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A B S T R A C T

Graphene related materials (GRMs) are currently being used in products and devices of everyday life and this
strongly increases the possibility of their ultimate release into the environment as waste items. GRMs have
several effects on plants, and graphene oxide (GO) in particular, can affect pollen germination and tube growth
due to its acidic properties. Despite the socio-economic importance of sexual reproduction in seed plants, the
effect of GRMs on this process is still largely unknown. Here, Corylus avellana L. (common Hazel) pollen was
germinated in-vitro with and without 1−100 μgmL−1 few-layer graphene (FLG), GO and reduced GO (rGO) to
identify GRMs effects alternative to the acidification damage caused by GO. At 100 μgmL−1 both FLG and GO
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Pollen decreased pollen germination, however only GO negatively affected pollen tube growth. Furthermore, GO ad-
sorbed about 10 % of the initial Ca2+ from germination media accounting for a further decrease in germination
of 13 % at the pH created by GO. In addition, both FLG and GO altered the normal tip-focused reactive oxygen
species (ROS) distribution along the pollen tube. The results provided here help to understand GRMs effect on
the sexual reproduction of seed plants and to address future in-vivo studies.

1. Introduction

Graphene is a 2D carbon-nanomaterial of extraordinary chemical
and physical properties with manifold applications ranging from elec-
tronics and energy storage to medicine (Novoselov et al., 2012). Con-
sidered the material of the future, new devices containing GRMs from
bike- (https://www.vittoria.com/eu/tire-technology) and car tyres US
Pat., No. 7999027, to asphalts for road paving (Zeng et al., 2017),
printer powders, touch panels, smart windows or phones and medical
devices are becoming more ubiquitous in society. Although the benefits
gained by GRMs are without question, the increased production and
rapid spread of GRM-containing products could have unpredictable
drawbacks. It is reasonable to assume that these products will age, wear
out and eventually be disposed of, causing an inevitable release of GRM
particles into the environment (Fadeel et al., 2018). At the same time,
GRMs could be released directly into the environment during produc-
tion processes, as drug-enhancers and carriers (Wang et al., 2019a,b;
Miraftab and Xiao, 2019), by applications imposing aerial dispersions
on plants such as GRM-composites used to fight crop diseases (Chen
et al., 2014; Liu et al., 2017; Wang et al., 2019a,b) or as carriers for
plant fertilizers (An et al., 2017; Kabiri et al., 2017; Zhang et al., 2014).
Considering the extreme lightweight nature of these materials, GRM
nanoparticles could feasibly be dispersed into the air in the same way
that fine and ultrafine particulate matter (PM) is. Once airborne, they
may be transported for long distances, as reported for carbon black
(Ramanathan and Carmichael, 2008; Qi and Wang, 2019), eventually
landing onto vegetation, which is a natural trap of PM (Litschke and
Kuttler, 2008; Wang et al., 2019a,b). This premise raises important
concerns about the possible negative effects of GRMs on crops. At
present, widely varying effects of GRMs on the vegetative body of seed
plants have been reported, possibly owing to different experimental
conditions (materials, concentrations, exposure time, etc.), plant de-
velopmental stages (seed, seedling, adult plants) and/or species tested
(Anjum et al., 2013; Begum et al., 2011; Begum and Fugetsu, 2013;
Wang et al., 2014). Generally, GO is deemed to exert greater toxicity
with respect to pristine graphene, FLG or rGO (Gonzáles-Domínguez
et al., 2018; Montagner et al., 2017) likely owing to the higher number
of oxygen functional groups which increase both reactivity and dis-
persion in water (Dreyer et al., 2010). Recently, the effect of GO on
pollen performance of two crop species, Nicotiana tabacum L. (Tobacco
plant) and Corylus avellana L. (common Hazel) was tested in in-vitro
experiments (Candotto Carniel et al., 2018). The authors highlighted
GO acidity as the main factor affecting pollen performance. However,
other properties of GO might have contributed to the effects observed.
It is known that GO can adsorb cations from aqueous solutions ac-
cording to the density of oxygen functional groups spread over the
graphene lattice (Chowdhury et al., 2015). Specific cations such as
Ca2+, play a fundamental role in germination and elongation of the
pollen tube (Holdaway-Clarke and Hepler, 2003), hence their removal
could also affect pollen performance. Furthermore, GO can cause an
overproduction of ROS as a result of its internalization (Seabra et al.,
2014) or itself may act as a ROS promoter (Zhang et al., 2012). Other
massively produced GRMs (such as FLG and rGO) may also affect pollen
performance. These materials possess a higher C/O ratio than GO, and
are therefore predictably less reactive, but still hard and sharp, i.e. they
can cause mechanical damage, cutting through cells and tissues
(Chiacchiaretta et al., 2018; Zhao et al., 2017). This evidence, along
with previous findings on the negative effects of Ag- and Pd-

nanoparticles - as well as heavy metals - on pollen performance and
plant productivity (Speranza et al., 2010, 2013; Song et al., 2018) raise
further concerns about GRMs safety on the sexual reproduction of seed
plants. The success of this delicate process strongly relies on pollination
mechanisms, as well as on the intimate interaction between pollen
grains and the stigmatic surface of the ovary. Gaining more insight into
the effects of GRMs on the plant reproduction process would enable us
to predict future scenarios and perhaps to adopt measures to make
safer-by-design GRMs and derived applications.

Here, we tested the following hypotheses: (i) GO might interfere
with the sexual reproduction process of seed plants by an effect that is
alternative to its acidic property and (ii) other GRMs might be poten-
tially dangerous owing to their chemical or physical properties.
Building upon previous work (Candotto Carniel et al., 2018), we were
interested to identify diverse and potentially harmful effects of GRMs
other than GO acidification on the pollen performance of Corylus avel-
lana L., an economically and ecologically important seed plant.

2. Materials and methods

2.1. Preparation and characterization of GRMs

Few-layer graphene was produced from pure graphite as per
Gonzáles-Domínguez et al. (2018) while GO was produced by oxidation
of carbon fibres in sulfuric acid with sodium nitrate at 0 °C (GANF
Helical-Ribbon Carbon Nanofibres, GANF®) and provided by Grupo
Antolin (Burgos, S). Reduced GO was produced by direct reduction of
GO in H2 atmosphere at 1000 °C for 2 h; rGO can in this way be easily
compared with GO because only the surface chemistry is anticipated to
be modified by the reduction treatment. Dry GRMs were re-suspended
in water and sonicated in an ultrasonic bath prior to the experiments
(Gonzáles-Domínguez et al., 2018). Raman analysis of GRMs was car-
ried out with an inVia Raman Microscope (Renishaw, UK). The dis-
persions were drop-cast onto a Si wafer and dried on a hot plate. At
least 30 Raman measurements were collected for each material in dif-
ferent locations at 532 nm with a 100× objective and an incident
power of 1mW μm−2. Quantitative elemental analysis of FLG and GO
was performed with a LECO CHNS-932 elemental analyser (LECO
Corporation, USA) for C, H, N and O. GRMs were also characterized
with a JEM 2100 high-resolution transmission electron microscope
(HRTEM) (JEOL Ltd, JP). Stable dispersions of the materials were drop-
cast onto nickel grids (3mm, 200 mesh), dried under vacuum, and
observed at an accelerating voltage of 200 kV. Lateral dimension dis-
tribution of GRMs was calculated with Fiji software.

2.2. Acquisition and preparation of pollen material

Pollen of C. avellana was collected (January 2018) from 15 native
trees in the Karst (Trieste, NE Italy) far from sources of pollution. Twigs
bearing unripe catkins were sampled and immediately transported to
the laboratory; their bases were cut under water and kept immersed
until flowers ripening and stamen dehiscence (c. 48 h at 20 °C, under
dim light). Harvested pollens were sieved through 100 and 60 μm mesh
sizes to remove debris, then dehydrated over silica-gel (RH ∼ 5%) for
48 h and stored at -20 °C.
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2.3. Germination of C. avellana pollen

Aliquots of thawed pollen of C. avellana were rehydrated in a closed
chamber at c. 100 % RH for 3 h prior to use. Pollen germination was
induced according to Candotto Carniel et al. (2018) in Brewbaker and
Kwack's (BK) medium (Brewbaker and Kwack, 1963) containing
1.62mM H3BO3, 1.25mM CaCl2·2H2O, 2.97mM KCl and 1.65mM
MgSO4·7H2O, with a pH of 6.3. To assess the effects of FLG, GO and
rGO, pollen was germinated in BK medium without GRMs (control
samples) and with GRM suspensions to a final concentration of 1, 25, 50
or 100 μgmL−1 (treated samples). Germination experiments were per-
formed at 25 °C under dim light. Control and treated samples were
gently shaken with a tilting agitator throughout the experiment in order
to avoid sedimentation of GRMs. Three to four replicates were prepared
for both control and treated samples. A parallel set (n= 3) of control
and BK medium enriched with 100 μgmL−1 GRMs, with or without
sucrose was prepared to assess the cation (Ca2+, K+, Mg2+) adsorption
capacity of GRMs during the pollen incubation period (3 h).

2.4. Assessment of pollen performance and viability

Pollen performance, i.e. germination percentage and pollen tube
length, of control and treated samples was measured after 3 and 5.5 h.
Images of germinating pollen were taken using a Zeiss Axiocam MRm
camera connected to a Zeiss Axiophot microscope (Zeiss, D). Percentage
germination was calculated by scoring at least 150 randomly selected
grains. Grains were considered to have germinated if the pollen tube
was longer than the average diameter of the pollen grains. Pollen tube
length was measured for at least 50 randomly selected pollen tubes.

The viability of C. avellana pollen grains was evaluated in control
and treated samples (100 μgmL−1 FLG and GO only) with the fluor-
escein diacetate (FDA) based fluorochromatic reaction test (Heslop-
Harrison et al., 1984). Evaluation of percentage viability was done on at
least 150 pollen grains for each sample.

2.5. Transmission electron microscopy (TEM)

TEM observations were made on controls and treated samples, with
FLG and GO suspensions at 50 μg mL−1 and with 100 μg mL−1 GO
suspension basified to pH 6.5 (i.e. the same as the control samples) to
exclude effects induced by the acidic environment. Samples were fixed
with a solution of 2% paraformaldehyde and 1.6 % glutaraldehyde in
phosphate buffer at pH 6.9 for 45min at room temperature. The pollens
were then rinsed in the same buffer and post-fixed in 2% OsO4 and
0.1M sodium cacodylate buffer pH 7.4 for 2 h. Thereafter, they were
washed 3× 15min in phosphate buffer and then dehydrated in a
graded series of ethanol (30, 50, 70, 80, 90, 96 and 100 %) for at least
20−30min for each concentration. Samples were embedded in epoxy
resin according to the manufacturer’s instructions. Using a Top 150
ultra-microtome (Pabisch, D), 110 nm thin sections were collected onto
copper mesh grids and observed with a Philips EM208 electron mi-
croscope operating at 100 kV and equipped with a Quemesa EMSIS
camera (EMSIS, D).

2.6. FLG, GO and rGO cation adsorption capacity

To assess the capacity of GRMs to adsorb the dissolved cations
(Ca2+, K+ and Mg2+) in BK medium during the pollen incubation
period, 1mL of the control (n= 3) and 100 μg mL−1 GRMs-enriched
suspensions n=3 with and without sucrose but free from pollen (see
2.3) were centrifuged at 17,000 × g for 15min to pellet the GRMs.
800 μL of supernatant was then recovered and added to 8 μL of HNO3

(69.5 % v/v), heated for 1 h, diluted with Milli-Q water to 10mL and
filtered through a GHP Acrodisc syringe filter (pore size 0.45 μm).
Analysis was carried out with an Optima 8000 ICP-OES (Perkin Elmer,
USA). A calibration curve was obtained by diluting a standard solution

(Sigma-Aldrich, USA) in the range 0–10mg L−1. The precision of the
measurements as relative standard deviation were always< 5%. LOD
at 317.9 (Ca2+), 285.2 (Mg2+) and 766.5(K+) nm were 0.02, 0.01 and
0.01mg L−1, respectively.

2.7. Evaluation of the synergistic effect of Ca2+ and pH decrease on pollen
performance

The effect of decreased Ca2+ in BK medium on pollen performance
due to the presence of GRMs was evaluated by germinating pollen in
standard BK medium (control samples) and in BK medium prepared
with Ca2+ concentration decreased by -10, -20 and -30 % (treated
samples) with respect to the control. In addition, the same experiment
was repeated with BK medium acidified to pH 4.2, i.e. the pH of a
100 μgmL−1 GO suspension in BK medium (Candotto Carniel et al.,
2018).

2.8. Analysis of ROS distribution in growing pollen tubes

Reactive oxygen species in pollen tubes were detected using di-
chlorofluorescin diacetate (DCFH2-DA) dye dissolved in DMSO
(Molecular probes, USA) according to Pasqualini et al., (2011). A con-
centrated solution (25mM) of dye was diluted in BK medium to 5 μM.
15 μL of control and treated (100 μg mL−1 FLG or GO only) pollen
culture was poured onto a glass slide after 3 and 5.5 h of germina-
tion;15 μL of the diluted DCFH2-DA was added to achieve a final con-
centration of 2.5 μM. Observations were made after the mixture had
been left to react in the dark room for one minute or so. Negative
controls (without the dye) were also prepared to detect and remove any
background noise. Images were taken in the microscopy facility men-
tioned above and analysed using ImageJ software (Wayne Rasband,
NIH, USA).

2.9. Data analysis

Measurements of pollen performance and fluorescence signal from
FDA and DCFH2-DA respectively were made using ImageJ software
(version 1.51J8) after calibration of images with the scale bar command
of the Axiovision software (Zeiss, D).

The effect of GRMs on pollen performance was assessed using a
factorial experimental design which considered GRMs (FLG, GO and
rGO), their concentrations (0, 25, 50 and 100 μg mL−1) and pollen
incubation time (3 and 5.5 h) as categorical factors. Values of pollen
germination percentage and pollen tube length from control and treated
samples were statistically compared with a factorial ANOVA followed
by Tuckey’s HSD post-hoc test. The same statistical analysis was carried
out for results of the Ca2+/pH experiment (Section 2.7), whose ex-
perimental design considered Ca2+ concentration (1.250, 1.125, 1.000
and 0.875mM), pH of BK medium (6.3 and 4.2) and germination times
as categorical factors. In order to exclude bias due to slow growing
pollen tubes (or to pollens which stopped growing) only the values of
the 30 % longest tubes were selected for analysis. The length of pollen
tubes measured in each replicate was first expressed as a percentage
with respect to the mean tube length measured in control samples and
then averaged in accordance with each experimental condition. Pollen
viability data based on the fluorescence signal from FDA were analyzed
by Two-Way ANOVA followed by Fisher’s LSD post-hoc test using GRMs
type and incubation time as categorical factors. All calculations were
carried out with Microsoft Office Excel 2010 (Microsoft corporation,
USA) and STATISTICA 6.0 (StatSoft Inc., USA).

3. Results and discussion

3.1. GRMs characterization

The GRMs (FLG, GO and rGO) tested in this work were chosen
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because of differences deriving from the presence or absence of defects
and oxygen functional groups in the graphene lattice, and because of
their lateral dimensions. These features are mostly exploited to develop
new composite materials and technological applications but they are
also at the root of various effects that GRMs may exert on organisms.
The physical and chemical analyses highlighted these differences. The
Raman spectrum of FLG has the two most intense peaks of graphene
appearing at ∼1580 and ∼2700 cm−1, the G and the 2 D bands re-
spectively (Fig. S1 A). The I(2D)/I(G) ratio is 0.44 on average, con-
sistent with the value (< 1) usually assigned to FLG (Ferrari et al.,
2006; Mogera et al., 2015). The appearance of a further band with peak
at∼1345 cm−1 (D band) (Fig. S1 A) suggests the presence of defects on
the graphene lattice. In this case, the average spectrum of FLG has an I
(D)/I(G) of 0.34 suggesting a low level of defects. On the contrary, the
Raman spectrum of GO had broad D and G bands (Fig. S1 a), the ab-
sence of a clear 2D band and an I(D)/I(G) of 1.03 revealing a rather
disordered material. Similarly, the Raman spectrum of rGO had broad D
and G bands but an higher I(D)/I(G) (1.50) indicating the presence of
defects that were likely to be caused by the reduction process which
removed the oxygen functional groups, leaving holes and irregularities
in the graphene lattice. These GRMs differed in elemental composition;
FLG and rGO were comprised of> 95 % C, compared to GO which was
comprised of> 40 % O atoms (Fig. S1 b) confirming a high presence of
oxygen functional groups in the graphene lattice. TEM image analysis
showed that FLG flakes had the most homogeneous distribution of
lateral dimensions ranging from 100-750 nm. Similarly, > 90 % of GO
and rGO flakes were of similar sizes to FLG, but aggregates with larger
dimensions were also detected (Fig. S1 c–f).

3.2. In-vitro performance and viability of pollen exposed to GRMs

The pollen grain is the plant microgametophyte, a minuscule ve-
hicle which has the paramount role of delivering the male nuclei un-
damaged to the egg-cell. Any harmful effect on pollen could therefore
result in limiting the success of the fertilization process, resulting in
decreased seed production. After 5.5 h of incubation, germination
percentage of control pollen was always> 60 % with an average pollen
tube length>80 μm. Exposure to FLG and GO (but not rGO) sig-
nificantly affected pollen performance with differing effects according
to the type and concentration of materials (see Tab. S1). With addition
of FLG, pollen germination remained steady up to 25 μg mL−1, but then
progressively decreased by 30 % and 32 % after 3 h and 5.5 h of FLG
exposure respectively, at 100 μg mL−1 (Figs. 1a and S2a). Pollen ger-
mination was not affected by exposure to GO up to 50 μgmL−1, but
decreased by 84 % and 83 % after 3 and 5.5 h of GO exposure re-
spectively, at 100 μg mL−1 (Figs. 1a and S2a). Pollen tube elongation
was affected only by GO, progressively decreasing with the increased
concentration, reaching 32 % and 50 % of the control value at
100 μgmL−1 after 3 and 5.5 h exposure to GO, respectively (Figs. 1b
and S2b). Despite the important effects observed above when pollen
was exposed to the highest concentrations of FLG and GO, the viability
of pollen was never significantly affected and maintained values ≥ 86
% in comparison with control samples (Table S3). Candotto Carniel
et al. (2018) showed that GO affects pollen performance predominately
due to its acidic properties deriving from oxygen functional groups
spread over the graphene lattice (Dimiev et al., 2013). However, FLG is
not acidic as it lacks the above-mentioned groups (Fig. S1). Hence, we
anticipate that the interaction mechanisms involved in pollen perfor-
mance decrease caused by FLG and GO are different. GRMs may ad-
versely affect pollen performance by other means such as direct contact
with cells, i.e. the sharp and hard edges of GRMs can act as nano-blades
cutting through the plasma membrane (Tu et al., 2013) and also
through the thin cell-wall of some freshwater algae (Zhao et al., 2017).
In addition GRMs flakes that become internalized can disrupt cell cy-
toskeleton (Chiacchiaretta et al., 2018) and affect the normal in-
tracellular redox state by impairing the membrane potential of

mitochondria (Pelin et al., 2018; Zhang et al., 2012) thus causing an
oxidative burst and/or act directly as ROS promoters in the presence of
other ROS normally produced by the aerobic metabolism, such as H2O2.
Reduced GO had no effect on pollen performance (Zhang et al., 2012).
The presence of big, non-dispersible aggregates in the rGO suspension
(Fig. S1c) might have decreased the real number of small flakes deemed
to cause mechanical and oxidative damage (Liu et al., 2014). In addi-
tion, the rGO used here had a C/O ratio comparable to that of FLG (see
Fig. S1) i.e. it was almost inert, a feature that helps to explain the ab-
sence of negative effects on pollen performance. In fact, rGO estimated
as toxic to bacteria (Guo et al., 2017) and fresh freshwater algae (Zhao
et al., 2017) had an oxygen content ≥ 20 %.

3.3. Effects of FLG and GO on pollen grain and pollen tube ultrastructure

The pollen grain is protected by a thick and sturdy barrier (the
pollen wall) which confers resistance to a variety of adverse factors
such as mechanical damage, UV light, high temperatures, microbial
attack and water loss (Jiang et al., 2013). In this study we attempted to
verify with TEM whether FLG and GO flakes damaged or obstructed
apertures (in this case three colpori) of the pollen grains from which the
pollen tubes germinate and/or if they affected the soft, elastic pollen
tube in the first stages of germination. At 50 (FLG and GO) and 100 μg
mL−1 (GO), GRM caused no ultrastructural modification to the germi-
nating pollen at the pore level (Fig. 2). FLG was not observed to ac-
cumulate around the pores (Fig. 2b) and was rarely detected adhering
to pollen grains (Fig. 2d) which may be explained by the lower po-
tential of FLG (than GO) to bind to the surrounding environment. We
also considered if the sample preparation for the TEM analysis might
have removed the majority of FLG flakes from the pollen as has

Fig. 1. GRMs effect on C. avellana pollen performance. Germination percentage
(a) and tube length (b) after 3 h of incubation in BK without (CTRL) and with 1,
25, 50 and 100 μgmL−1 of FLG, GO or rGO. Values are reported as means±1
st. dev. (n= 450 for a; n ≥ 50 for b). Statistically different groups are reported
in Table S1.
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previously been observed by Banchi et al. (2019). Conversely, GO was
frequently observed around the pectinic layer surrounding the base of
the germinating pollen tube (Fig. 2f) or the pollen tube itself (Fig. 2g–i)
confirming previous observations on N. tabacum L. and C. avellana L.
pollen treated at the same GO concentration (Candotto Carniel et al.,
2018). In any case, GRMs flakes cutting through the pollen wall or the
cell wall of pollen tubes [as observed in Chlorella pyrenoidosa (Zhao
et al., 2017)] was never observed; nor was GRMs internalization in the
pollen grains or tubes detected. These results confirm that the cell wall
of pollen grains and tubes respectively, are biological barriers that can
hardly be harmed by GRM flakes.

3.4. GRMs cation adsorption capacity and related in-vitro effects on pollen
performance

Graphene oxide possesses different oxygen functional groups spread
over the graphene lattice such as carboxyls which confer acidity, and
carbonyls and epoxides that can bind cations dissolved in aqueous so-
lution in the surrounding environment (Chowdhury et al., 2015). Ad-
sorption of cations by GO may be a limiting factor to pollen germination
and growth as Ca2+ plays a critical role in this process (Holdaway-
Clarke and Hepler, 2003). In fact, Ca2+ has many important effects:
Ca2+ currents have been detected at germination sites suggesting an
active role in pollen germination; also, release of Ca2+ from en-
doplasmic reticulum is critical to pollen tube growth as well as growth
polarity (Holdaway-Clarke and Hepler, 2003). As such, calcium ions
can be involved in at least two processes: modulation of the

organisation of actin filaments (Aloisi et al., 2017) and cell-wall
strengthening. Extracellular Ca2+ is also involved in the extension of
the cell-wall at the pollen tube tip by binding adjacent acidic pectins
thus making the cell wall more rigid (Domozych et al., 2013). In this
study 100 μg mL−1 GO significantly decreased the content of Ca2+ and
Mg2+ (but not K+) within BK medium (9.0 and 5.3 %, respectively)
compared to FLG and rGO which did not (Fig. 3). This effect was re-
duced in BK medium without sucrose (see Fig. S3) suggesting that Ca2+

and Mg2+ may create bonds between GO and other organic molecules
as observed by Jiang et al. (2017). Moreover, a decrease in Ca2+ os-
cillations and intracellular storage has already been seen in primary
astrocytes upon GO exposure, while FLG did not alter the normal Ca2+

homeostasis (Bramini et al., 2019). The effect of decreased Ca2+ in the
presence of 100 μg mL−1 of GO was simulated in-vitro on the pollen
performance of C. avellana either at sub-neutral (pH 6.3) and acidic (pH
4.2) conditions. Both conditions significantly affected pollen perfor-
mance (Table S4). In the first case, pollen germination was significantly
affected when Ca2+ was reduced by 30 % with respect to normal BK
medium (Fig. 4a), whereas pollen tube growth was significantly af-
fected when Ca2+ was reduced by 20 % (Fig. 4b). According to
Candotto Carniel et al. (2018), both pollen germination and tube
growth were significantly affected under acidic conditions with respect
to control BK medium (38 % and 44 %, respectively; Fig. 4a). Inter-
estingly, pollen germination further decreased by another 13 % when
Ca2+ was decreased by 10 % (Fig. 4a). These results highlight that GO
may interfere with sexual reproduction of seed plants not only owing to
its acidity but also due to its capacity to immobilize or adsorb cations

Fig. 2. Micrographs of germinating C. avellana pollen observed by TEM. Pollen grains were incubated in BK medium without (a) and with FLG (b–d) and GO (e–i) at
50 μg mL−1 (b–f) and in BK with GO at 100 μg mL−1 and pH of 6.3 (g-i) 3 h. Scale bars =4 μm (a); 1 μm in (b–d); 2 μm (e–i).
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from the environment. In light of the important role of Ca2+, an im-
balance of extracellular bioavailability of this cation due to the pre-
sence of GO could result in decreased pollen germination caused by
reduced pH (see Fig. 4a). It is likely that an excess of protons in the
extracellular media could interfere with calcium ions binding to acidic
pectins, thereby causing alterations in growth processes.

3.5. ROS distribution along the pollen tube in GRMs-treated pollen

The signalling system involved in pollen tube growth involves tip-
focused ROS production triggered by Ca2+ via NADPH oxidases
(Cardenas et al., 2006; Potocký et al., 2007; Suzuki et al., 2011). ROS
imbalance at the cellular level is one of the most commonly reported
negative effects of GRMs (Montagner et al., 2017). On the basis of Ca2+

adsorption results, we were interested to see whether ROS distribution
along the pollen tube was affected by those GRMs that had an effect on
pollen performance. In control samples, ROS were distributed ac-
cording to the common tip-focused gradient (Fig. 5a), i.e. the presence
of ROS increased from the base to the pollen tip where pollen tube
growth takes place (Domozych et al., 2013). In samples treated with
100 μg mL−1 FLG or GO, two distinct ROS distribution patterns that
differed from controls were recognized. In FLG treated pollens, ROS
were distributed irregularly along the pollen tube with spots of great
intensity (Fig. 5c, d). In GO treated pollens, ROS were homogeneously
distributed along the pollen tube (Fig. 5e, d). In both cases, impaired
ROS distribution may result in impaired pollen tube growth. In the case
of FLG, evidence suggesting a possible interaction mechanism (such as
internalization or pollen tube damage) was not found. However, taking
into account previous observations of aero-terrestrial green micro alga
Trebouxia gelatinosa (Banchi et al., 2019) we hypothesize that extremely
small GRM flakes may have reached the cell-wall/cell membrane in-
terface and interacted with membrane receptors causing localized ROS
production. A similar mechanism could potentially be the cause of
decreased germination observed at the highest FLG concentration used
(100 μg mL−1; Fig. 1a). Changed intracellular ROS distribution as a
result of interaction of GO with the pollen tube may be related to the
reactivity of this material. As shown with TEM, GO tends to adhere to
the pollen tube cell-wall forming condensed patches of GO flakes.
Owing to the capacity of GO to bind cation (especially Ca2+) patches of
flakes likely hindered the formation of the Ca2+ gradients occurring
between the intra- and the extra-cellular space, especially at the tube tip
level. As reported by Potocký et al. (2007) the local absence of Ca2+

fluxes does not allow NADPH oxidase activation which is responsible
for accumulation of ROS at the pollen tube tip.

3.6. Relevance of the observed GRMs effects on in-vivo pollen performance

Negative effects on pollen performance induced by GO shown in this
and in previous work (Candotto Carniel et al., 2018) could be relevant
from a biological point of view, however the GRM concentration that
causes an appreciable effect in vitro, i.e. 100 μg mL−1, is unlikely to
occur in the environment. The pH decrease caused by GO (probably the
most important effect described so far) which negatively affects pollen
performance in-vitro, might work quite differently in vivo, particularly at
the stigmatic level. In fact, while studying the effects of acid rains,
numerous authors have hypothesized that the stigmatic surface may
have an intrinsic buffering capacity, which could explain discrepancies
between in vitro and in vivo observations (Cox, 1984; Du Bay and
Murdy, 1983; DuBay and Murdy, 1983; Wolters and Martens, 1987).
Direct evidence of this buffering capacity is still not forthcoming, not-
withstanding its evident importance. In this work, further negative ef-
fects of GO were described, i.e. decreased bioavailability of Ca2+ ions
and impairment of ROS distribution along the pollen tube; both me-
chanisms play an important role in pollen tube growth (Holdaway-
Clarke and Hepler, 2003). Thereafter, deposition of GO (even at low
levels) could cause a localized imbalance of Ca2+ bioavailability, thus
affecting ROS distribution of the growing pollen tubes, especially if the
stigmatic surface suffers from acidification processes. At this stage it is
difficult to predict whether the presence of GO might modify Ca2+

concentrations in stigmatic fluids, because the actual concentrations of
this ion are largely unknown, despite the good knowledge about the
localization and dynamics of Ca2+ along the pistil before and during
flower anthesis (Ge et al., 2009; Zienkiewicz et al., 2011). Something

Fig. 3. GRMs adsorption capacity towards cations. Variation (Δ) of Ca2+, Mg2+

and K+ in BK medium after 3 h with 100 μgmL−1 of FLG, GO and rGO. Values
are reported as means±1 st. dev. (n= 3). Groups statistically different from
CTRL are marked with * (One-way Anova, Fisher’s LSD test).

Fig. 4. Effect of Ca2+ and/or pH decrease on C. avellana pollen performance.
Pollen germination percentage (a) and tube length (b) after 3 h of incubation in
BK (CTRL: red triangle), BK with a decreased Ca2+ concentration, pH or both.
Values are reported as means± 1 st. dev. [n= 450 for a); n ≥ 50 for b)].
Statistically different groups are marked with different letters (Two-way Anova,
Fisher’s LSD test) (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article).
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similar may also occur with deposition of FLG, whose negative effects
are also described here from an in-vitro perspective. Conversely, rGO
appeared to be the safest GRM with respect to pollen performance of C.
avellana suggesting that the full reduction of GO may be a valid method
to decrease the ecotoxicological impact of GO-containing waste.

4. Conclusions

Using manipulative in-vitro experimentation, we showed that FLG
and GO (but not rGO) may have an effect on pollen germination (FLG)
and pollen tube growth (GO) of an economically and ecologically im-
portant seed plant, the common hazel. Decreased pollen germination in
the presence of high FLG levels needs further clarification, but may be
related to intracellular impairment of localized ROS production or to
interactions of GRMs flakes with the intine layer at the pollen germi-
nation pore. Conversely, GO seems to affect pollen germination and
tube growth by decreasing Ca2+ bioavailability, and (as a consequence)
extinguishing the tip-focused ROS gradient along the pollen tube, thus
interfering with both elongation and polarity. Furthermore, it was
shown that the effect of decreased Ca2+ bioavailability is increased
under acidic conditions, and this is especially important to pollen ger-
mination. These phenomena depend on indirect effects of GO in the
media, i.e. by adsorption of cations and acidification (Candotto Carniel

et al., 2018). In the light of the new results, the possible interference of
FLG and GO on pollen germination needs further investigation at the
stigmatic level.
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