BL'HC V,, We
deduce that ¢ = 7, 0 ¢. O

5.3.3 Invariance of the dimensions of the weight spaces under the action of W"

Lemma 5.22. Let M be a BYHc-module and w € W*. Then dim M (1) = dim M (w.T).

31



Proof. As 7 € Ug, there exists an isomorphism ¢ : I, , — I,. Let g : Hom(l,,M) —
Hom(Z,. ., M) be defined by g(f) = f o ¢ for f € Hom(I,, M). Then g is a vector space
isomorphism. By Lemma 2.9 we deduce that dim Hom(/,, M) = dim M (1) = dim M (w.T) =
dim Hom(Z,, ., M). O

Lemma 5.23. Let M be a submodule of I.. Then for all w € WY, dim M(7,gen) =
dim M (w.7, gen) and dim I./M (7, gen) = dim I, /M (w.T, gen).

Proof. As 7 € Ug, there exists an isomorphism ¢ : I, — I,,. Let M’ = ¢(M). Then by
Lemma 5.18,

dim M’ (w.T, gen) = dim M (w.7, gen) = |Wy.p)|. dim M’ (w.7) = |Wyr| dim M (w.7).

By Lemma 5.2, [Wy.-)| = |W(5)| and by Lemma 5.22, dim M(7) = dim M(7), which proves
that dim M (w.7, gen) = |W(,| dim M (w.7) = dim M (7, gen).

The map ¢ induces an isomorphism ¢ : I./M = I,,./M’. By Proposition 5.20, Lemma 5.22
and Lemma 5.2,

dim I, -/M'(w.T, gen) = Wy, | dim I, - /M'(w.T) = |W | dim I, /M (1) = dim I /M (T, gen).
U

Lemma 5.24. Let M C M’ C I, be BvHc-modules. Then M = M’ if and only if M (T, gen) =
M'(t,gen) if and only if M (1) = M'(7).

Proof. 1t is clear that M = M' = M(r,gen) = M'(7,gen) and that M(7,gen) =
M'(1,gen) — M(7) = M'(7). By Lemma 5.18 , M (7) = M'(7) if and only if M(7,gen) =
M'(1,gen). Suppose that M(r,gen) = M'(r,gen). Let M’ D M be a submodule of I,
such that M'(r,gen) = M(1,gen). Then by Lemma 5.19, M'/M(7r,gen) = {0} and in
particular, M'/M(7) = {0}. Using Lemma 5.22 we deduce that M'/M(w.T) = {0}, for
every w € W". Therefore Wt(M'/M) N W?".T = (). Moreover by [[éb18, Lemma 3.3], M’ =
D, cwiun M' (7', gen) and Wt(M') € W*.r. Therefore, M'/M = @D, cyyypry M'/M (7', gen) =
DB, o, M /M(7',gen) = {0}. Thus M" = M. O

5.4 Study of End(/;) for 7 € Uc such that I.(7,W;)) = Cv;

In this subsection, we study the algebra End(l;). We prove that End(/,) is isomorphic
to C[R,] when BMH¢ is associated to a split Kac-Moody group or when the order of st
is infinite for every s,t € . such that s # t, for 7 € U satisfying Conjecture 5.16 (see
Proposition 5.27). Our proof relies on the fact that one has v, o 1, € Cty,.,, for all
Vg, wr € R.. We normalize the 1, suitably to obtain the desired isomorphism.

We then give criteria for an element of End(7,) to be surjective or injective (see Lemma 5.28
and Lemma 5.30.

5.4.1 Description of End(/;) in the split case or in the right-angled case

For s € .7, we set F! = Fj Cis € BLH(T¢).

Lemma 5.25. Let s € .. Then (F!)* =1.
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Proof. By Lemma 2.13 (3) and [H¢b18, Lemma 5.3], one has:

1 1 1
F)=F, %~ % Fyx— =F_ =1
( S) S*C* S*C-S S*CS*SCS

O

For G a group, a,b € G and m € N, we denote by II(a,b, m) the product abab. .. having
m factors.

Lemma 5.26. We assume that there exists o € C* such that o5 = 0, = o for all s € .. Let
s1, 89 € . We assume that the order m(sy, se) of s1sq is finite. Then:

IL(F. ,F., ,m(s1,s2)) =II(F., F. ,m(s1,52)).

s17 7§97 S27 7 817
—ay
Proof. By assumption on the oy, o, one has (5, = %v“‘— for s € .. Let m = m(s1, s2) By
Lemma 2.13 (3),

1— o277
I(F., F.,m) =1I(F,, F,,m) 11 T
aVENgv (H(sl,sz,m))
By Lemma 2.13 (1), IT(Fy,, Fy,, m) = II(F,,, Fy,, m). Moreover, [[(s1, s2,m) = [(s2, s1,m),

which proves the lemma.
O

Proposition 5.27. Let 7 € Uc. We make the following assumptions:

1. the order of st is infinite for every s,t € . such that s # t or there exists o0 € C* such
that o = o, = o for all s € .7,

2. I.(1,W(z) = Cv..
Then End(I;) is isomorphic to C[R,].

Proof. By [BB05, 1.1] and Lemmas 5.25 and 5.26, there exists a unique morphism £’ : W" —
BLY(Tt) such that F'(s) = F! for all s € .. We denote F instead of F'(w), for w € W".
Let wg € R,. Let wg = s1...5s; be a reduced expression of wg. Then by Lemma 2.13 (3),
there exist wy, ..., w, € W" such that

F/ . F % " F " wigden - F wigden "
wRr S1 N Sk a;/i wignum - WR a;/i wié_num .
i=1 i=1 ooy j i=1 oy

=1

en ¢ , wicden ¢ C - and by definition of U, ||, | s7mm € - DY
Then [}, (3 € C[Y] C C(Y), and by defi f Ue, [Ty e € C(Y)r. B

Lemma 5.7 we deduce that F, € PMH(T¢),.
Let vg,wr € R,. Writg Fo= wews Hux Oy and Fy =37 00 Hy % 0y, where
(Buon)s (Buws) € (C(Y),)™"). By Lemma 2.13 (3), as F), € Fy,,C(Y), one has

FloxFy= > Hbyu,Flypy = HuFp % ("0u0,) = > Hyx Hy Oy 5 0,0,

u,eWv ueWv u,u/ €W
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Thus

(F;R * F’ILR)(T) - Z T (O 0 )T (" o ) Hu * Hyy = Z (0w 10 ) T(Ouop ) Hu % Hu

u,u/ W u,u/ WY

Therefore (F, + F, )(T) = F, (1) * F, (1) € Hwec.

Write C[R,] = @wRe r, Ce”, where the e"* are symbols such that e"e"? = e"F*% for all
Vg, Wr € R;. Forwg € Ry, set 4y, = TFU’JR(T)VT € End(I,), where Y is defined in Lemma 2.9.
Let f : C[R;] — End(l;) be the linear map such that f(e*?) = ¢/ ,, for wg € R,. Let
vgr, wr € R,. Then )

f(evR) © f(ewR)(VT) = 'l//*l (Q/);,El (VT)) =F -1 (T),@D;*l (VT) = F;Fl (T) * Féél (T)V'ra

Wr R R

thus f(e"®) o f(e"®)(v,;) = f(e"®"R)(v,), which proves that f(e"®) o f(e“7) = f(e"RVE).
Therefore f is an algebra morphism. By Proposition 5.13, the map C[R,| — I,(7) sending
each x € C[R,] to f(z)(v,) is a bijection and by Lemma 2.9 we deduce that f is bijective. [J

In [Key87, Section 6], Keys gives an example where End(7,) % C[R.].

5.4.2 Study of injectivity and surjectivity

Lemma 5.28. Let 7 € Ug and let f € End(I,). Then f is injective if and only if for every
g € End(I,), fog#0.

Proof. Suppose that f is not injective. Let M = ker(f) C I,. By [Héb18, Lemma 3.3], there
exists 7 € WYt N Wt(M). As 7 € Ug, I ~ I, and thus by Lemma 2.11, 7 € Wt(M).
Let z € M(7)\ {0}. By Lemma 2.9, there exists g € End(/,) such that g(v,) = z. Then
fog(vy)=0. As I, = B*Hc.v,, we deduce that fog=0. O

Remark 5.29. As we shall see in 5.7.3, there can exist f € End(I;) injective such that for
all g € End(L,), go f # 1d.

Lemma 5.30. Let 7 € Uc be such that I.(1,Wy) = Cv,. Let f € End(I;). Then f is
surjective if and only if there exists g € End(I,) such that fog =1d. In particular if End(I,)
1s commutative, then f is surjective if and only if f is invertible.

Proof. Suppose that f is surjective. Let M = ker(f). Then f induces an isomorphism
f: IT/]\/£5> I,. By Corollary 5.21, we can write ?_1 = my o ¢, where ¢ € End([;). Then
fop=TFomyop=Id O

5.5 Submodules of I, when I.(7,W;)) = Cv,

In this subsection, we describe the submodules of I, by using right ideal of End(/;) (see
Theorem 5.34).

A right ideal J of End([;) (resp. left ideal) is a vector subspace J of End([;) such that
foge J (resp. go f e J), forall feJand g € End(/;). A two-sided ideal of End(/;)
is a right ideal of End(/;) which is also a left ideal.

Notation 5.31. For a right ideal J C End(I;), we set J(I;) = >, ;é(I;). For M C I; a
submodule, we set Jy = {¢ € End(I,)|o(v,) € M}.
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If M is a submodule of I, then Jy; is a right ideal of End(/;). Indeed, let ¢ € Jy; and
¢’ € End(I,). Then ¢/(v,) € I and thus there exists h € BY“H¢ such that ¢/(v,) = h.v,.
Then ¢ o ¢/(v,) = h.¢(v,) and as ¢(v;) € M, h.¢(v,) € M.

Lemma 5.32. Let M be a submodule of I. and x € M. Then there exists a right ideal J, of
End(I;) such that x € J,(I;) C M.

Proof. We first assume that € M(7',gen), for some 7/ € W¥.r. Let f : I. — I, be an
isomorphism. Let M' = f(M) and 2’ = f(z). Then by Lemma 5.18, there exist n € N and
(hi) € (BY"Hc)™, (x;) € M'(7')" such that 2’ = > | h;.x;. Fori € [1,n], let ¢; € End(I) be
such that ¢;(v,/) = x;, which exists by Lemma 2.9. Then 2/ = > | ¢;(hi.vy) € >0 (1)
and thus z € Y | f~to ;0 f(I;). Moreover for i € [1,n], ¢;(v,) € M', thus Y. | ¢:i(I) C
M’ and hence Y7, f~tog;o f(I;) € M. Set J, = 31 (f~'od;o f)oEnd(I;). Then
x € J(I;) C M.

We no longer assume that x € M(7’, gen), for some 7" € W".r. By [Héb18, Lemma 3.3,
one has M = 3w M(7',gen). For 7 € Wt(M) and 2 € M(7', gen), choose a right
ideal J, , C End([;) such that z» C J, ,(I;) C M. Then @ € (3 cwi(ar) Jo.,)(I7) C M and
thus one can choose J, = ZT,eWt(M) o

O

Lemma 5.33. Let n% : I, (7, gen) — I.(7) be the linear map defined by w7 (Kb, (v;)) =
0 and % (Y, (V1)) = thuy (vy), forw € Win)\{1} and wg € Wi,y Then for all ¢ € End(I,),
one has (¢ o 7| (1,gen) = (7 0 @)|I, (7, gen).
Proof. The map 7 is well defined by Proposition 5.13. Let ¢ € End(I,) and wgr € R,. Then
by Lemma 2.13, ¢(F,,,(7)v,) € I.(7). By Proposition 5.13, as we assumed I..(7, W(;)) = Cv,,
we have:
T 0 (Vg (V7)) = ¢ (Vur(v2)) = ¢ 0 7 (Yu (V7).
Write ¢ (Y, (vr)) = > oner, Qpop(Vr), where (a,,) € CH). Let w € Wiy \ {1}. Then

Qﬁ(KH(T).'{/JwR(VT)) = ZvReRT Ao Koo (T) Wy (V). Therefore 7 o gb(K&(T)@wa(vT)) =0=
¢ o 7 (K (7)twy (v7)), which proves the lemma. O

Theorem 5.34. Let 7 € Uc be such that I.(1,W(;)) = Cv,. We use Notation 5.81. Then
the assignment M — Jy defines a bijection between the set of submodules of I, and the set
of right ideals of End(I;). Its inverse is the map J — J(I;).

Proof. Let M C I, be a submodule. Then
In(L) =Y o) = > ¢(""Heve) = Y PHed(v,) C M,

€I €I M ISESVi

by definition of Jys. By [Heb18, Lemma 3.3], one has M = 3, ) M (7', gen). Forx € M,
choose a right ideal J, C End(I;) such that x € J,(I;) C M, whose existence is provided by
Lemma 5.32. Then M C erM Jo(I;) € M. Moreover J, C Jy for all € M and hence
M C JM(]T) C M.

Let J be a right ideal of End(I;). Let ¢ € J. Then ¢(v.) € J(I;) and thus ¢ € Jy ).
Hence J C Jyu,). Let ¢ € Jyu,). Then ¢(v,) € J(I;) and thus there exist £ € N*,
¢1y.. ., 0p € J and xq, ...,z € I such that ¢(v,) = Zle ¢i(xz;). By [Heb18, Lemma 3.3],
we may assume that x; € I.(7,gen) for all i € [1,k]. By Lemma 5.33, one has ¢(v,) =
o o(v,) = S0 ¢i(y:), where y; = nfi7(x;) € I.(7), for i € [1,n]. For i € [1,n],
let ¢; € End(I;) be such that ¢}(v,) = y;, which exists by Lemma 2.9. Then ¢(v,) =
(O piodi) (ve). As D ¢ 0 ¢ € End(I;), we deduce that ¢ = Y1 | ¢; o ¢ and hence
¢ € J. Therefore J = Jy(;,), which proves the theorem. O
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Remark 5.35. From the definition of M — Jy and J — J(I,), it is clear that these maps
are (strictly) increasing. If M, M' are submodules of I, then Jyony = Jar O Iy and if J, J'
are right ideals of End([l;), then (J + J')(I,) = J(I,) + J'(I,).

Corollary 5.36. Let M C I, be a submodule. Then the following are equivalent:
1. for every ¢ € End(I;), ¢(M) C M,
2. Jyr 18 a two-sided ideal.
If these conditions hold, then we have a natural map End(I;) — End(l,/M).

Proof. Suppose that Jy, is a two-sided ideal. Let x € M and ¢ € End([;). Then by
Theorem 5.34, there exist k € N, ¢1,...,¢0x € Jy and zy,...,2, € I, such that x =
S di(x;). Then ¢(z) = S2F | ¢ o ¢i(x;). By assumption, ¢ o ¢;(z;) € M for all i € [1, k]
and thus ¢(x) € M, which proves that ¢(M) C M. Reciprocally suppose (1). Let ¢ € Jy
and ¢ € End([;). Then ¢(v,) € M, thus ¢' o ¢(v,) € M and hence ¢ o ¢ € Jy, which
proves (2). O

5.6 Irreducible representations admitting 7 as a weight when (7, W,)) =

Cv,

We now study I,,/M for M a maximal submodule of I.- and we give a criterion for M — I,/ M
to be a bijection between the maximal submodules of I and the irreducible representations
admitting 7 as a weight (see Theorem 5.38).

Lemma 5.37. Let M C I, be a submodule. Then the following properties are equivalent:
1. dimI./M(1) =1,

2. I./M is irreducible and M is the unique submodule M’ of I, such that I./M' is iso-
morphic to I./M.

3. Ju is a mazximal right ideal of End(I;) and is two sided.

In particular if N is a BYHc-module such that dim N(7) = 1, then B*Hc.N(7) is an
irreducible representation of BV Hc.

Proof. Suppose that dim I, /M (7) = 1. Let M’ be a submodule of I, such that there exists an
isomorphism f : I, /M — I,/M. Let mp; : I, — I./M and 7y : I, — I./ M’ be the canonical
projections. By assumption, one has I./M (1) = Cmp(v,) and I, /M'(17) = Crpp(v,). Thus
maybe considering af for some a € C*, we may assume that f(my(v,)) = my(v,). Let
m € M'. Write m = h.v,, for some h € B“Hc. Then f(WM/(m)) =0= h.f(?TM/(VT)) =
h.my(vy) = my(m) and thus m € M. Consequently, M’ C M and by symmetry, M’ = M.

Let M" 2 M be a submodule of I.. By Lemma 5.24 M’'(t) 2 M(7). By Proposi-
tion 5.20 (3), M (1) is a one-codimensional subspace of I (7), thus M'(7) = I(7) and hence
by Lemma 5.24, M’ = I,.. Therefore, M is a maximal submodule of I. and thus I,/M is
irreducible.

Suppose (2). Suppose that I./M (1) # Crpy(v,). Let T € I;/M(7) \ Crpr(vy). Let
f € Hom(I,,I./M) be such that f(v,) = T, which exists by Lemma 2.9. As I./M is
irreducible, f(I.) = I;/M and thus f induces an isomorphism f : I,/ ker(f) = I./M. Thus
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ker(f) = M. Moreover f(my(v,)) = . Thus End(I,/M) # CId and by Schur’s Lemma
([Renl0, B.IT Théoreme|), I, /M is reducible: a contradiction. Therefore dim I,./M (1) = 1.

Suppose (3). Then by Theorem 5.34, I, /M is irreducible. Let T € I,/M(7). By Propo-
sition 5.20 (3), there exists x € I.(7) such that T = my(z). By Lemma 2.9, there exists
¢ € End(/;) such that ¢(v,) = z. By Corollary 5.36, ¢(M) C M. Therefore, ¢ induces a
map ¢ : I,/M — I./M such that ¢(v,) = Z. Therefore ¢ is an isomorphism. By Schur’s
Lemma ([Renl0, B.IT Théoremel), ¢(my(v-)) =T € C'my(v,) and thus dim I, /M(7) = 1,
which proves that (3) implies (1).

Suppose now that Jy; is not two sided. There exists ¢ € End(I,),1) € Jy such that
potp ¢ Jy. Therefore ¥(v,) € M and ¢pot)(v,) & M: ¢(M) ¢ M. Using Corollary 5.14, we
may assume that ¢ is invertible. Then ¢(M) is a maximal submodule of I.. Then ¢ induces
an nonzero map ¢ : I, /M — I, /¢(M), and ¢ is an isomorphism, which contradicts (2). Thus
(2) implies (3).

Let now N be a BLHc-module such that dim N(7) = 1. Let 2 € N(7) \ {0}. By
Lemma 2.9, there exists f : I, — B*Hc.x = BYHc N(7) such that f(v,) = z. Then f
induces an isomorphism f : I,/ker(f) = BYHc.N(7). Then dim I,/ ker(f)(r) = 1, and
hence I,/ ker(f) is irreducible. O

Theorem 5.38. Let 7 € Ue.
1. For every irreducible B*Hc-module N, 7 € Wt(N) if and only if Wt(N) = W?.T.

2. The assignment = : M +— I./M is a surjective map from the set of maximal submodules
of L. to the set isomorphism classes of irreducible representations of BYHe admitting
the weight T.

3. Suppose that I.(1,Wy) = Cv.. Let [N] be the isomorphism class of an irreducible
representation of BYHc admitting the weight 7. Then |[Z7Y([N])| = 1 if and only if
dim N(7) = 1 if and only if Jy is a two-sided ideal, for any M € Z*([N]). In
particular, = is a bijection if and only if every mazximal right ideal of End(I,) is two-
sided.

4. Suppose that I.(1,Wy) = Cv, and that = is a bijection, then for every irreducible
representation N admitting T as a weight, one has dim N(r) = 1 = dim N(w.7),
dim N (7, gen) = |Wy| = dim N(w.7, gen), for everyw € W* and dim N = |W||W?/W_|.

Proof. (1) is a a consequence of Lemma 2.11.

(2) Let N be an irreducible representation of PXH¢ admitting the weight 7. By [Hcb18,
Proposition 3.7|, there exists a surjective morphism ¢ : I, — N. Then ker(f) is a maximal
submodule of I, which proves (2).

(3) is a consequence of Lemma 5.37.

(4) By [Heb1s, Lemma 3.3], N = @geppo iy, N(w.7,gen). By Lemma 5.22, Lemma 5.23
and Proposition 5.20, we deduce that dim N = [W||[W"/W_|.

U

5.7 Case where the Kac-Moody matrix A has size 2

In this section, we study the case where the Kac-Moody matrix defining the generating root
system is not a Cartan matrix and has size 2. We begin by studying all the possibilities for
the triple W, Wy, R; and then we study examples of I, for 7 € Uc.

We assume that there exists o € C such that o, = 0, = o for all s € .. In particular,

_ 1_0227112./
Cs—m,forallsey.
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5.7.1 Possibilities for W, W;), R,
We write .7 = {s1, 52}. Recall that Qy = Zay, @ Zay,.

Lemma 5.39. Let A = ( 2 @
a2 1 2

Let k € Z\ {0} and w = (s152)*. Then vectg((w — Id)(Y)) = vectg(Qy).

) be a Kac-Moody matriz which is not a Cartan matriz.

Proof. For all A € Y, w.A — X € QY and thus vectg((w —Id)(Y)) C vectg(Qy).

. . -1 —a21 1 0
In the basis o , o, of Qy, the matrix of s, s and 5,5, are ( 0 1 ) and (—al, 5 _1)

—1 — . . .
and 92,1 . The characteristic polynomial of s;sy is T? — a1 + 1, where
a2 12021 +1

a = ay 202, and 7' is an indeterminate. Thus the eigenvalues of s;s, are “ifm #4+1. O
We denote by Dy, = (s,t|s? = t? = 1) the infinite dihedral group.

Lemma 5.40. The possibilities for the triple R., Wy, W, are exactly:
1. W, =Wy =R, = {1},
2. Wy ~Z)27, Wy = W, and R, = {1},

W, ~Z)2Z, Wiy = {1} and R, = W,

W, ~7Z, Wiy = {1} and R, = W,

W, ~ Dy, Wiy = Wr and R, = {1},

W, ~ Do, Wiy = {1} and R, = W-,,

NS T

WT >~ DOO, W(T) >~ DOO and RT >~ Z/QZ.
Moreover, if T € Tc \ Uc, then W, = {1} or W, ~Z/2Z.

Proof. We begin by proving the existence of size 2 Kac-Moody matrices A, of root generating
system S = (A, X, Y, (,)ier, () )ier) and of 7 € T¢ for (1) to (7). We assume that ag, (V) =
a,(Y) = 2Z, which is possible by taking the “donnée radicielle simplement connexe” of
[Rem02, 7.1.2]. By [Heb18, Lemma 6.2|, for all 41,7, € C*, there exists 7, € T¢ such that
7, (as;) =, for i € {1,2}.

(1) This is a consequence of [Héb18, Lemma 6.5].

(2) Set 73 = 1, choose 75 € C* a transcendental number. Then s; € W, and by [Heb18,
Lemma 6.18], W, C {1, s:}. Then s; € W(,y and thus W, = W(,.

(3) Set 71 = —1, choose 7o € C* a transcendental number. A similar proof as in (2)
proves that W, = (s1) and R, = W,.

(4) By [Heb18, Lemma B1], we can have W, ~ Z. As W, is generated by reflections, we
have W,y = {1} and thus R, = W..

(5) Set v1 =1, 72 = 2. Then 7, satisfies (5).

(6) Suppose that the Kac-Moody matrix A = (a2 a;z is such that a; 2,021 € Z<_»
2,1
are even. Let vy = 795 = —1 and 7 = 7,. Let ht : Za @® Za), — 7Z be defined by

ht(niay, + nea)) = ni + ng, for ni,ny € Z. Let A € Zay, © Zay, be such that ht(A) is odd.
Let i € {1,2}. Then ht(s;.\) = A — ht(a;(A)ay’) = ht(A) — a;(A). Write A = niay, + npar),

with ny,ne € Z. Let j € {1,2}\ {i}. Then ay,(A\) = 2n; + nja;,; is even and thus ht(s;.\) is
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odd. By induction we deduce that for all oY € ®Y, ht(«a") is odd. Therefore 7(®V) = {—1}
and hence Wiy = {1}.
2 1,2

(7) Let A = <a2,1 5
and 7, = —1 and 7 = 7,. Then s1,s, € W, and thus W, = W". Then s,.7(ay,) = 1 and
thus sys155 € W;). Therefore (s, s25152) C Wiy C Wr (52 € W(5)). Moreover, (s1, 525152)
is a normal subgroup of W* and W"/(sy,s25152) ~ Z/27Z and hence Wiy = (s1,525152).
Moreover by Lemma 5.3, R, ~ W, /W, ~ Z/2Z.

Let us prove that there are no other possibilities. By [H¢h18, Lemma 6.36], we made the
list of all the possible W,. As W/, is generated by reflections, if W, ~ Z, then W(;) = {1}
and R, = W,. Suppose that W, ~ D.,. By Lemma 5.3, W, is normal in W,. If w € W"
and s € ., then (wsw™!') is not normal in W, (if i € {1,2} is such that the reduced writing
of w does not begin with s;, then s;wsw™'s; ¢ (wsw™')). By [Heh18, Lemma 6.36] we deduce
that if Wiy # {1}, one has W(;) ~ Z or W,y ~ D, and thus W(;) ~ D.. In particular,
R, = W, /W, is finite. By [BB05, Theorem 4.5.3], we deduce that R, ~ Z/27Z.

Let now 7 € T¢ be such that W, # {1} is not isomorphic to Z/27Z. Then there exists
w € W, \ {1} such that w is not a reflection. Then w = (s152)", for some n € Z \ {0}. By
Lemma 5.39, there exists (y1,v2) € (w™' —1d)(Y) such that (y1,y2) is a Q-basis of Q¥ ® Q.
For i € {1,2}, write y; = w™t.x; — 2y, with 2; € Y. Then w.7(y;) = w.m(z;)7 1 (x;) = 1. Let
k € N* be such that ky, kyo € Y. Then 7(o))* = 7(a,)" = 1 and thus |7(\)| = 1 for all
X € QV. Therefore 7 € Uc. O

) be a Kac-Moody matrix such that a;s is even. Let v, =1

5.7.2 The case R, ~ 7Z/27

Let 7 € Uc be such that R, ~ Z/27Z. Let r € W" be such that R, = (r). Then by
Proposition 5.27, End(I,) ~ C[T]/(T?*-1) = CxC, where T is an indeterminate. Let ¢ = 1)/,
with the notation of the proof of Proposition 5.27. Then the following map End(/,) — CxC
is an isomorphism: ay’ + b — (a + b,a — b), for a,b € C. The ideals of C x C are {0},
C x {0}, {0} x C and C x C. Therefore the nontrivial submodules of I, are Mg =
(¢' +1d)(I;) and M1y := (¢" — Id)(I;). These submodules are irreducible. If & € I, then
v =3 ((¢(x)+1d(z)) — (¢'(z) —1d(z)) and thus M )+ M1y = I,. Moreover, M 0N M)
is a submodule of M o) and as M0y & M), one has M g N My = {0}. Therefore
Ma oy @ M1y = I,. By Theorem 5.38, My o) =~ I./M) and M1y ~ I;/Mq o) are not
isomorphic, M1,0)(7) = C(¢¥'(v;) + v-) and M) (1) = C(¢'(v,) — v;).

5.7.3 The case W, =R, ~Z

Let 7 € Uc be such that W, = R, ~ Z. Then by Proposition 5.27, End([,) ~ C[Z] =
C[T,T~'], where T is an indeterminate and thus End(I,) is commutative. The ideals of
End(7,) are the PC[T,T~'] such that P € C[T,T~'| and the maximal ideals are the (T +
a)C[T, T~'] such that a € C*. Write R, = ((s152)"), where k € N*. Let ¢ = ¢)(5,5,)c. The
maximal submodules of I, are the (¢Y+a)(I,), for a € C*. The group W"/W, has 2k elements,
Wy = {1} and thus the irreducible representations M having the weight 7 decompose as
M = @yewo jw, M(w0.T) = D yewoipu)<x M(w.T) & M((s182)F.7). In particular, they have
dimension 2k.

By Lemma 5.28, every nonzero element of End(/,) is injective and by Lemma 5.30, the
only surjective elements of End(/;) are the invertible ones. Let M C I, be a nonzero
submodule. As C[T,T~'] = End([,) is principal, Jy; is principal and there exists ¢ € Jy,
such that M = ¢(I,). Then ¢ : I, — M is an isomorphism: every nonzero submodule of I,
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is isomorphic to I,. Thus we can construct an infinite strictly decreasing sequence (M;);en
of submodules of I, and no submodule of I, is irreducible.

5.7.4 The case R, = D,

Recall that Dy, = (s,t|s* = t* = 1) is the infinite dihedral group. We now study C[D.].
We determine its maximal right ideals which are two-sided (see Lemma 5.42) and we prove
the existence of maximal right ideals which are not two sided (see Lemma 5.43) . Let
S =¢T =¢" € CDy). If (a,b) € {—1,1}* we denote by ev(yp) : C[Ds] — C the C-
algebra morphism such that ev(,;)(S) = a and ev(q) (1) = b. Recall that if a,b € C[D| and
m € N, we denote by Il(a, b, m) the product abab. .. having m factors. For @ € C[D.]\ {0},
Q = X ey @ ll(S, T, k) + b IL(T, S, k) where (az), (by) € CW, we set deg(Q) = max{k €
Nllax| + [be| # 0}

Lemma 5.41. Let P € C[Dy] \ C and J be the two-sided ideal C|Dy|PC[Dy]. Then
C[Dx)/J is a finite dimensional vector space over C.

Proof. If Q € C[D], we denote by @ its image in C[Dy]/J. For k € N, set A, =
>t o (CI(S,T,j) + CI(T, S, j)). Let n = deg(P). Write P = >, a;I1(S, T, k) +
beII(T, S, k), where (ay), (b)) € C**'. Maybe considering aP, for some a € C* and ex-
changing the roles of S and 7" we may assume that a, = 1.

First assume that b, # 0. Then

(S, T,n+1)
= SI(T, S,n)
n—1
1/~ _ _
=7 SII(S,T,n) + ((arII(S, T, k) + beII(T, S, k)))
" k=0
1 n—1
= (I(T,S,n—1)+ Y (aIU(T, S,k — 1)+ b II(S, T,k + 1) + aopS + b S),
" k=1

thus I1(S, T,n + 1) € A,. Symmetrically, II(T,S,n+ 1) € A,.

Now assume that b, = 0. Then II(S,T,n + 1) = I1(S,T,n) A, for some A € {S,T}. As
(S, T,n) € A,_1, we deduce that II(S,T,n + 1) € A,.

One has II(T, S,n+1) = TII(S,T,n). AsII(S,T,n) € A,_1, we deduce that I1(T, S, n+
1)ed oA o

In both cases (b, # 0 and b, = 0), CII(S,T,n+ 1) C A, and thus A,.; C A,. Let
m € [n + 1,+o0[ be such that A,, C A,. Then II(S,T,m + 1) = SI(T,S,m) € A1 C
A,. Symmetrically, II(T,S,m + 1) € A, and thus A,,;; C A,. Therefore C[D,]/J =
Upnen Am = Ay, is finite dimensional. O

Lemma 5.42. The mazimal right ideals of C[Dw| which are two-sided ideals are exactly the
ev(_cib)({O}) such that (a,b) € {—1,1}.

Proof. Let J be a maximal two-sided ideal of C[Dy]. Then C[D.]/J is a field and by
Lemma 5.41, it is a finite dimensional C-algebra. By Frobenius theorem, we deduce that
C[Dw)/J is either isomorphic to C or isomorphic to the division algebra H of quaternions.
Let f : C[Ds) — H be an algebra morphism. Then f(S5?) = f(T?) = 1 and thus f(S), f(T) €
{—1,1} and f(C[D4]) = C. Therefore the algebra morphisms from C[D.,] to C are exactly
the ev(, ) such that (a,b) € {—1,1}. Consequently the maximal two-sided ideals of C[D] are
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exactly the ev(::b)({()}) such that (a,b) € {—1,1}. Let (a,b) € {—1,1} and J = ev(_afb)({()}).
We regard J as a right ideal. As J has codimension 1, it is maximal as a right ideal which
proves the lemma. O

For example if 7 € Uc is such that W¥ = W,_. = R,, the lemma above prove that there
are exactly four one dimensional representations admitting 7 as a weight.

Lemma 5.43. Leta € C* and P =1 —a(ST —TS). Then PC|[Dy)| is a proper right ideal
of C[Dwo] which is not contained in any proper two-sided ideal. Therefore, any maximal right
ideal containing PC[Dy] is not two-sided.

Proof. Let us prove that 1 ¢ C[Dy]. Let Q € C[Dy] \ C. Let d = deg(Q). Write Q =
bII(S, T, d) + cIl(T, S,d) + P, with P € C[D,.] such that deg(P) < d—1 and b, ¢ € C. Then
PQ = —abSTII(S, T, d)+acTSTI(T, S, d)+Q, where Q € C[Dy] is such that deg(Q) < d+1.
Thus deg(QP) = d+ 2 and hence QP # 1. Therefore PC[D,] is a proper right ideal. Let .J
be a two-sided ideal containing P. Suppose that J is proper. Let J’ be a maximal two-sided
ideal containing J. Then by Lemma 5.42, J' 5 ST — T'S and thus 1 € J': a contradiction.
Lemma follows. O
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