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In the paper, the author investigates some properties, including analyticity, limits, monotonicity, complete monotonicity, and inequalities, of several functions involving the tri-, tetra-, and penta-gamma functions and originating from computation of the sectional curvature of the beta manifold.

Motivations and main results

Let M = {(x, y) : x, y > 0} denote the first quadrant on R 2 . Let ds 2 = ψ (x)dx 2 + ψ (y)dy 2 -ψ (x + y)(dx + dy) 2 be the Fisher metric and M be equipped with ds 2 , where

ψ(z) = [ln Γ (z)] = Γ (z) Γ (z) and Γ (z) = ∞ 0 t z-1 e -t dt
for (z) > 0. In the literature [1, Section 6.4], the function Γ (z) is known as the Euler gamma function, the functions ψ(z), ψ (z), ψ (z), ψ (z), and ψ (4) (z) are known as the di-, tri-, tetra-, penta-, and hexa-gamma functions respectively, and, as a whole, all the derivatives ψ (k) (z) for k ≥ 0 are known as the polygamma functions.

Proposition 3 in [8, Section 2.4] and Proposition 13 in [START_REF] Brigant | Fisher-Rao geometry of Dirichlet distributions[END_REF] read that the sectional curvature K(x, y) of the Fisher metric ds 2 on the beta manifold M, ds 2 is given by K(x, y) = 1 4

ψ (x)ψ (y)ψ (x + y) ψ (x) ψ (x) + ψ (y)

ψ (y) -ψ (x+y) ψ (x+y)
[ψ (x)ψ (x + y) + ψ (y)ψ (x + y) -ψ (x)ψ (y)] 2 .

(1.1) Proposition 4 in [8, Section 2.4] and Proposition 14 in [START_REF] Brigant | Fisher-Rao geometry of Dirichlet distributions[END_REF] state that the asymptotic behavior of the sectional curvature K(x, y) is given by lim .

y→0 + K(x, y) = lim y→0 + K(y, x) = 1 2 3 2 - ψ (x)ψ (x) [ψ (x)] 2 , (1.2) 
(1.5)

Recall from [12, Chapter XIII], [START_REF] Schilling | Bernstein Functions[END_REF]Chapter 1], and [26, Chapter IV] that, if a function h(t) on an interval I has derivatives of all orders on I and (-1) n h (n) (t) ≥ 0 for t ∈ I and n ∈ {0} ∪ N, then we call h(t) a completely monotonic function on I. Theorem 12b in [26, p. 161] states that a necessary and sufficient condition for h(t) to be completely monotonic on the infinite interval (0, ∞) is that

h(t) = ∞ 0 e -ts dσ(s), t ∈ (0, ∞), (1.6) 
where σ(s) is non-decreasing and the integral in (1.6) converges for t ∈ (0, ∞). The integral representation (1.6) means that a function h(t) is completely monotonic on the infinite interval (0, ∞) if and only if it is a Laplace transform of a nondecreasing measure σ(s) on the infinite interval (0, ∞).

In this paper, we will show analyticity of the sectional curvature K(x, y), recover the above limits in (1.2), (1.3), (1.4), and (1.5) by alternative approaches, present that the function

H(x) = 1 2 3 2 - ψ (x)ψ (x) [ψ (x)] 2 (1.7) in (1.
2) is decreasing from (0, ∞) onto -1 4 , 0 , reveal necessary and sufficient conditions on α for the function

Hα(x) = ψ (x) + xψ (x) + α xψ (x) -1 2 (1.8)
and its negativity to be completely monotonic on (0, ∞), and derive a sharp double inequality

-2 < ψ (x) + xψ (x) [xψ (x) -1] 2 < -1 (1.9)
in the sense that the constants -2 and -1 cannot be replaced by any bigger and smaller ones respectively.

Analyticity

In this section, we show analyticity of the sectional curvature K(x, y) on the first quadrant M .

Theorem 1 The sectional curvature K(x, y) is an analytic function of (x, y) on the first quadrant M .

Proof Since

ψ (n) (z) = (-1) n+1 ∞ 0 t n 1 -e -t e -zt dt (2.1)
for (z) > 0 and n ≥ 1, see [1, p. 260, 6.4.1], the trigamma function ψ (x) is positive, decreasing, and convex on (0, ∞), with the limits lim x→0 + ψ (x) = ∞ and limx→∞ ψ (x) = 0. Applying the double inequality [START_REF] Qi | On complete monotonicity for several classes of functions related to ratios of gamma functions[END_REF]Section 3.5], or [27, Eq. (1.4)], leads to

n -1 n < ψ (n) (x) 2 ψ (n-1) (x)ψ (n+1) (x) < n n + 1 for n ≥ 2, see [4, Corollary 2.3],
1 ψ (x) = 2[ψ (x)] 2 -ψ (x)ψ (x) [ψ (x)] 3 > 0.
A function ϕ(x) is said to be sub-additive on an interval I if ϕ(x + y) < ϕ(x) + ϕ(y) holds for all x, y ∈ I with x + y ∈ I. If ϕ(x + y) > ϕ(x) + ϕ(y), then the function ϕ(x) is called super-additive on the interval

I. A function ϕ : [0, ∞) →
R is said to be star-shaped if ϕ(νt) < νϕ(t) for ν ∈ [0, 1] and t ≥ 0. Between convex functions, star-shaped functions, and super-additive functions, there are the following relations:

1. if ϕ is convex on [0, ∞) with ϕ(0) ≤ 0, then ϕ is star-shaped; 2. if ϕ : [0, ∞) → R is star-shaped, then ϕ is super-additive.
For more information on additive and star-shaped functions, please refer to [11, Chapter 16], [13, Section 3.4], the papers [START_REF] Alzer | Sub-and super-additive properties of Fejér's sine polynomial[END_REF][START_REF] Alzer | A subadditive property of the gamma function[END_REF][START_REF] Chen | Some properties of functions related to the gamma and psi functions[END_REF][START_REF] Guo | The additivity of polygamma functions[END_REF][START_REF] Li | Some Hermite-Hadamard type inequalities for functions whose n-th derivatives are (α, m)-convex[END_REF][START_REF] Qi | Some properties of extended remainder of Binet's first formula for logarithm of gamma function[END_REF][START_REF] Qi | Complete monotonicity of some functions involving polygamma functions[END_REF], and closely related references therein. By these relations, we conclude that the reciprocal 1 ψ (x) is super-additive. Hence, the factor of the denominator in (1.1), which can be rearranged as

ψ (x)ψ (x + y) + ψ (y)ψ (x + y) -ψ (x)ψ (y) = ψ (x)ψ (y)ψ (x + y) 1 ψ (x) + 1 ψ (y) - 1 ψ (x + y) > 0, is positive on (0, ∞).
Since ψ (n) (z) for n ≥ 0 is a single valued analytic function over the entire complex plane save at the points z = -m where it possesses poles of order n + 1, see [1, p. 260, 6.4.1] or the paper [START_REF] Qi | Limit formulas for ratios between derivatives of the gamma and digamma functions at their singularities[END_REF], the denominator in (1.1) is positive and analytic on (0, ∞). The numerator in (1.1) is also analytic on (0, ∞). In conclusion, the sectional curvature K(x, y) is analytic on the first quadrant M . The proof of Theorem 1 is complete.

Recoveries of limits

In this section, we recover the limits in (1.2), (1.3), (1.4), and (1.5) by alternative approaches.

Theorem 2 The sectional curvature K(x, y) on the first quadrant M has the limits

lim x→∞ K(x, y) = ψ (y) + yψ (y) 4[1 -yψ (y)] 2 , (3.1) lim y→∞ K(x, y) = ψ (x) + xψ (x) 4[xψ (x) -1] 2 , (3.2) 
lim y→0 + lim x→∞ K(x, y) = - 1 4 , (3.3) 
lim y→∞ lim x→∞ K(x, y) = - 1 2 , (3.4) lim x→0 + lim y→∞ K(x, y) = - 1 4 , (3.5) lim x→∞ lim y→∞ K(x, y) = - 1 2 , (3.6) lim (x,y)→(∞,∞) K(x, y) = - 1 2 
.

(3.7)

Proof The expression (1.1) for the sectional curvature K(x, y) can be rewritten as

K(x, y) =    x 2 ψ (x) ψ (y) (x + y) 2 ψ (x + y) × ψ (x) ψ (x) -ψ (x+y) ψ (x+y) + x 2 ψ (x) ψ (y) (x + y) 2 ψ (x + y)    4 ψ (y)x(x + y)[ψ (x + y) -ψ (x)] +[xψ (x)][(x + y)ψ (x + y)] 2 .
(3.8)

Making use of the limit

lim x→∞ x k ψ (k) (x) = (-1) k-1 (k -1)!, k ≥ 1 (3.9)
in [6, p. 9896, Eq. ( 13)], [19, p. Direct differentiating and utilizing the limit (3.9) lead to

ψ (x) ψ (x) = 1 - xψ (x) x 3 ψ (x) [x 2 ψ (x)] 2 → 1 - 0!2! (1!) 2 = -1 as x → ∞.
Therefore, by virtue of Lagrange's mean value theorem, we have

lim x→∞ ψ (x) ψ (x) - ψ (x + y) ψ (x + y) = -y lim x→∞ ψ (t) ψ (t) t=ξ = y, (3.12) 
where ξ ∈ (x, x + y).

Employing Lagrange's mean value theorem, simple differentiating, and utilizing the limit (3.9) yield

x(x + y) ψ (x + y) -ψ (x) = x (x + y)ψ (x + y) -xψ (x) -y[xψ (x) = x ψ (ξ) + ξψ (ξ) -y[xψ (x) , ξ ∈ (x, x + y) = x ξ ξψ (ξ) + ξ 2 ψ (ξ) -y[xψ (x) , ξ ∈ (x, x + y) → -y, x, ξ → ∞.
(3.13)

Substituting the limits in (3.10), (3.11), (3.12), and (3.13) into (3.8) arrives at the limit (3.1).

For (z) > 0 and k ≥ 1, we have

ψ (k-1) (z + 1) = ψ (k-1) (z) + (-1) k-1 (k -1)! z k . (3.14)
See [1, p. 260, 6.4.6]. From this, it follows that 

lim x→0 + x k ψ (k-1) (x) = lim x→0 + x k ψ (k-1) (x + 1) -(-1) k-1 (k -1)! x k = (-1) k (k -1)! (3.
y→0 + lim x→∞ K(x, y) = lim y→0 + y 2 ψ (y) + y 3 ψ (y) 4[y -y 2 ψ (y)] 2 = 1! -2! 4(0 -1!) = - 1 4 
.

The limit (3.3) is thus proved.

In [1, p. 260, 6.4.11], it was given that, for | arg z| < π, as z → ∞,

ψ (n) (z) ∼ (-1) n-1 (n -1)! z n + n! 2z n+1 + ∞ k=1 B 2k (2k + n -1)! (2k)!z 2k+n , (3.16) 
see also [START_REF] Qi | Completely monotonic degrees for a difference between the logarithmic and psi functions[END_REF], where B 2k for n ≥ 0 are known as the Bernoulli numbers which can be generated [START_REF] Qi | A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers[END_REF] by

z e z -1 = 1 - z 2 + ∞ k=1 B 2k z 2k (2k)! , |z| < 2π.
Accordingly, we can derive

lim y→∞ y 2 ψ (y) + yψ (y) = lim y→∞ y 2 1 y + 1 2y 2 + ∞ k=1 B 2k (2k)! (2k)!y 2k+1 -y 1 y 2 + 1 y 3 + ∞ k=1 B 2k (2k + 1)! (2k)!y 2k+2 = lim y→∞ - 1 2 + ∞ k=1 B 2k (2k)! -(2k + 1)! (2k)!y 2k-1 = - 1 2 and lim y→∞ y[1 -yψ (y)] = lim y→∞ y 1 -y 1 y + 1 2y 2 + ∞ k=1 B 2k (2k)! (2k)!y 2k+1 = lim y→∞ - 1 2 - ∞ k=1 B 2k (2k)! (2k)!y 2k-1 = - 1 2 
.

Consequently, it follows that

lim y→∞ lim x→∞ K(x, y) = 1 4 lim y→∞ ψ (y) + yψ (y) [1 -yψ (y)] 2 = 1 4 lim y→∞ y 2 ψ (y) + yψ (y) y 2 [1 -yψ (y)] 2 = 1 4 limy→∞ y 2 ψ (y) + yψ (y) limy→∞(y[1 -yψ (y)]) 2 = 1 4 -1/2 (-1/2) 2 = - 1 2 
.

The limit (3.4) is thus proved. .

The limit in (3.7) is thus proved. The proof of Theorem 2 is complete.

Theorem 3 The sectional curvature K(x, y) on the first quadrant M has the limits 

lim x→0 + K(x, y) = 1 2 3 2 - ψ (y)ψ (y) [ψ (y)] 2 , ( 3.17) 
lim y→0 + K(x, y) = 1 2 3 2 - ψ (x)ψ (x) [ψ (x)] 2 , ( 3.18) 
lim y→∞ lim x→0 + K(x, y) = - 1 4 , (3.19) 
lim y→0 + lim x→0 + K(x, y) = 0, ( 3 
ψ (x+y) -ψ (y) ψ (y) x = lim x→0 + d dx ψ (x + y) ψ (x + y) = lim x→0 + ψ (x + y)ψ (x + y) -ψ (x + y) 2 [ψ (x + y)] 2 = ψ (y)ψ (y) -ψ (y) 2 [ψ (y)] 2 (3.26) 
and lim

x→0 + ψ (x + y) -ψ (y) x = lim x→0 + ψ (x + y) = ψ (y). (3.27) 
Using the expression in (1.1) and the limits (3.15), (3.26), and (3.27) yields

K(x, y) =   x 3 ψ (x) ψ (x + y)ψ (y) ψ (x+y) ψ (x+y) -ψ (y) ψ (y) 
x

+ x 2 ψ (x) ψ (y)ψ (x + y)   4 [x 2 ψ (x)] ψ (x+y)-ψ (y)
x

+ xψ (x + y)ψ (y) 2 → -2! ψ (y) 2 ψ (y)ψ (y)-[ψ (y)] 2 [ψ (y)] 2 + 1! ψ (y) 2 4[1!ψ (y) + 0] 2 = 3 ψ (y) 2 -2ψ (y)ψ (y) 4[ψ (y)] 2
as x → 0 + . The limit (3.17) is thus proved.

From the limits (3.9) and (3.17), it follows that

lim y→∞ lim x→0 + K(x, y) = 3 4 - 1 2 lim y→∞ yψ (y)y 3 ψ (y) [y 2 ψ (y)] 2 = 3 4 - 1 2 0!2! (1!) 2 = - 1 4 
.

The limit (3.19) is thus proved.

Utilizing the limit (3.15) gives

3 ψ (y) 2 -2ψ (y)ψ (y) [ψ (y)] 2 = 3 y 3 ψ (y) 2 -2 y 2 ψ (y) y 4 ψ (y) [y 3 ψ (y)] 2 3(-2!) 2 -2 × 1! × 3! (-2!) 2
= 0 as y → 0 + . This means that the limit (3.20) is valid.

Since K(x, y) = K(y, x), repeating the above proofs of the limits (3.17 As did in [8, Proposition 5] and its proof, basing on analyticity and limits recovered in the above two sections, we can deduce that the sectional curvature K(x, y) is negative and bounded on the first quadrant M .

Judging from the graph of K(x, y) in Figure 1 and basing on analyticity in Fig. 1 The lower bound of K(x, y) is conjectured to be -1 2

Theorem 1 and the limits in Theorems 2 and 3, the authors of the papers [START_REF] Brigant | The Fisher-Rao geometry of beta distributions applied to the study of canonical moments[END_REF][START_REF] Brigant | Fisher-Rao geometry of Dirichlet distributions[END_REF] conjectured that K(x, y) > -1 2 on M . Till 9 September 2020, this conjecture has not been verified and is still open.

Complete monotonicity and a double inequality

In the is section, we demonstrate decreasing monotonicity of the function H(x) in (1.7), find necessary and sufficient conditions for the function ±Hα(x) in (1.8) to be completely monotonic on (0, ∞), and derive the double inequality (1.9).

Theorem 4

The function H(x) in (1.7) is decreasing from (0, ∞) onto -1 4 , 0 .

The function Hα(x) in (1.8) is completely monotonic on (0, ∞) if and only if α ≥ 2, while the function -Hα(x) is completely monotonic on (0, ∞) if and only if α ≤ 1.

The double inequality (1.9) is valid and sharp in the sense that the constants -2

and -1 cannot be replaced by any bigger and smaller ones respectively.

Proof The decreasing monotonicity of the function H(x) in (1.7) follows from the fact that the ratio

[ψ (x)] 2 ψ (x)ψ (x) is decreasing from (0, ∞) onto 1 2 , 2
3 . This fact is a special case of [START_REF] Yang | Some properties of the divided difference of psi and polygamma functions[END_REF]Theorem 2] which states that the function

[ψ (n+1) (x)] 2 ψ (n) (x)ψ (n+2) (x) for n ≥ 1 is decreasing from (0, ∞) onto n n+1 , n+1 n+2 .
Making use of the integral representation (2.1) and integrating by parts yield

xψ (x) = x ∞ 0 t 1 -e -t e -xt dt = - ∞ 0 t 1 -e -t de -xt dt dt = - te -xt 1 -e -t t→∞ t→0 + - ∞ 0 t 1 -e -t e -xt dt = ∞ 0 e t (e t -1 -t) (e t -1) 2 e -xt dt + 1 > 1,
(5.1)

x xψ (x) -1 = x ∞ 0 e t (e t -1 -t) (e t -1) 2 e -xt dt = - ∞ 0 e t (e t -1 -t) (e t -1) 2 de -xt dt dt = - e t (e t -1 -t)e -xt (e t -1) 2 t→∞ t→0 + - ∞ 0 e t (e t -1 -t) (e t -1) 2 e -xt dt = 1 2 + ∞ 0 e t [e t (t -2) + t + 2] (e t -1) 3 e -xt dt → 1 2 , x → ∞, (5.2) 
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xψ (x) = -x ∞ 0 t 2 1 -e -t e -xt dt = ∞ 0 t 2 1 -e -t de -xt dt dt = t 2 e -xt 1 -e -t t→∞ t→0 + - ∞ 0 t 2 1 -e -t e -xt dt = - ∞ 0 e t (2e t -t -2)t (e t -1
) 2 e -xt dt.

(5.3) Therefore, applying (2.1) for n = 1 and (5.3) gives

ψ (x) + xψ (x) = - ∞ 0 t(e t -1 -t)e t (e t -1) 2 e -xt dt < 0, x ∈ (0, ∞).
(5.4)

If the function Hα(x) is completely monotonic on (0, ∞), then its first derivative

H α (x) = 2α xψ (x) -1 ψ (x) + xψ (x) + 2ψ (x) + xψ (x) ≤ 0 which is equivalent to α ≥ - 2ψ (x) + xψ (x) 2[xψ (x) -1][ψ (x) + xψ (x)] = - 1 2 x 3 2ψ (x) + xψ (x) (x[xψ (x) -1])(x 2 [ψ (x) + xψ (x)]) → - 1 2 limx→∞ x 3 2ψ (x) + xψ (x) limx→∞(x[xψ (x) -1]) limx→∞(x 2 [ψ (x) + xψ (x)]) , x → ∞ = - 1 2 1 1 2 × (-1 2 ) = 2,
where we used (5.1), (5.2), (5.4), and the asymptotic expansion (3.16). Similarly, if the function -Hα(x) is completely monotonic on (0, ∞), then

α ≤ - 2ψ (x) + xψ (x) 2[xψ (x) -1][ψ (x) + xψ (x)] = - 1 2 x 3 2ψ (x) + xψ (x) (x[xψ (x) -1])(x 2 [ψ (x) + xψ (x)]) → - 1 2 lim x→0 + x 3 2ψ (x) + xψ (x) lim x→0 + (x[xψ (x) -1]) lim x→0 + (x 2 [ψ (x) + xψ (x)]) , x → 0 + = - 1 2 2 1 × (-1) = 1,
where we used (5.1), (5.4), and the limit (3.15). In a word, the necessary condition for Hα(x) to be completely monotonic on (0, ∞) is α ≥ 2, while the necessary condition for -Hα(x) to be completely monotonic on (0, ∞) is α ≤ 1.

Using the recurrent formula (3.14) and straightforward computing result in

H 2 (x) -H 2 (x + 1) = 4 1 x 2 + 2 x + 2 ψ (x) - 4x 3 + 7x 2 + 6x + 2 x 4 -ψ (x) -2(2x + 1)[ψ (x)] 2 . Let H 1 (x) = H 2 (x) -H 2 (x + 1). Then H 1 (x) -H 1 (x + 1) = 4[ψ (x)] 2 + 4x 6 + 20x 5 + 41x 4 + 48x 3 + 37x 2 + 16x + 4 -4(x + 1) 2 2x 3 + 5x 2 + 4x + 2 x 2 ψ (x) x 4 (x + 1) 4 . Let H 2 (x) = H 1 (x) -H 1 (x + 1). Then H 2 (x) -H 2 (x + 1) = 4 ψ (x) -2x 4 +13x 3 +29x 2 +27x+8 2x(x+1) 2 (x+2) 2 (x + 1) 2 (x + 2) 2 . Let H 3 (x) = (x+1) 2 (x+2) 2 4 [H 2 (x) -H 2 (x + 1)].
Then, by virtue of (2.1) for n = 1 and

1 x r = 1 Γ (r) ∞ 0 t r-1 e -xt dt (5.5) in [1, p. 255, 6.1.1] 
, we obtain

H 3 (x) = ψ (x) - 1 x - 1 2(x + 1) + 1 2(x + 1) 2 + 1 2(x + 2) + 1 2(x + 2) 2 = ∞ 0 t 1 -e -t -1 - e -t 2 + te -t 2 + e -2t 2 + te -2t 2 e -xt dt = 1 2 ∞ 0 2(t -1)e 3t -(t -3)e 2t -2e t + t + 1 e t -1 e -(x+2)t dt = 1 2 ∞ 0 ∞ k=3 2 3 × 2 k-2 -1 + (k -3) 2 × 3 k-1 -2 k-1 k! t k e -(x+2)t e t -1 dt.
Consequently, the function H 3 (x), and then the difference H 2 (x) -H 2 (x + 1), is a completely monotonic function on (0, ∞). Hence, we have

(-1) n [H 2 (x) -H 2 (x + 1)] (n) = (-1) n [H 2 (x)] (n) -(-1) n [H 2 (x + 1)] (n) ≥ 0
for n ≥ 0. By induction, it follows that

(-1) n [H 2 (x)] (n) ≥ (-1) n [H 2 (x + 1)] (n) ≥ (-1) n [H 2 (x + 2)] (n) ≥ • • • Feng Qi ≥ (-1) n [H 2 (x + m)] (n) ≥ • • • ≥ lim m→∞ (-1) n [H 2 (x + m)] (n) .
It is not difficult to see that

[H 2 (x)] (n) = 4 [ψ (x)] 2 (n) - 4 2x 3 + 5x 2 + 4x + 2 x 2 (x + 1) 2 ψ (x) (n) + 4x 6 + 20x 5 + 41x 4 + 48x 3 + 37x 2 + 16x + 4 x 4 (x + 1) 4 (n) → 0
as x → ∞ for all n ≥ 0. Accordingly, we obtain (-1) n [H 2 (x)] (n) ≥ 0 on (0, ∞) for all n ≥ 0, that is, the function H 2 (x) is completely monotonic on (0, ∞). Hence, we have

(-1) n [H 1 (x) -H 1 (x + 1)] (n) = (-1) n [H 1 (x)] -(-1) n [H 1 (x + 1)] (n) ≥ 0
for n ≥ 0. By induction, it follows that

(-1) n [H 1 (x)] (n) ≥ (-1) n [H 1 (x + 1)] (n) ≥ (-1) n [H 1 (x + 2)] (n) ≥ • • • ≥ (-1) n [H 1 (x + m)] (n) ≥ • • • ≥ lim m→∞ (-1) n [H 1 (x + m)] (n) .
It is not difficult to see that

[H 1 (x)] (n) = 4 1 x 2 + 2 x + 2 ψ (x) (n) 
-

4x 3 + 7x 2 + 6x + 2 x 4 (n) -ψ (x) (n) -    2(2x + 1)[ψ (x)] 2 → 0, n = 0 2(2x + 1) [ψ (x)] 2 (n) + 4n [ψ (x)] 2 (n-1) → 0, n ≥ 1 as x → ∞.
This means that (-1) n [H 1 (x)] (n) ≥ 0 on (0, ∞) for all n ≥ 0. In other words,

(-1) n [H 2 (x) -H 2 (x + 1)] (n) = (-1) n [H 2 (x)] (n) -(-1) n [H 2 (x + 1)] (n) ≥ 0 which inductively reduces to (-1) n [H 2 (x)] (n) ≥ (-1) n [H 2 (x + 1)] (n) ≥ (-1) n [H 2 (x + 2)] (n) ≥ • • • ≥ (-1) n [H 2 (x + m)] (n) ≥ • • • ≥ lim m→∞ (-1) n [H 2 (x + m)] (n)
for all n ≥ 0. From the integral representation (2.1) and the formulas (5.1) and ( 5.3), it is immediate that When α > 2, since

[H 2 (x)] (n) = ψ (n+1) (x) -(-1) n ∞ 0 e t (2e
Hα(x) = H 2 (x) + (α -2) xψ (x) -1 2 
and, by virtue of (5.1),

xψ (x) -1 = ∞ 0 e t (e t -1 -t) (e t -1) 2 e -xt dt
is completely monotonic on (0, ∞), from the fact that the product of any finitely many completely monotonic functions is still completely monotonic, it follows that, when α > 2, the function Hα(x) is completely monotonic on (0, ∞). As a result, the condition α ≥ 2 is sufficient for the function Hα(x) to be completely monotonic on (0, ∞).

The complete monotonicity of H 2 (x) implies H 2 (x) > 0, which is equivalent to the left hand side of the double inequality (1.9), on (0, ∞).

Employing the recurrent formula (3.14) and direct computing arrive at > 0 for k ≥ 2. Therefore, the function G 3 (x) is completely monotonic on (0, ∞). Hence, the difference G 2 (x) -G 2 (x + 1) is completely monotonic on (0, ∞). As discussed on the functions H 2 (x), H 1 (x), and H 2 (x) above, we can turn out that the functions G 2 (x), G 1 (x), and -H 1 (x) are all completely monotonic on (0, ∞). Furthermore, as discussed on Hα for α > 2 above, we can prove that the function Hα is completely monotonic on (0, ∞) for all α < 1. Consequently, the condition α ≤ 1 is sufficient for the function -Hα to be completely monotonic on (0, ∞).

H 1 (x + 1) -H 1 (x) = 1 x 4 + 4 x 3 + 4 x 2 + 2 x -2 1 x 2 + 2 x + 2 ψ (x) + (2x + 1) ψ (x) 2 + ψ (x). Let G 1 (x) = H 1 (x + 1) -H 1 (x). Then G 1 (x) -G 1 (x + 1) = 2 2x 3 + 5x 2 + 4x + 2 x 2 (x + 1) 2 ψ (x) -2 ψ (x)
The complete monotonicity of -H 1 (x) implies H 1 (x) < 0, which is equivalent to the right hand side of the double inequality (1.9), on (0, ∞).

The sharpness of the double inequality (1.9) on (0, ∞) is concluded from the limits (3.5) and (3.6). The proof of Theorem 4 is complete.

Remark 1 This paper is a revised version of the electronic preprint [START_REF] Qi | Some properties of several functions involving polygamma functions and originating from the sectional curvature of the beta manifold[END_REF].

  y)→(0 + ,∞) K(x, y) = lim (x,y)→(∞,0 + ) K(x, y) = -1 4

  1689, Eq. (3.3)], [20, p. 286, Eq. (2.6)], and [21, p. 81, Eq. (41)], we can obtain lim x→∞ x 2 ψ (x) = lim x→∞ (x + y) 2 ψ (x + y) y)ψ (x + y) = 1. (3.11)

  Since K(x, y) = K(y, x), repeating the above arguments acquires the limits (3.2), (3.5), and (3.6).Since the sectional curvature K(x, y) is analytic on the first quadrant M , see Theorem 1 in this paper, we have lim (x,y)→(∞,∞)

Proof

  By virtue of the L'Hospital rule, we have lim x→0 + ψ (x+y)

  ),(3.19), and(3.20), we can obtain the limits (3.18),(3.21), and(3.22) immediately.Combining analyticity of the sectional curvature K(x, y) on M , see Theorem 1 in this paper, with the limits (3.20) and (3.22) leads to the limit(3.23).Combining analyticity of the sectional curvature K(x, y) on the first quadrant M with the limits (3.3), (3.5),(3.19), and (3.21) arrives at the limits(3.24) and(3.25). The proof of Theorem 3 is complete. 4 Boundness of the sectional curvature

Let G 3 2 [G 2

 322 (x) = (x+1) 2 (x+2) 2 (x) -G 2 (x + 1)].Then, by virtue of (2.1) for n = 1 and the formula (5.5), we acquire

  → ∞ for all n ≥ 0. This means that (-1) n [H 2 (x)] (n) ≥ 0 on (0, ∞) for all n ≥ 0. In other words, the function H 2 (x) is completely monotonic on (0, ∞).

								(e t -1) 2	t n+1	e -xt dt
	+ 2(-1) n	n k=0	n k	0	∞	e t (e t -1 -t)t k (e t -1) 2	e -xt dt
	×	0	∞	e t (e t -1 -t)t n-k (e t -1) 2	e -xt dt
	→ 0						
	as x						

t -t -2)

2 -

 2 2x 6 + 10x 5 + 19x 4 + 22x 3 + 18x 2 + 8x + 2 x 4 (x + 1) 4 . Let G 2 (x) = G 1 (x) -G 1 (x + 1). Then G 2 (x) -G 2 (x + 1) = 2 (x + 1) 2 (x + 2) 2

							Feng Qi
				4 x	+	1 x 2 -	1 x + 1	+	1 2(x + 1) 2
	+	1 x + 2	+	1 2(x + 2) 2 -ψ (x) .
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