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Abstract – The electrodynamic loudspeaker couples mechanical, magnetic, electric and thermodynamic
phenomena. The Thiele/Small (TS) model provides a low frequency approximation, combining passive linear
(multiphysical or electric-equivalent) components. This is commonly used by manufacturers as a reference to
specify basic parameters and characteristic transfer functions. This paper presents more refined nonlinear mod-
els of electric, magnetic and mechanical phenomena, for which fundamental properties such as passivity and
causality are guaranteed. More precisely, multiphysical models of the driver are formulated in the core class
of port-Hamiltonian systems (PHS), which satisfies a power balance decomposed into conservative, dissipative
and source parts. First, the TS model is reformulated as a linear PHS. Then, refinements are introduced, step-
by-step, benefiting from the component-based approach allowed by the PHS formalism. Guaranteed-passive
simulations are proposed, based on a numerical scheme that preserves the power balance. Numerical experi-
ments that qualitatively comply with measured behaviors available in the literature are presented throughout
the paper.

1 Introduction

The electrodynamic loudspeaker is a non ideal trans-
ducer. Its dynamics is governed by intricate multiphysical
phenomena (mechanical, magnetic, electric and thermody-
namic), a part of which involves nonlinearities responsible
for audio distortions [1–3]. As a first example, the viscoelas-
tic properties of the suspension material result in long-term
memory (linear) and hardening spring effect (nonlinear).
Second, the ferromagnetic properties of the solid iron core
in the voice-coil result in eddy current losses (linear) and
magnetic saturation (nonlinear). Third, the resistance of
the coil wire converts a part of electrical power into heat.
This modifies material properties and, eventually, can cause
irreversible damages. Such phenomena must be modeled
and considered in the design of real-time distortion compen-
sation [4–7] and that of burn-out protection [2, 8].

The basic reference set of parameters describing the
electrodynamic loudspeaker is that of Thiele–Small [9–12].
In the sequel, we refer to this set of parameters as the
Thiele–Small model. It combines passive linear models of
elementary physical components (see Fig. 1) and provides
a low-frequency linear time-invariant approximation for
low-amplitude excitation on short period. This (multiphys-
ical or electric-equivalent) parametric model is commonly

used by manufacturers as a reference to specify basic
parameters and characteristic transfer functions.

Various refinements of this reference model have been
proposed, both in the frequency domain and the time
domain [3, 13–18]. In particular, the lumped-parameter
approach [1, 2, 19, 20] consists in modeling the dependence
of Thiele–Small parameters on some selected physical quan-
tities (e.g. position-dependent stiffness). However, funda-
mental physical properties are usually not guaranteed by
the proposed mathematical models, and their physical
interpretation is not always obvious. Examples are model
causality in the context of frequency domain simulation
based on Fourier transform and model passivity in the con-
text of arbitrary polynomial approximation of constitutive
relations of materials. Obviously, this is also the case for
gray-box modelling based on Volterra and Wiener/Volterra
series [21–24] or nonlinear ARMAX [25]).

To circumvent those difficulties, we introduce the port-
Hamiltonian systems formalism [26–28] as a systematic
framework for the nonlinear modeling, simulation and
control of loudspeakers. Port-Hamiltonian systems are
state-space representations that satisfy a power balance
structured into conservative, dissipative and external
(/source) parts. This structure can be described by acausal
graphs (such as electronic circuits or classical electrome-
chanical analogies) which allow modular exploration or
local model refinements, while guarantying passivity. Such*Corresponding author: antoine.falaize@univ-lr.fr
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modular processes are facilitated by existing methods [29]
that automatically generate the governing equations associ-
ated with a given multiphysical system described by a
network of predefined or user-defined components. It is then
possible to run guaranteed-passive simulations based on a
numerical method that preserves the power balance and
its structure in the discrete-time domain, from which
passivity and stability properties stem. The objective of this
work is to model well-known multiphysical phenomena
occurring in loudspeakers as a set of port-Hamiltonian
structures and components in view of system identification
and correction.

The elementary phenomena that are considered in this
paper are concerned with mechanical, magnetic and electric
phenomena, as well as their coupling. They are known to be
responsible for significant audio distortions (see e.g. [1, 2]
and references therein):

� The materials used for the suspension (S) exhibit,
first, a combination of the behaviors of elastic solids
and viscous fluids ([30], Sect. 1.2), inducing long time
shape memory (creep effect, see e.g. Fig. 1 from [30]
and Fig. 11 from [31]) and second, nonlinear stress–
strain characteristics so that the restoring force is
not proportional to the elongation [1, 18], with maxi-
mal instantaneous excursion qsat that corresponds to
the breakdown of the material.

� The electromechanical coupling (back e.m.f. and
Lorentz force on the diaphragm D) depends on the
coil (C) position and on the magnetic flux in the pole
piece (P). The former is modulated by the movement
of the coil which acts as an electromagnet that
modifies the latter.

� The materials used for the pole piece P exhibit nonlin-
ear magnetic excitation–induction curve so that the
equivalent current in the coil is not proportional to
its magnetic flux. Also, a maximal magnetic flux /sat
is reached (flux saturation), corresponding to the
global alignment of the microscopic magnetic
moments (see [32] Sect. 1 and Ref. [33]).

� Most of the magnetic materials (iron, cobalt, etc.)
possess high electric conductivity. The application of
a variable magnetic induction induces currents,
namely eddy-currents, in a plane orthogonal to the
field lines (see [34], Sect. 1.1.2). This has three effects:
a power is dissipated due to the natural resistivity of
the material (Joule effect), eddy-currents induces
their own magnetic field (added inductive effect),
and they oppose to the original induction (Lens’s
law), which pushes the field lines toward the boundary
(magnetic skin effect).

This paper is structured as follows. Section 2 recalls the
Thiele–Small model (model 0) which recast as a port-
Hamiltonian system after a short introduction to the
formalism. This model 0 serves as a basis to elaborate two
refined loudspeaker models (model 1 and model 2). Section 3
focuses on refinements of the mechanical part (model 1).
In particular, a passive-guaranteed nonlinear model based
on the Kelvin–Voigt description of viscoelastic material
associated with the suspension (S) is provided. Section 4
focuses on refinements of the electromagnetic part
(model 2). In particular, we provide a lumped parameter
non linear description of the full magnetic circuit (M, P)
coupled with the electronic circuit and the mechanical
system. These passive models can straightforwardly be
combined to describe all these refinements in a single model.
Simulations are presented throughout the paper, focusing
on the effect of each phenomena, separately. In practice,
they are all1 produced by the PyPHS software [35].

2 The Thiele–Small model revisited in the
port-Hamiltonian formalism

This section is devoted to the construction of the base
model (model 0) that is progressively refined in the remain-
ing of the paper. First, an overview of the functioning of
the electrodynamic loudspeaker is presented and the stan-
dard Thiele–Small modeling is recalled. Second, the port-
Hamiltonian framework is recalled. Third, the Thiele–Small
model is recast as a port-Hamiltonian system (model 0).
Finally, time-domain simulations are performed and results
are compared in the frequency-domain to transfer functions
expected from filter theory.

2.1 Standard Thiele/Small model

The basic functioning of a boxed loudspeaker such as
the one depicted in Figure 1 is as follows. A voice-coil (C)
submitted to an input voltage (I) is immersed in a magnetic
field imposed by a permanent magnet (M) in the air gap
(G) of a magnetic path (pole piece P), so that the coil
(C) is subjected to the Lorentz force. The coil (C) is glued
to a large diaphragm (D) which is maintained by a flexible
suspension (S). The diaphragm (D) is responsible for the
coupling with the acoustical field (A).

1 Simulation code are available here: https://afalaize.github.io/
posts/loudspeaker1/

Figure 1. Schematic of the electrodynamic loudspeaker and
components labels.
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The standard description of the dynamics of this system
is referred as the Thiele–Small modeling, introduced in the
early seventies [9–12]. The electrical part (C) includes the
electrical resistance of the coil wire RC and the linear
approximation of the coil behavior with inductance LC.
The mechanical part (C, D, S, A) is modeled as a damped
harmonic oscillator with mass MCDA (coil, diaphragm and
additional mass due to acoustic radiation), linear approxi-
mation of the spring effect KSA (suspension and additional
stiffness due to air compression in the enclosure) and fluid-
like damping with coefficient RSA (frictions and acoustic
power radiation). The magnetic part (M, P, G, C) reduces
to a constant force factor B‘.

The corresponding set of ordinary differential equations
are derived by applying Kirchhoff’s laws to the electrical
part (C) and Newton’s second law to the mechanical part
(D, S, A):

vIðtÞ ¼ v‘ðtÞ þ RC iCðtÞ þ LC
diCðtÞ
dt

; ð1Þ

MCDA
d2qDðtÞ
dt2

¼ fLðtÞ � RSA
dqDðtÞ
dt

� KSA qDðtÞ; ð2Þ

with vI the input voltage, iC the coil current and qD the dia-
phragm’s displacement from equilibrium. The electrome-
chanical coupling terms are the back electromotive force
(voltage) vL ¼ B‘ dqD

dt and the Lorentz force fL ¼ B‘ iC.

2.2 Port-Hamiltonian formalism

The port-Hamiltonian (pH) formalism introduced in the
90’s [26] is a modular framework for the passive-guaranteed
modeling of open dynamical systems. In this paper, we
consider the following class formulated as a multiphysical,
component-based, differential algebraic state-space repre-
sentation (as in [29]).

Definition 2.1 (Port-Hamiltonian Systems, PHS). The class of
PHS under consideration is that of differential algebraic
state-space representations with input u 2 Rny , state
x 2 Rnx , output y 2 Rny , that are structured according to
energy flows and described by (see [29] for details and
[26–28] for more general formulations of PHS ):

dx
dt

w

y

0
B@

1
CA ¼

Jx �K Gx

KT Jw Gw

�GT
x �GT

w Jy

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
J

rHðxÞ
zðwÞ
u

0
B@

1
CA;

ð3Þ

where w 2 Rnw stands for dissipation variables with dissi-
pation law zðwÞ 2 Rnw , HðxÞ 2 Rþ is the energy storage
function (or Hamiltonian) with gradient ðrHðxÞÞi ¼ oH

oxi
,

K 2 Rnx�nw , Gx 2 Rnx�ny , Gw 2 Rnw�ny , and where

(i) the storage function H(x) is positive semidefinite
H(x) � 0 with H(0) = 0 and positive definite Hessian
matrix ½HHðxÞ�i;j ¼ o2H

oxi ;oxj
ðxÞ (see examples in

Appendix C),

(ii) the dissipation law z(w) is null at origin z(0) = 0
with positive definite Jacobian matrix ½J zðwÞ�i;j ¼
ozi
owj

ðwÞ, implying that the dissipated power is
PD (w) = z(w)T w � 0, PD (0) = 0,

(iii) Jx 2 Rnx�nx , Jw 2 Rnw�nw and Jy 2 Rny�ny are skew-
symmetric matrices, so that JT = �J.

System (3) proves passive for the outgoing power
PS = uTy according to the following power balance:

rHðxÞ
zðwÞ
u

0
B@

1
CA

T dx
dt

w

y

0
B@

1
CA ¼ dH

dt
ðxÞ þ PDðwÞ|fflfflffl{zfflfflffl}

�0

þPS ¼ 0: ð4Þ

This proves the passivity and hence the asymptotic stabil-
ity of (3) in the sense of Lyapunov ([36], Sect. 4).

Remark 2.2 (Energy storage). The Hamiltonian considered in
this work does not depend explicitly on time so that it coin-
cides with the total energy in the system:
E ¼ H � x : t 7!HðxðtÞÞ ¼ EðtÞ 2 Rþ:

2.3 The Thiele–Small model as a PHS

The Thiele–Small modeling from Section 2.1 can be
regarded as the interconnection of a resistance-inductance
circuit with a mass-spring-damper system, through a gyra-
tor that describes the reversible energy transfer from the
electrical domain to the mechanical domain as depicted in
Figure 2 and detailed in Section B.2.

Description
This system includes nx = 3 storage components (induc-

tance LC, massMCDA and stiffness KSA), nw = 2 dissipative
components (electrical resistance RC and mechanical damp-
ing RSA) and ny = 1 port (electrical input vI). The state
x ¼ ð/C; pM; qDÞT consists of the magnetic flux in the coil
/C, mass momentum pM ¼ MCDA

dqD
dt and diaphragm posi-

tion qD. The Hamiltonian is the sum of the electrodynamic

energy HLðx1Þ ¼ x21
2LC

, the kinetic energy HMðx2Þ ¼ x22
2MCDA

and the potential energy HKðx3Þ ¼ KSA
x23
2 . The dissipation

variable is w ¼ iC;
dqD
dt

� �T
with linear dissipation law

zðwÞ ¼ diagðRC;RSAÞw.

Port-Hamiltonian formulation
The above PHS quantities are related with quantities in

the Thiele–Small model (1) and (2) as follows:

Figure 2. Equivalent circuit with direct electromechanical
analogy (force M voltage, velocity M current) that corresponds
to the Thiele–Small model (1) and (2) with electromechanical
coupling B‘ (gyrator).
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Electrical part: dx1
dt ¼ LC

diC tð Þ
dt ; H

0
L x1ð Þ ¼ iC and

z1 w1ð Þ ¼ RCiC ;

Mechanical part: dx2
dt ¼ MCDA

d2qDðtÞ
dt2 ; H

0
M ðx2Þ ¼ dqD

dt ;

H
0
Kðx3Þ ¼ KSA qD andz2ðw2Þ ¼ RSA

dqD
dt ;

with the back electromotive force B‘H
0
Mðx2Þ ¼ v‘ and the

Lorentz force B‘H
0
Lðx1Þ ¼ fL. This yields the following

port-Hamiltonian reformulation of (1)–(2):

dx1
dt ¼ �B‘ oH

ox2
ðx2Þ � z1ðw1Þ þ u1;

dx2
dt ¼ B‘ oH

ox1
ðx1Þ � oH

ox3
ðx3Þ � z2ðw2Þ;

ð5Þ

with coil velocity vC ¼ oH
ox2

ðx2Þ ¼ dx3
dt ¼ w2 and current

iC ¼ oH
ox2

ðx2Þ ¼ w1 ¼ �y1. The associated port-Hamiltonian
structure (3) is given in Table 1.

Simulation results
Simulations are performed following the passive-guaran-

teed numerical method associated with the pH structure (3)
and recalled in Appendix A. Time domain simulations are
shown in Figure 3. Transfer function computed from time

domain simulation T ðsÞ ¼ abs vCðsÞ
vIðsÞ

� �
with s the complex fre-

quency is shown in Figure 4. Notice the (numerical) power

balance is satisfied. The model 0 in Table 1 is refined in the
sequel to copewith the phenomena listed in the introduction.

3 Refined mechanics

In this section, the model 0 from Section 2.3 is refined to
cope with creep effect and nonlinear stress-strain relation
attached to the suspension material (S). First, we detail
the modeling of the creep effect based on Kelvin–Voigt
model of viscoelastic material [30, 31]. This results in a linear
PHS. Second, the hardening suspension effect is included.
This results in a nonlinear PHS (model 1). Third, simulation
results are shown.

3.1 Suspension creep

The creep effect is a long-term memory effect due to the
shape memory of the suspension material (see e.g. Fig. 1
from [30] and Fig. 11 from [31]) and heat relaxation of
the fluid in the enclosure (see e.g. [17]).

In this work, we consider the standard Kelvin–Voigt
model for viscoelastic materials. The resulting (linear)
mechanical subsystem is depicted in Figure 5 and is recast
in this subsection as a port-Hamiltonian system (3). Note
the procedure given below allows to formulate other creep
models (e.g. from the literature given above) as port-
Hamiltonian systems.

3.1.1 Description of the creep model

Viscoelastic materials exhibit combination of elastic
solids behaviors and viscous fluid behaviors. Let R be the
coefficient of viscosity for a damper (N � s � m�1) and K the
modulus of elasticity for a spring element (N � m�1) with
characteristic frequency x ¼ K

R (Hz) and associated creep

time s ¼ 2p
x (s). Their respective compliance in the Laplace

domain are T K ¼ qðsÞ
fK ðsÞ ¼ 1

K and T R ¼ qðsÞ
fRðsÞ ¼ 1

Rs where s is

the complex Laplace variable ðReðsÞ > 0Þ, and where q(s),

fK(s) and fR(s) are the Laplace transforms of the elongation

and the two restoring forces, respectively.
The Kelvin–Voigt modeling of the creep effect is con-

structed by connecting a linear spring with same stiffness
K in parallel with a damper R (see [37] and Sect. 4 from
[38]). The elongation is the same for both elements
qkv = q and forces sum up fkv = fK + fR. The corresponding
compliance is

T kvðsÞ ¼ qkvðsÞ
fkvðsÞ ¼ K 1þ s

x

� �� ��1
: ð6Þ

The modeling of materials that exhibits several relaxation
times sn ¼ 2p

xn
is achieved by chaining N Kelvin–Voig ele-

ments (see [20, 38, 39] and Fig. 1 from [37]). Each element
contributes to the total elongation qchain ¼

PN
n¼1qn, and

every elements experience the same force
fchain ¼ f1 ¼ � � � ¼ fN . Here, we consider three elements to
restore (i) a primary instantaneous response to a step force
with stiffness K0 and (ii) a long time viscoelastic memory
with characteristic time sve ¼ 2p

x1
. The compliance of this

viscoelastic model is

T veðsÞ ¼ 1
K0

þ K1 1þ s
x1

� �� ��1

; x1 ¼ K1

R1
: ð7Þ

The parameters are K0, K1 and sve withR1 ¼ K1sve
2p

� �
. A pos-

sible strategy to tune jointly the fKigi¼1;2 is to introduce a
dimensionless parameter PK 2 ð0; 1Þ to partition the
Thiele–Small stiffness KSA between K0 and K1:

K0 ¼ KSA

1� PK
; K1 ¼ KSA

PK
: ð8Þ

Table 1. Port-Hamiltonian formulation (3) for the Thiele–Small
structure as depicted in Figure 2, with magnetic flux in the coil
/C, diaphragm position qD and momentum pM ¼ MCDA

dqD
dt . The

physical parameters are given in Tables D1.

Storage
State: Energy:
x = (/C, pM, qD)

T HðxÞ ¼ x21
2LC

þ x22
2MCDA

þ KSA
x23
2

Dissipation
Variable: Law:

w ¼ iC;
dqD
dt

� �T
zðwÞ ¼ diag ðRC;RSAÞw

Ports
Input: Output:
u ¼ vIð ÞT y ¼ �iCð ÞT

Structure

Jx ¼
0 �B‘ 0
B‘ 0 �1
0 1 0

0
@

1
A, K ¼

1 0
0 1
0 0

0
@

1
A,

Gx = (1,0,0)T, Jw = 2�2, Gw = 2�1, Jy = 0.
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Note this choice ensure that T veðsÞjsve¼0 ¼ KSA=s for all
0 < PK < 1 (i.e. the combination of K0 and K1 restores
the Thiele–Small stiffness KSA if the creep effect is
neglected sve = 0).

3.1.2 Port-Hamiltonian formulation

The creep model (7) corresponds to the parallel connec-
tion of (i) a linear spring K0 and (ii) a linear spring K1
serially connected to a dashpotR1 (see Fig. 5). This mechan-
ical subsystem includes nx = 3 storage components (mass
MCDA, primary stiffness K0, secondary stiffness K1),
nw = 2 dissipative components (damper RSA, secondary
damper R1), and ny = 1 port (Lorentz force fL). The state
x ¼ ðpM; q0; q1ÞT includes the mass momentum

pM ¼ MCDA
dqD
dt , and the primary and secondary elongations

q0 and q1 (respectively). The Hamiltonian is the sum of (i)

the kinetic energy HMðx1Þ ¼ x21
2MCDA

, and (ii) the primary and

secondary potential energies H0ðx2Þ ¼ K0
x22
2 and

H1ðx3Þ ¼ K1
x23
2 (respectively). The dissipation variable is

w ¼ dqD
dt ; fR1

� �T
with linear dissipation law

zðwÞ ¼ diagðRSA;R�1
1 Þ �w. The input/output are

u ¼ ðfLÞT and y ¼ dqD
dt

� �T
. For these definitions, the inter-

connection in Figure 5 yields:

Figure 3. Simulation results for the model 0 in Table 1.
Physical parameters are given in Table D1. The input voltage vI
is a 100 Hz sine wave with increasing amplitude between 0 and
50 V. The sampling rate is Fs = 96 kHz.

Figure 4. Transfer functions from the simulation of the model 0
in Table 1 (phs) and computed from filter theory (target).
Physical parameters are given in Table D1. The input voltage vI
is a 1 V white noise and the sampling rate is Fs = 96 kHz.

Figure 5. Small-signal modeling of the mechanical part which
includes: the total mass MCDA (diaphragm, coil and additional
mass due to acoustic radiation), the fluid-like damper RSA

(mechanical friction and small signal approximation for the
acoustic power radiation), primary stiffness K0 and Kelvin–
Voigt modeling of the creep effect (K1, R1), with diaphragm
position qD, primary elongation q0 and creep elongation q1.
Parameters are given in Tables D1 and D2.
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dx1
dt

¼ � oH
ox2

ðx2Þ � z1ðw1Þ þ u1;

dx2
dt

¼ oH
ox1

ðx1Þ � z2ðw2Þ;
dx3
dt

¼ z2ðw2Þ:

ð9Þ

This system is recast as a port-Hamiltonian system (3) for
the structure in Table 2 and the parameters in Table D2.

3.2 Suspension hardening and model 1

For large displacement, the suspension behaves like an
hardening spring (see e.g. [18, 40]). This should occur for
instantaneous displacements, so that only the primary stiff-
ness K0 in Table 2 is affected. First, the mechanical subsys-
tem from previous section is changed to cope with this
phenomenon. Second, the resulting nonlinear mechanical
part is included in loudspeaker model 0 to build the loud-
speaker model 1.

3.2.1 Model description

The primary stiffness K0 in Table 2 is modified into a
nonlinear spring that exhibits a phenomenological satura-
tion for an instantaneous elongation q0 = ±qsat (symmetric).
The associated constitutive law (C1)–(C3) in Appendix C is

cSAðq0Þ ¼ q0 þ
4 P S

sat

4� p
tan

p:q0
2 qsat

� �
� p:q0
2qsat

� �
: ð10Þ

It yields the restoring force f0(q0) = K0cSA(q0) for the initial
stiffness K0. It corresponds to the addition of a saturating
term that does not contribute around the origin, thus
preserving the meaning of parameter K0 (small signal
behavior). The associated storage function (C4) and (C5) is

HSA
sat q0ð Þ ¼

K0
q20
2
� 8P S

sat qsat
pð4� pÞ ln cos

p q0
2 qsat

� �				
				þ 1

2
p q0
2qsat

� �2
 ! !

�0:

ð11Þ
Note that any storage function suitable to a particular
material could be used (such as for example those given
in Appendix C), and that the modular structure of the
port-Hamiltonian formalism allows to change the storage
function without modifying the interconnection matrix.

3.2.2 Port-Hamiltonian system and Model 1

The port-Hamiltonian formulation of the loudspeaker
model 1 includes creep effect and hardening suspension.

It is obtained by (i) replacing the potential energy K0
q20
2 in

Table 2 by the nonlinear storage function (11) and (ii)
connecting the mechanical port fL to the RL circuit
describing the electromagnetic part as in Section 2.3. This
results in the structure given in Table 3 with parameters
in Tables D1 and D2.

Table 2. Port-Hamiltonian formulation (3) for the proposed
small signal model of the mechanical part in Figure 5 driven by
the Lorentz force fL, with diaphragm position qD, momentum
pM ¼ MCDA

dqD
dt , primary elongation q0, and creep elongation q1.

Parameters are given in Tables D1 and D2, with
Q ¼ 1

2 diag
1

MCDA
;K 0;K 1

� �
and R ¼ diagðRSA;R�1

1 Þ.
Storage

State: Energy:
x ¼ pM; q0; q1ð ÞT HðxÞ ¼ xT Qx

Dissipation
Variable: Law:

w ¼ dqD
dt ; fR1

� �T
zðwÞ ¼ Rw

Ports
Input: Output:

u ¼ fLð ÞT y ¼ dqD
dt

� �T
Structure

Jx ¼
0 �1 0
1 0 0
0 0 0

0
BB@

1
CCA, K ¼

1 0
0 1
0 �1

0
@

1
A,

G
x
= (1,0,0)T, J

w
= , G

w
= , J

y
= 0.

Table 3. Port-Hamiltonian formulation (3) for the model 1
depicted in Figure 6. The linear stiffness KSA is replaced by the
Kelvin–Voigt modeling of the creep effect from Section 3.1 in
serial connection with the nonlinear spring described in
Section 3.2, with diaphragm position qD, momentum
pM ¼ MCDA

dqD
dt , primary elongation q0, and creep elongation q1.

The nonlinear potential energy HSA
satðq0Þ is given in (11).

Parameters are given in Tables 4 and D1, with
Q ¼ 1

2 diag
1
LC
; 1
MCDA

;K 0;K 1;
� �

and R ¼ diag RC;RSA;R1ð Þ.
Storage

State: Energy:
x ¼ /C; pM; q0; q1ð ÞT HðxÞ ¼ xT QxþHSA

satðx3Þ

Dissipation
Variable: Law:

w ¼ iC;
dqD
dt ; fR1

� �T
zðwÞ ¼ Rw

Ports
Input: Output:

u ¼ vIð ÞT y ¼ �iCð ÞT

Structure

Jx ¼

0 �B‘ 0 0
B‘ 0 �1 0
0 1 0 0
0 0 0 0

0
BBBB@

1
CCCCA, Gx ¼

1
0
0
0

0
BB@

1
CCA;

K ¼

1 0 0
0 1 0
0 0 �1
0 0 1

0
BBBB@

1
CCCCA; Jw ¼ , Gw ¼ , Jy ¼ 0.
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3.3 Simulation results

The numerical method used to simulate the mechanical
subsystem (Tab. 2) and the model 1 (Tab. 3) is detailed in
Appendix A. The results obtained for physical parameters
in Tables D1 and D2 are commented below.

Creep effect
It is expected that the viscoelastic behavior of the sus-

pension material results in a frequency-dependent compli-
ance, i.e. the suspension at low frequencies must appear
softer than for the Thiele/Small prediction (see e.g. [17],
Fig. 12). Model 1 allows the recovery of this effect as shown
in Figure 7. The corresponding long time memory depicted
in Figure 8 is in accordance with measurements in
e.g. Figure 1 from [30] and Figure 11 from [31].

Nonlinear suspension
The hardening effect associated with the nonlinear

stress–strain characteristic of the suspension material is
clearly visible in Figure 9 where the primary elongation is
reduced for higher value of the shape parameter P S

sat. This
reduces the total displacement qD and momentum pM ¼
MCDA

dqD
dt , while the creep elongation is almost unchanged.

4 Refined electromagnetic

In this section, the model 0 from Section 2.3 is refined to
account for effects of flux modulation, electromagnetic
coupling, ferromagnetic saturation and eddy-current losses
attached to the electromagnetic part (voice-coil C, magnet
M, ferromagnetic path P and air gap G). First, the
proposed modeling is described. Second, this model is recast
as a port-Hamiltonian system. Third, simulation results are
presented.

4.1 Model description

The classical lumped elements modeling of loudspeakers
electrical impedance includes the electrical DC resistance of
the wire RC serially connected to a non-standard inductive
effect, referred as lossy-inductor. The simplest refinement of
the Thiele/Small modeling is the so-called LR-2 model,
which uses a series inductor connected to a second inductor
shunted by a resistor. Several refinements to this model are
available in the litterature [16, 41–44].

The modeling of the loudspeakers electrical impedance
proposed in this work is depicted in Figure 10. The coil
winding acts as an electromagnetic transducer (gyrator)
that realizes a coupling between the electrical and the
magnetic domains, according to the gyrator-capacitor
approach (see Appendix B.3 and Refs. [45, 46]). The electri-
cal domain includes the linear resistance RC of the coil wire
(same as Thiele–Small model) and a constant linear induc-
tance associated with the leakage magnetic flux that does
not penetrate the pole piece (P). The flux in the magnetic

Figure 6. Equivalent circuit for model 1 with diaphragm
position qD, primary elongation q0 and creep elongation q1.
Elements common to model 0 in Figure 2 are shaded.

Figure 7. Simulation of the small-signal modeling of the
mechanical subsystem in Table 2: Compliance in the frequency
domain (diaphragm displacement in response to the Lorentz

force qD
fL

			 			ð2ipf Þ). The low-frequency effect is clearly visible. Note

that sve = 0 corresponds to the mechanical subsystem as

described by the Thiele–Small model (no creep).

Figure 8. Simulation of the small-signal modeling of the
mechanical subsystem in Table 2: diaphragm displacement in
response to a 10N Lorentz force step between 0s and 2s (time
domain). Note that sve = 0 corresponds to the mechanical
subsystem as described by the Thiele–Small model (no creep).
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path is common to (i) a nonlinear magnetic capacitor asso-
ciated with energy storage in air gap (G, linear) and ferro-
magnetic (P, nonlinear), (ii) a linear magnetic dissipation
associated with eddy-currents losses in the path (P) and
(iii) a constant source of magnetomotive force associated
with the permanent magnet (Ampere model).

4.1.1 Coil model

Leakage inductance
A single leakage flux /leak = Sleakbleak independent of the

position qD is assumed for every of the NC wire turns (see
Fig. 10a), with Sleak the annular surface between the coil
winding and the ferromagnetic core, computed as

Sleak ¼ pD2
C

4
ð2 aleak � a2leakÞ; ð12Þ

where 0 < aleak < 1 is the fraction of the coil section not
occupied by the magnetic core. According to (B1), the
linear magnetic capacity of the air path is C leak ¼
S leak l0 ð1þnairÞ

2AC
with AC the height of the coil wire turns,

l0 the magnetic permeability of vacuum and nair the
magnetic susceptibility of air. From (B6), this corresponds
to an electrical inductance with state xleak = NC/leak and
storage function Hleakðx leakÞ ¼ xleak2

2Lleak
, for the inductance

Lleak ¼ N 2
C C leak. We define the characteristic frequency

xC ¼ RC
Lleak

(Hz).

Electromagnetic coupling modulation
The electromagnetic coupling between the coil (C) and

the path (P) depends on the he number nP of wire turns
effectively surrounding the pole piece. For small negative
excursions qD < 0 every wire turns participate to the
coupling (nP ’ NC) and for large positive excursions the
coil leaves the pole piece (nP ’ 0). We propose a
phenomenological sigmoid relation nP : qD 7!nPðqDÞ:

nPðqDÞ ¼ NC 1þ exp
4 qD � 2 ðq� þ qþÞ

qþ � q�

� �� ��1

; ð13Þ

with nP(q�) ’ 90% NC and nP(q+) ’ 10% NC (see
Fig. 11).

Figure 9. Simulation of the model 1 in Table 3 depicted in
Figure 6, for the parameters in Tables D1 and D2 (except PS

sat
indicated in the legend). The input voltage is a 100 Hz sine wave
with increasing amplitude between 0V and 50V. The sampling
rate fs = 96 kHz. The power balance is shown for PS

sat ¼ 10 only.
Notice qD = q0 + q1.

Figure 10. Proposed modeling of the electromagnetic circuit,
which includes: the coil wire resistance RC, the linear inductance
associated with the leakage flux /leak, the electromagnetic
transduction with nP the number of wire turns around the
magnetic path, the magnetic energy storage in the ferromagnetic
path described by the nonlinear induction–excitation curve
wPG(/PG) from (15), the linear dissipation associated with eddy-
currents in the pole piece, and the constant source of magne-
tomotive force wM due to the magnet from (17).
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4.1.2 Ferromagnetic saturation

Nonlinear storage
The storage of magnetic energy in the magnetic circuit

is spread over the pole piece (P) and the air gap (G).
Assuming no leakage flux in the pole piece, those elements
are crossed by the same magnetic flux /PG (see Fig. 10a and
Refs. [45, 46]). The corresponding averaged inductions are

bP ¼ /PG

SP
;

bG ¼ /PG

SG
;

ð14Þ

with SP the average section crossed by the magnetic flux in
the pole piece and SG the section of the flux in the air gap
(see Fig. 10a). This corresponds to the serial connection of
two magnetic capacitors: the first one is associated with
the air gap G with linear constitutive law (as for the leak-
age flux /leak); the second one is associated with the pole
piece P and cannot be described by a linear magnetic
capacity due to the magnetic saturation that occurs in
ferromagnetic material (see [32], Sect. 1). Those two seri-
ally-connected magnetic capacitors can merge into a single
nonlinear capacitor that restores the total magnetomotive
force wPG(/PG). In this work, we consider the tangent-like
constitutive relation detailed in Appendix C with flux
saturation /sat = SPbsat, where bsat depends on the specific
magnetic material. From (C1) to (C3), the constitutive
law wPG(/PG) = cPG(/PG) is given by

cPGð/PGÞ ¼ PPG
lin /PG þ 4 PPG

sat
4�p tan p/PG

2/sat

� �
� p/PG

2/sat

� �� �
;

ð15Þ
where the coefficient PPG

lin includes the contributions of
both air and pole piece material, and PPG

sat is a function
shape parameter that depends on the specific material
used for the pole piece. The associated (positive definite)
storage function (C4) and (C5) is given by

HPG
sat ð/PGÞ ¼ PPG

lin

/2
PG

2
� 8PPG

sat /sat

pð4� pÞ ln cos
p/PG

2/sat

� �				
				

��

þ 1
2

p/PG

2/sat

� �2��
: ð16Þ

Again, any storage function suitable to a particular
magnetic material could be used (such as those given in
Appendix C), and the modular structure of the port-
Hamiltonian formalism allows to change the storage
function without modifying the interconnection matrix.

Steady state behavior
The permanent magnet is modeled as a constant source

of magnetomotive force wM (Ampere model [46]). This
drives the magnetic flux in the path to an equilibrium
(steady-state, ss) /PG = /ss for which the magnetomotive
force exactly compensates that of the magnet:

wPGð/ssÞ ¼ �wM: ð17Þ
The associated steady-state magnetic capacity is the inverse
of the linear approximation of wPG(/PG) at /ss:

Css ¼ ocPG
o/PG

				
/PG¼/ss

 !�1

¼ o2HPG
sat

o/2
PG

					
/PG¼/ss

0
@

1
A

�1

; ð18Þ

with

o2HPG
sat

o/2
PG

ð/PGÞ ¼ PPG
lin 1þ 2pPPG

sat

ðp� 4Þ/sat
1� cos�2 p/PG

2/sat

� �� �� �
;

so that PPG
lin can be tuned according to

PPG
lin ¼ ðp� 4Þ/sat

Css 2pPPG
sat 1� cos�2 p/ss

2/sat

� �� �
þ ðp� 4Þ/sat

� � ; ð19Þ

with C ss ¼ LP

nPð0Þ2 and LP = LC�Lleak.

4.1.3 Eddy-currents losses

Besides the magnetic saturation, the pole piece is
affected by the combination of capacitive and resistive
effects due to eddy-currents, resulting in frequency-
dependent losses. This phenomenon is well described by a
linear fractional order magnetic capacity (see [3, 34, 47–50]
and [48], part 5). This is out the scope of the present work

Figure 11. Plot of the position-dependent effective number
of wire turns nP(qD) involved in the electromagnetic coupling
from (13) with q+ = 5 mm and q� in the legend.

Figure 12. Equivalent circuit of the model 2 described in
Table 4. Elements common to model 0 in Figure 2 are shaded.
The coil inductance LC is replaced by the electromagnetic circuit
from Figure 10b which includes the leakage inductance Lleak and
the magnetic path (pole piece P and air gap G).

A. Falaize and T. Hélie: Acta Acustica 2020, 4, 1 9



and is postponed to a follow-up paper. Here, we consider a
magnetic resistance Rec (X

�1) with magnetic impedance

T ecðsÞ ¼ wecðsÞ
s/ecðsÞ

¼ Rec: ð20Þ

Since we consider a single magnetic flux in the pole piece
/ec = /PG, this impedance is serially connected to the
magnetic capacity described in Section 4.1.2. The result-
ing structure is depicted in Figure 10b. Defining
xP = (RecCss)

�1 (Hz) and sP ¼ 2p
xP

(s), the resulting electri-
cal impedance T PðsÞ ¼ tP

iC
is

T PðsÞ ¼ tPðsÞ
iCðsÞ ¼

nPðqDÞ2
Rec

s
sþ xP

: ð21Þ

4.1.4 Blocked electrical impedance

The current iC is common to (i) the resistor RC, (ii) the
leakage inductance Lleak, and (iii) the impedance associated
with the magnetic path in the coil core T PðsÞ. For a blocked
coil dqD

dt ¼ 0 ) vL ¼ 0
� �

, the total steady-state electrical

impedance T CðsÞ ¼ vIðsÞ
iCðsÞ measured at the coil terminals is

given by

T CðsÞ ¼ RC 1þ s
xC

1þ nPðqDÞ2
RCRec

xC

sþ xPð/PGÞ

 ! !
:

ð22Þ
The DC value (s = 0) is given by the resistance RC. In the
high frequency range, the impedance is governed by the

leakage inductance T CðixÞ 	
x!1

RC 1þ ix
xC

� �
. The inner

bracket is the contribution of the proposed magnetic circuit.

4.1.5 Position-dependent force factor

The gyrator that restores the Lorentz force fL with
corresponding back electromotive force vL is given by (see
Eq. (B3) in Sect. B.2):

vL
fL

� �
¼ 0 �B‘C

B‘C 0

� �
iC
vC

� �
; ð23Þ

with coil velocity vC ¼ dqD
dt and ‘C the length of coil wire

effectively subjected to the magnetic field B. The appar-
ent magnetic field B is modulated by the coil displacement
(neglected in this work), and the length ‘C depends on the
coil position (see Figs. 2.5–2.8 in [2] and Fig. 5 in [1]). We
propose a parametric plateau function ‘C : qD 7!‘CðqDÞ to
model the latter phenomenon:

‘CðqDÞ ¼ ‘C
0 1þ expð�P ‘Þ
1þ exp P ‘

qD
Q‘

� �2
� 1

� �� � ; ð24Þ

where ‘C
0 is the total length of the coil, Q‘ describes the

overhang of the coil with respect to the magnetic path
(see Fig. 13a; and Sect. 3.1.2 from [1]), and P‘ is a shape
parameter (see Fig. 13b).

4.2 Port-Hamiltonian formulation

The proposed loudspeaker modeling that includes elec-
tromagnetic phenomena (model 2) corresponds to the
replacement of the inductance LC in model 0 by the electro-
magnetic circuit described in previous section (compare
Figs. 2 and 12). It includes (i) the resistance-inductance
circuit RC � Lleak serially connected to (ii) the magnetic cir-
cuit associated with the core of the coil and the magnet.
This involves nx = 4 storage components (inductance Lleak,
capacity cPG, mass MCDA, and stiffness KSA), nw = 3
dissipative components (resistances RC, RSA and Rec), and
ny = 2 ports (voltage vI and magnetomotive force wM).
The state is x ¼ ðxleak;/PG; pM; qDÞT with the state

associated with leakage flux xleak ¼ NC /leak, and the

Hamiltonian is HðxÞ ¼ xTQxþ HPG
sat ðx2Þ with Q ¼

1
2 diag

1
Lleak

; 0; 1
MCDA

;KSA

� �
and HPG

sat given in (16). The dissi-

pation variable is w ¼ iC;
dqD
dt ;wPG

� �T
with linear dissipa-

tion law zðwÞ ¼ diagðRC;RSA;Rec
�1Þw. According to (14),

the magnetic induction in the air gap involved in the elec-
tromechanical coupling (B3) is bG ¼ /PG

SG
. The length of wire

effectively subjected to the induction field is ‘Cðx4Þ given in
(24). The number of wire turns effectively surrounding the
pole piece involved in the electromagnetic coupling is nP(x4)
given in (13). With these definitions, the port-Hamiltonian
formulation (3) of the loudspeaker model with the refined
electromagnetic part (model 2 depicted in Fig. 10) is given
in Table 4.

4.3 Simulation results

The numerical method used to simulate model 2 is
detailed in Appendix A. Physical parameters are given in
Tables D1 and D3. In each case, the initial condition is
the steady-state /PG(t = 0) = x2(t = 0) = /ss.

Figure 13. Effective length of coil wire ‘C subjected to the
magnetic field B as defined in (24), with coil position qD and
total wire length ‘C

0 ¼ 10 m. Notice P‘ ¼ 0 corresponds to
‘C ¼ ‘C

0, 8qD 2 R which restores the linear case. (a) Effect of the
overhang parameter Q‘ with P‘ ¼ 10. (b) Effect of the shape
parameter P‘ with Q‘ ¼ 5 mm.
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Eddy-current losses
The effect of the characteristic time sec = 2pRecCss due

to eddy-currents in the pole piece is illustrated by imposing
several DC input voltages vI, here �50 V, and +50 V (see
evolution of flux /PG in Fig. 14), with the coil blocked at
qD = 0 m and Css kept fixed, so that only Rec varies with
sec. In each case, the magnetic flux in the path is driven to
a new steady state /PG 6¼ /ss. The long-term effects
and the influence of the characteristic time sPG are clearly
visible.

Core saturation
The evolution of the small signal impedance with the

steady-state is shown in Figure 15. First, the DC input
voltages are imposedduring 0.5 s. Second, a small signal noise
is applied to evaluate the new steady-state blocked-
impedance. We see an evolution in the high-frequency
response according to the transfer function in (22).
The associated value for is given in Css from (18) and the
other parameters are given in Table D3.

Position-dependent electromagnetic coupling
To illustrate the effect of coil position on the electrical

impedance, position qD in model 2 (Tab. 4) is fixed to
�1 cm (inside), 0 cm (equilibrium) and +1 cm (outside).
Due to the position-dependent effective number of coil wire
(13), this changes the inductance according to (B6). Results
are shown in Figure 16, in accordance with measurements
in e.g. Fig. 6 from [1].

Flux-dependent force factor
The force factor in model 2 B‘ ¼ /PG

SG
‘CðqDÞ is modulated

by the coil position (same as model 0) and the magnetic flux

Table 4. Blocks associated with the port-Hamiltonian formu-
lation (3) for the loudspeaker model 2 depicted in Figure 10,
where the Lorentz force factor is B‘ðxÞ ¼ x2

SG
‘Cðx4Þ with the

magnetic induction in the air gap /PG=SG and the position-
dependent effective wire length ‘CðqDÞ defined in (24). See
definitions and notations in Section 4.

Storage
State: Energy:

x ¼
xleak
/PG
pM
qD

0
BB@

1
CCA HðxÞ ¼ xT QxþHPG

sat ðx2Þ

Dissipation
Variable: Law:
w ¼ ðiC; dqDdt ;wPGÞT zðwÞ ¼ Rw

Ports
Input: Output:
u ¼ ðvI;wMÞT y ¼ ð�iC;

d/PG
dt ÞT

Structure

Jx ¼

0 0 �B‘ðxÞ 0
0 0 0 0

B‘ðxÞ 0 0 �1
0 0 1 0

0
BBBB@

1
CCCCA,

Gx ¼

1 0
0 0
0 0
0 0
0 0

0
BBBBBB@

1
CCCCCCA
, K ¼

1 0 nPðxÞ
0 0 �1
0 1 0
0 0 0

0
BBBB@

1
CCCCA,

Gw ¼
0 0
0 0
0 �1

0
BB@

1
CCA.

Figure 14. Simulation of the loudspeaker model 2 in Table 4:
Normalized flux /PG

/ss
in response to a ±50 V step voltage. The

initial flux is /PG(t = 0) = /ss and the coil is blocked at
qD = 0 m. The sample-rate is 96 kHz.

Figure 15. Simulation of the loudspeaker model 2 in Table 4:

Evolution of the modulus of impedance vIð2ip f Þ
iCð2ip f Þ

			 			 with the

magnetic flux in the coil /PG in response to a DC input voltage
vI ¼ N ðV cc; 0:1Þ where N denotes the normal distribution
centered on Vcc with variance 0.1 V. The coil is blocked at
qD = 0 m. The sample-rate is 96 kHz.
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in the pole piece P and air gap G. This is clearly visible in the
results of Figure 17: we observe that the force factor can be
larger than predicted by the Thiele/Small modeling. Notice
that the power balance is fulfilled.

5 Conclusion

In this paper, a set of structures and components have
been proposed to model well-known multiphysical phenom-
ena occurring in loudspeakers, in view of system identi-
fication and correction. In particular, a finite-dimensional,
power-balanced and passive-guaranteed time-domain
formulation of viscoelastic and eddy-currents phenomena
(linear) and material properties (stress–strain and b–h char-
acteristics, nonlinear) have been derived. Those models are
given in the framework of port-Hamiltonian systems, which
decomposes the system into conservative, dissipative and
source parts. The numerical method used for the simulations
preserves this decomposition and thus is unconditionally
stable. Numerical results that qualitatively comply with
measured behaviors available in the literature have been
presented.

The two loudspeaker models 1 and 2 have been devel-
oped independently of each other. This permits to illustrate
the particular effect of each phenomenon on the loud-
speaker dynamics. Now, their interconnection to form a
global, multiphysical model that copes with all the phenom-
ena covered in this work is straightforward, due to the
modular nature of the port-Hamiltonian systems.

The first perspective of this work is to achieve DSP
simulation-based real-time audio distortion compensation,
based on the preliminary work in [7]. This requires the
development of a parameter estimation method dedicated
to the port-Hamiltonian structure. A second perspective is

to include other phenomena that have not been considered
here, such that the fractional dynamics associated with vis-
coelastic materials and eddy-currents, the acoustical load
and the thermal evolution of the system. For all these
issues, the modular structure of the proposed port-Hamilto-
nian models could be further exploited.
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Figure 16. Simulation of the loudspeaker model 2 in Table 4:
Variation of impedance when the coil is blocked in different
positions, hence changing the number of coil wire turns around
the path nP(qD) and the inductance according to (37). The flux is
initially at /PG(t = 0) = /ss. The sample-rate is 96 kHz.

Figure 17. Simulation of the model 2 in Table 4 depicted in
Figure 12, for the parameters in Tables D1 and D3. The input
voltage is a 100 Hz sine wave with increasing amplitude between
0 V and 50 V. The sampling rate is 96 kHz. The power balance is
shown for the model 2 only. The force factor B corresponds to
the product of the induction in air gap bG from (14) with
position-dependent effective length from (24).
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Appendix A: Numerical method

In this section, we present the numerical method used in
this paper for the simulation of models 0, 1 and 2. It is based
on the appropriate definition of a discrete gradient [51]
which restores the passive-guaranteed port-Hamiltonian
structure (3) in discrete time so that numerical stability is
guaranteed (see [29, 52] for details, in particular for an anal-
ysis of consistency of the method which respect to the time
step, which we do not recall here).

To ensure stable simulation of stable dynamical system
dx
dt ¼ fðxÞ, many numerical schemes focus on the approxi-
mation quality of the time derivative, combined with oper-
ation of the vector field f. Here, we adopt an alternative
point of view, by transposing the power balance (4) in the

discrete time-domain to preserve passivity. This is achieved
by numerical schemes that provide a discrete version of the
chain rule for computing the derivative of E ¼ H � x. This
is the case of Euler scheme, for which first order approxima-
tion of the differential applications dxðt; dtÞ ¼ dx

dt ðtÞ dt and
dH(x, dx) = rH(x)Tdx on the sample grid t ¼ k dt;
k 2 Z are given by

dxðk; dtÞ ¼ xðk þ 1Þ � xðkÞ; ðA1Þ
dH x; dxð Þ ¼ H xþ dxð Þ � H xð Þ

¼ rdHðx;xþ dxÞT dx: ðA2Þ

For mono-variate storage components (HðxÞ ¼Pnx
n¼1HnðxnÞ), the solution can be built element-wise with

the n-th coordinate given by

½rdHðx;xþ dxÞ�n ¼
hnðxnþdxnÞ�hnðxnÞ

dxn
if dxn 6¼ 0;

h
0
nðxnÞ otherwise :

(
ðA3Þ

A discrete chain rule is indeed recovered

dEðk; dtÞ
dt

¼ rdHðxðkÞ;xðk þ 1ÞÞT dxðk; dtÞ
dt

ðA4Þ

so that the following substitution in (3)
dx
dt ðtÞ ! dxðk;dtÞ

dt

rHðxÞ ! rdHðxðkÞ;xðk þ 1ÞÞ
ðA5Þ

leads to

0 ¼ aðkÞT JaðkÞ ¼ aðkÞT bðkÞ
¼ rdHT dx

dt


 �
ðkÞ

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
dEðk;dtÞ

dt

þ zðwðkÞÞT wðkÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
PDðkÞ

�uðkÞT yðkÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
PSðkÞ

:

ðA6Þ
For pH systems composed of a collection of linear energy
storing components with quadratic Hamiltonian HnðxnÞ ¼
x2n
2Cn

, we define Q ¼ diagðC1 � � �CnxÞ�1 so that the discrete
gradient (A3) reads

rdHðx;xþ dxÞ ¼ Q xðkÞ þ dxðkÞ
2

� �
; ðA7Þ

which restores the midpoint rule. For nonlinear case, (A3)
does not coincide with the mid-point rule anymore, still
preserving passivity due to equation (A6) which does
not assume the system linearity.

Remark A.1 (Nonlinear solver). The proposed method
guarantees the passivity of the discrete time model provided
the resulting nonlinear implicit equations are solved exactly.
This depends on the nonlinear solver at hand but not on the
proposed method.
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Appendix B: Recalls on magnetism

In this section, we give the elements for the modeling of
lumped electromagnetic systems in the pH formalism. First,
the closed-form expression for energy storage is recalled.
Second and third, we give the port-Hamiltonian formula-
tion of electromechanical and electromagnetic coupling,
respectively.

B.1 Magnetic energy storage

Definitions
The magnetic phenomena are described by two comple-

mentary fields, namely, the applied magnetic excitation h
and the induced magnetic flux density b(h), which is some-
what the response of a given material to a given excitation.
The induction b is defined as the superposition of the
magnetization of vacuum j0(h) and the magnetization of
matter j(h) due to microscopic magnetic moments attached
to the atoms of the body (see Eq. (1.6) from [32] and Eq. (6)
from [33]):

b ¼ j0ðhÞ þ jðhÞ ’ jðhÞ
where we neglect the magnetization of vacuum so that
h(b) = j�1(b). The magnetic induction flux / is defined
as the flux of the magnetic induction field through a given
surface S : /ðtÞ ¼ RR

S
bðtÞ dS ¼ S bðtÞ, where b(t) is the

magnitude of the field b(t) that we assume constant over
S and normal to the cross section. The magnetomotive
force w is defined as the circulation of h along a closed
b-field line C with length ‘C : wðbðtÞÞ ¼

H
C
hðbðtÞÞ d‘ ¼

‘C � hðbðtÞÞ, where we assume h(b(t)) constant along C.

Energy storage
The variation of magnetic energy density (locally)

stored in a sample of magnetic material is dE
dt ¼ hðbÞ db

dt (see
e.g. [33] for details). Again assuming that h is constant over
the b-field line and b constant over a cross section of the
material, the variation of the total energy for a sample with
length ‘C and cross section S is dE

dt ¼ S ‘C hðbÞ db
dt. Rewriting

the preceding relation for the magnetic flux / = Sb and
the magnetomotive force wðbÞ ¼ ‘ChðbÞ yields dE

dt ¼
w /

S

� � d/
dt . Thus, we can select / as the state associated with

the storage of magnetic energy with E(t) = Hmag(/(t)) and
we identify H

0
magð/Þ ¼ w /

S

� �
:

Hmagð/Þ ¼ ‘C

Z /

0
h

n
S

� �
dn ðB1Þ

with the total energy variation d
dtHmag ¼ w d/

dt .

B.2 Electromechanical coupling

Consider several windings of a conductive wire with sec-
tion SW, total length ‘W, position qW and velocity vector
vW = vW eW with constant direction eW and magnitude
vW ¼ dqW

dt . This conductor is immersed in a magnetic

induction field b with constant direction orthogonal to
eW and constant magnitude B. The current is
iW ¼ RR SW

qq vqdS for the electric charge density qq moving
inside the wire at velocity vq = vqeq with unitary vector eq
normal to a cross section of the wire. A wire element with
length d‘ is subjected to the Lorentz force dfL ¼
qq SW d‘ vq þ vW

� �� b. This force is orthogonal to the
velocity vq + vW so that the associated mechanical power
is dPL ¼ dfL � ðvq þ vWÞ ¼ 0. Integrating along the wire,
one gets

PL ¼ vW:B ‘W iW|fflfflfflffl{zfflfflfflffl}
fL

þiW:B ‘W vW|fflfflfflffl{zfflfflfflffl}
�vL

¼ 0
ð33Þ

defining the Lorentz force fL and the back electromotive
force (voltage) vL. Notice the transfer is reversible and
conservative in the sense that the outflow of energy from
the electrical domain Pelec ¼ iW vL equals the inflow of the
mechanical domain Pmeca ¼ vW fL. This corresponds to a
gyrator with ratio B ‘W:

v‘
f‘

� �
¼ 0 �B ‘W

B‘W 0

� �
� iW

vW

� �
; ðB3Þ

with

iW
vW

� �T

� v‘
f‘

� �
¼ 0; ðB4Þ

since the interconnection matrix is skew-symmetric.

B.3 Electromagnetic coupling: the gyrator-capacitor
approach

The gyrator-capacitor approach introduced in the late
sixties [45, 46] is an easy way to develop electronic analog
of magnetic circuits. It has been considered in [14] for the
modeling of the loudspeaker. In this approach, a coil is
divided in a gyrator (wire turns) and a magnetic energy
storage (coil core).

The dynamics of a magnetic field can be described by
two complementary macroscopic quantities: the magnetic
induction flux / and the magnetomotive force (mmf) w
(see Sect. B.1). The electromagnetic transfer for a single
wire turn stands from (i) Faraday’s law of electromagnetic
induction that relates the electromotive force (voltage t) to
the variation of the magnetic flux in the wire turn t ¼ d/

dt ;
and (ii) Ampere’s theorem that relates the mmf to the cur-
rent in the wire w = i (see [45, 46]). Considering a coil (C)
with NC wire turns around the path (P), these relations
restore a gyrator with ratio NC:

vC
wC

� �
¼ 0 NC

NC 0

� �
iC
d/C
dt

 !
: ðB5Þ

Denoting by s 2 C the Laplace variable, the correspon-

dence between an impedance seen in the electrical domain
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ZelecðsÞ ¼ tCðsÞ
iCðsÞ and its counterpart in the magnetic domain

ZmagðsÞ ¼ wCðsÞ
s/CðsÞ ¼

N2
C iCðsÞ
tCðsÞ is given by

ZmagðsÞ ¼ N 2
C

ZelecðsÞ : ðB6Þ

As a result, if the path (P) is modeled by a magnetic capac-
ity CP, e.g. from the linearization of H

0
magð/Þ in (B1), the

equivalent electrical inductance is LC ¼ N 2
C CP. Notice the

interconnection (B5) is conservative: Pelec = Pmag with
Pelec = vCiC the power outgoing the electrical domain and
Pmag ¼ d/C

dt wC the power incoming the magnetic domain.

Appendix C: Storage functions

In this section, we precise the requirements on storage
functions and detail the saturating storage functions we
use in the loudspeakers models.

Requirements for storage functions
As stated in Section 2.2, the requirement for elementary

storage function (Hamiltonian) H : R 
 X ! Rþ are as
follows:
(1) It is positive semidefinite: H(x) � 0, 8x 2 X ;
(2) It is zero at origin: H(0) = 0;
(3) It is radially unbounded: limx!oXHðxÞ ¼ þ1 with

oX the boundary of domain X (could be {±1};
(4) Its second derivative is positive: d2H

dx2 ðxÞ > 0, 8x 2 X .

Requirements (1) and (2) ensure the associated energy
E ¼ H � x : R 3 t 7!HðxðtÞÞ ¼ EðtÞ is always positive or
null; requirement (3) ensures the origin x = 0 is an attractor
for the associated dynamical system from LaSalle invari-
ance theroem; finally, requirement (4) ensures the deriva-
tive is monotonically increasing so that it invertible on its
domain X . A simple procedure to build such storage
function is to integrate twice a non-vanishing, positive
definite function f : X ! Rþ, limx!oXf ðxÞ > 0, choosing
the two integration constants fCigi¼1;2 so that cðxÞ ¼R x
0 f ðnÞdnþ C1 and HðxÞ ¼ R x

0 cðnÞdnþ C2 are both null
at x = 0. Note that it is not required the storage function
to be symmetric with possibly HðxÞ 6¼ Hð�xÞ. Some exam-
ples are given below (see also Fig. C1).

Examples of storage functions

Quadratic: The simplest storage functions are the
quadratic functions H ðxÞ ¼ p x2

2 , with (linear) derivative
H0(x) = px.
Polynomial: It is possible to construct polynomial stor-
age function with only even order to ensure the require-
ments are satisfied, e.g. HðxÞ ¼ plin x2

2 1þ pnl x
2

2

� �
, with

derivative H
0 ðxÞ ¼ plinðx þ pnlx3Þ.

Non-symmetric
A non symmetric storage functions can be con-

structed from two exponential functions as follows:

HðxÞ ¼ plin
expðpþ xÞ

pþ
þ expðp� xÞ

p�
� p�þpþ

p� pþ

� �
with derivative

H
0 ðxÞ ¼ plin expðpþ xÞ þ expðp� xÞ� �

, where possibly
pþ 6¼ p�.

State saturating storage functions
In this work, the saturation effect of the suspension and

the ferromagnetic path are described by the same idealized
(symmetric) saturation curve c(x). It is built as the linear
combination of basis functions clin(x) (linear behavior
around the origin) and csat(x) (saturation effect):

cðxÞ ¼ P linðclinðxÞ þ P satcsat xÞð Þ; ðC1Þ
clinðxÞ ¼ x; ðC2Þ

csatðxÞ ¼ 4
4� p

tan
p � x
2 xsat

� �
� p � x
2xsat

� �
ðC3Þ

with , ocsat
ox ð0Þ ¼ 0 so that csat(x) does

not contribute around origin, and csat 1
2

� � ¼ 1.
The corresponding Hamiltonian is obtained from

HðxÞ ¼
Z x

0
cðnÞ dn ¼ P lin H linðxÞ þ P satH sat xð Þð Þ ðC4Þ

with

H linðxÞ ¼ x2

2 ;

H satðxÞ ¼ � 8xsat
pð4�pÞ ln cos p x

2 xsat

� �			 			þ 1
2

p x
2xsat

� �2� �
:

ðC5Þ

This nonlinear saturating storage function proves positive
definite providing the parameters (Plin, Psat) are positive,
so that it can be used in structure (3), still preserving
passivity.

Figure C1. Examples of storage functions detailed in Section 8
with their respective derivative. quad: quadratic storage func-
tion; poly: polynomial storage function; exp: Non-symmetric
exponential-based storage function; sat: saturating storage
function. The parameters are chosen arbitrarily.
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Appendix D: Physical and technological
parameters

Acronym d.u. stands for dimensionless unit

Cite this article as: A. Falaize & T. Hélie. 2020. Passive modelling of the electrodynamic loudspeaker: from the Thiele–Small model
to nonlinear port-Hamiltonian systems. Acta Acustica, 4, 1.

Table D2. Physical and technological parameters involved in
creep model in model 1 of Table 3. Typical values are chosen in
accordance with Table 3.1 from [17].

Label Description Value Unit

NC Wire turns 100 d.u.
AC Coil height 2 � 10�2 m
DC Coil diameter 2 � 10�2 m
sec Eddie-currents time 10�4 s
l0 Vacuum permeability 4p10�7 H m�1

nair Air susceptibility 3.6 � 10�7 d.u.
Q‘ Overhang in (24) 5 � 10�3 m
P ‘ Shape in (24) 5 d.u.
aleak Leakage area ratio 10�2 d.u.
LP Path inductance LC�Lleak H
SG Air gap flux area pDCAC m2

SP Pole piece flux area SG m2

Sleak Leakage area (12) m2

wM Magnet mmf (17) A
/ss Steady-state flux B

SP
Wb

Cleak Leakage capacity Sleak l0 ð1þnairÞ
2AC

H

Lleak Leakage inductance Sect. 4.1 H

Table D3. Physical and technological parameters involved in
the model 2 of Table 3. Typical values are chosen in accordance
with Table 3 from [16].

Label Description Value Unit

sve Creep time 1 s
PK Parameter in (8) 0.5 d.u.
qsat Saturation position 10�2 m

P S
sat Nonlinearity coefficient 10 d.u.

K0 Primary stiffness KSA
1�PK

N m�1

x1 Creep frequency 2p
sve

Hz

K1 Creep stiffness KSA
PK

N m�1

R1 Creep damping K1
x1

N s m�1

Table D1. Physical and technological parameters involved in
the model 0 of Table 1. Typical values are chosen in accordance
with data provided in Table 3.1 from [2] for the DALI 311541 6
1200 unit.

Label Description Value Unit

RC Coil wire resistance 10 X
LC Coil self inductance 3 � 10�4 H
‘C

0 Coil wire length 10 m
MCDA Total moving mass 10�2 Kg
KSA Total stiffness 2 � 103 N m�1

RSA Damping 1 N s m�1

B‘ Force factor 5 T m
B Magnetic induction B‘=‘C

0 T
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