
HAL Id: hal-02496404
https://hal.science/hal-02496404v1

Preprint submitted on 3 Mar 2020 (v1), last revised 23 Nov 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SOME PROPERTIES OF SEVERAL FUNCTIONS
INVOLVING POLYGAMMA FUNCTIONS AND

ORIGINATING FROM THE SECTIONAL
CURVATURE OF THE BETA MANIFOLD

Feng Qi

To cite this version:
Feng Qi. SOME PROPERTIES OF SEVERAL FUNCTIONS INVOLVING POLYGAMMA FUNC-
TIONS AND ORIGINATING FROM THE SECTIONAL CURVATURE OF THE BETA MANI-
FOLD. 2020. �hal-02496404v1�

https://hal.science/hal-02496404v1
https://hal.archives-ouvertes.fr


SOME PROPERTIES OF SEVERAL FUNCTIONS INVOLVING

POLYGAMMA FUNCTIONS AND ORIGINATING FROM THE

SECTIONAL CURVATURE OF THE BETA MANIFOLD

FENG QI

Dedicated to people facing and fighting COVID-19

Abstract. In the paper, the author investigates some properties, including
analyticity, limits, monotonicity, complete monotonicity, and inequalities, of

several functions involving the tri-, tetra-, and penta-gamma functions and

originating from computation of the sectional curvature of the beta manifold.
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1. Motivations and main results

Let M = {(x, y) : x, y > 0} denote the first quadrant on R2. Let

ds2 = ψ′(x)dx2 + ψ′(y)dy2 − ψ′(x+ y)(dx+ dy)2

be the Fisher metric equipped with M , where

ψ(x) = [ln Γ(x)]′ =
Γ′(x)

Γ(x)

and

Γ(z) =

∫ ∞
0

tz−1e−tdt, <(z) > 0.

In the literature [1, Section 6.4], the function Γ(z) is known as the Euler gamma
function, the functions ψ(z), ψ′(z), ψ′′(z), ψ(3)(z), and ψ(4)(z) are known as the
di-, tri-, tetra-, penta-, and hexa-gamma functions respectively, and, as a whole, all
the derivatives ψ(k)(z) for k ≥ 0 are known as the polygamma functions.

2010 Mathematics Subject Classification. Primary 33B15; Secondary 26A48, 26A51, 44A10.
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2 F. QI

Proposition 3 in [9, Section 2.4] reads that the sectional curvature K(x, y) of the
Fisher metric ds2 on the beta manifold

(
M, ds2

)
is given by

K(x, y) =
ψ′′(x)ψ′′(y)ψ′′(x+ y)

[
ψ′(x)
ψ′′(x) + ψ′(y)

ψ′′(y) −
ψ′(x+y)
ψ′′(x+y)

]
4[ψ′(x)ψ′(x+ y) + ψ′(y)ψ′(x+ y)− ψ′(x)ψ′(y)]2

. (1.1)

Proposition 4 in [9, Section 2.4] states that the asymptotic behavior of the sectional
curvature K(x, y) is given by

lim
y→0+

K(x, y) = lim
y→0+

K(y, x) =
1

2

(
3

2
− ψ′(x)ψ(3)(x)

[ψ′′(x)]2

)
, (1.2)

lim
y→∞

K(x, y) = lim
y→∞

K(y, x) =
xψ′′(x) + ψ′(x)

4[1− xψ′(x)]2
, (1.3)

lim
(x,y)→(0+,0+)

K(x, y) = 0, lim
(x,y)→(∞,∞)

K(x, y) = −1

2
, (1.4)

lim
(x,y)→(0+,∞)

K(x, y) = lim
(x,y)→(∞,0+)

K(x, y) = −1

4
. (1.5)

Recall from [13, Chapter XIII], [30, Chapter 1], and [31, Chapter IV] that, if a
function h(t) on an interval I has derivatives of all orders on I and (−1)nh(n)(t) ≥ 0
for t ∈ I and n ∈ {0} ∪ N, then we call h(t) a completely monotonic function on
I. Theorem 12b in [31, p. 161] states that a necessary and sufficient condition for
h(t) to be completely monotonic on the infinite interval (0,∞) is that

h(t) =

∫ ∞
0

e−tsdσ(s), t ∈ (0,∞), (1.6)

where σ(s) is non-decreasing and the above integral converges for t ∈ (0,∞). The
integral representation (1.6) means that a function h(t) is completely monotonic on
the infinite interval (0,∞) if and only if it is a Laplace transform of a non-decreasing
measure σ(s) on the infinite interval (0,∞).

In this paper, we will show analyticity of the sectional curvature K(x, y), recover
the above limits in (1.2), (1.3), (1.4), and (1.5) by alternative approaches, present
that the function

1

2

(
3

2
− ψ′(x)ψ(3)(x)

[ψ′′(x)]2

)
(1.7)

in (1.2) is decreasing from (0,∞) onto
(
− 1

4 , 0
)
, reveal that the function

H(x) = ψ′(x) + xψ′′(x) + 2
[
1− xψ′(x)

]2
(1.8)

is completely monotonic on (0,∞), and derive a sharp double inequality

− 1

2
<
xψ′′(x) + ψ′(x)

4[1− xψ′(x)]2
< 0 (1.9)

in the sense that the constant − 1
2 and 0 can not be replaced by bigger and smaller

ones respectively.

2. Analyticity

In this section, we show analyticity of the sectional curvature K(x, y) on the first
quadrant M .
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Theorem 2.1. The sectional curvature K(x, y) is an analytic function of (x, y) on
the first quadrant M .

Proof. Since

ψ(n)(z) = (−1)n+1

∫ ∞
0

tn

1− e−t
e−ztdt (2.1)

for <(z) > 0 and n ≥ 1, see [1, p. 260, 6.4.1], the trigamma function ψ′(x) is
positive, decreasing, and convex on (0,∞), with the limits limx→0+ ψ

′(x) =∞ and
limx→∞ ψ′(x) = 0. Applying the double inequality

n− 1

n
<

[
ψ(n)(x)

]2
ψ(n−1)(x)ψ(n+1)(x)

<
n

n+ 1

for n ≥ 2, see [4, Corollary 2.3], [18, Section 3.5], or [32, Eq. (1.4)], leads to[
1

ψ′(x)

]′′
=

2[ψ′′(x)]2 − ψ′(x)ψ(3)(x)

[ψ′(x)]3
> 0.

A function ϕ(x) is said to be sub-additive on an interval I if ϕ(x+ y) ≤ ϕ(x) +
ϕ(y) holds for all x, y ∈ I with x + y ∈ I. If ϕ(x + y) ≥ ϕ(x) + ϕ(y), then the
function ϕ(x) is called super-additive on the interval I. A function ϕ : [0,∞)→ R
is said to be star-shaped if ϕ(νt) ≤ νϕ(t) for ν ∈ [0, 1] and t ≥ 0. Between
convex functions, star-shaped functions, and super-additive functions, there are
the following relations:

(1) if ϕ is convex on [0,∞) with ϕ(0) ≤ 0, then ϕ is star-shaped;
(2) if ϕ : [0,∞)→ R is star-shaped, then ϕ is super-additive.

For more information on additive and star-shaped functions, please refer to [12,
Chapter 16], [14, Section 3.4], the papers [2, 3, 5, 7, 8, 10, 11, 16, 21, 23, 24, 25,
26, 28, 29], and closely related references therein. By these relations, we conclude
that the reciprocal 1

ψ′(x) is supper-additive. Hence, the factor of the denominator

in (1.1), which can be rearranged as

ψ′(x)ψ′(x+ y) + ψ′(y)ψ′(x+ y)− ψ′(x)ψ′(y)

= ψ′(x)ψ′(y)ψ′(x+ y)

[
1

ψ′(x)
+

1

ψ′(y)
− 1

ψ′(x+ y)

]
> 0,

is positive on (0,∞).
Since ψ(n)(z) for n ≥ 0 is a single valued analytic function over the entire complex

plane save at the points z = −m where it possesses poles of order n+1, see [1, p. 260,
6.4.1] or the paper [17], the denominator in (1.1) is positive and analytic on (0,∞).
The numerator in (1.1) is also analytic on (0,∞). In conclusion, the sectional
curvature K(x, y) is analytic on the first quadrant M . The proof of Theorem 2.1
is complete. �

3. Recoveries of limits

In this section, we recover the limits in (1.2), (1.3), (1.4), and (1.5) by alternative
approaches.

Theorem 3.1. The sectional curvature K(x, y) on the first quadrant M has the
limits

lim
x→∞

K(x, y) =
ψ′(y) + yψ′′(y)

4[1− yψ′(y)]2
, (3.1)
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lim
y→∞

K(x, y) =
ψ′(x) + xψ′′(x)

4[1− xψ′(x)]2
, (3.2)

lim
y→0+

lim
x→∞

K(x, y) = −1

4
, (3.3)

lim
x→0+

lim
y→∞

K(x, y) = −1

4
, (3.4)

lim
x→∞

lim
y→∞

K(x, y) = −1

2
, (3.5)

lim
y→∞

lim
x→∞

K(x, y) = −1

2
, (3.6)

lim
(x,y)→(∞,∞)

K(x, y) = −1

2
. (3.7)

Proof. The expression (1.1) for the sectional curvature K(x, y) can be rewritten as

K(x, y) =


[
x2ψ′′(x)

]
ψ′′(y)

[
(x+ y)2ψ′′(x+ y)

]
×
[
ψ′(x)

ψ′′(x)
− ψ′(x+ y)

ψ′′(x+ y)

]
+
[
x2ψ′′(x)

]
ψ′(y)

[
(x+ y)2ψ′′(x+ y)

]


4

(
ψ′(y)x(x+ y)[ψ′(x+ y)− ψ′(x)]

+[xψ′(x)][(x+ y)ψ′(x+ y)]

)2 . (3.8)

Making use of the limit

lim
x→∞

[
xkψ(k)(x)

]
= (−1)k−1(k − 1)!, k ≥ 1 (3.9)

in [6, p. 9896, Eq. (13)], [19, p. 1689, Eq. (3.3)], [20, p. 286, Eq. (2.6)], and [22,
p. 81, Eq. (41)], we can obtain

lim
x→∞

[
x2ψ′′(x)

]
= lim
x→∞

[
(x+ y)2ψ′′(x+ y)

]
= −1 (3.10)

and
lim
x→∞

[
xψ′(x)

]
= lim
x→∞

[
(x+ y)ψ′(x+ y)

]
= 1. (3.11)

Direct differentiating and utilizing the limit (3.9) lead to[
ψ′(x)

ψ′′(x)

]′
= 1−

[
xψ′(x)

][
x3ψ(3)(x)

]
[x2ψ′′(x)]2

→ 1− 0!2!

(1!)2
= −1

as x→∞. Therefore, by virtue of Lagrange’s mean value theorem, we have

lim
x→∞

[
ψ′(x)

ψ′′(x)
− ψ′(x+ y)

ψ′′(x+ y)

]
= −y lim

x→∞

[
ψ′(t)

ψ′′(t)

]′
t=ξ

= y, (3.12)

where ξ ∈ (x, x+ y).
Employing Lagrange’s mean value theorem, simple differentiating, and utilizing

the limit (3.9) yield

x(x+ y)
[
ψ′(x+ y)− ψ′(x)

]
= x

[
(x+ y)ψ′(x+ y)− xψ′(x)

]
− y[xψ′(x)

]
= x

[
ψ′(ξ) + ξψ′′(ξ)

]
− y[xψ′(x)

]
, ξ ∈ (x, x+ y)

=
x

ξ

[
ξψ′(ξ) + ξ2ψ′′(ξ)

]
− y[xψ′(x)

]
, ξ ∈ (x, x+ y)

→ −y, x, ξ →∞.

(3.13)
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Substituting the limits in (3.10), (3.11), (3.12), and (3.13) into (3.8) arrives at
the limit (3.1).

For <(z) > 0 and k ≥ 1, we have

ψ(k−1)(z + 1) = ψ(k−1)(z) + (−1)k−1
(k − 1)!

zk
. (3.14)

See [1, p. 260, 6.4.6]. From this, it follows that

lim
x→0+

[
xkψ(k−1)(x)

]
= lim
x→0+

{
xk
[
ψ(k−1)(x+ 1)− (−1)k−1

(k − 1)!

xk

]}
= (−1)k(k − 1)!

(3.15)

for k ≥ 1. From the limits (3.1) and (3.15), it follows that

lim
y→0+

lim
x→∞

K(x, y) = lim
y→0+

y2ψ′(y) + y3ψ′′(y)

4[y − y2ψ′(y)]2
=

1!− 2!

4(0− 1!)
= −1

4
.

The limit (3.3) is thus proved.
In [1, p. 260, 6.4.11], it was given that, for | arg z| < π, as z →∞,

ψ(n)(z) ∼ (−1)n−1
[

(n− 1)!

zn
+

n!

2zn+1
+

∞∑
k=1

B2k
(2k + n− 1)!

(2k)!z2k+n

]
,

see also [27], where B2k for n ≥ 0 are known as the Bernoulli numbers which can
be generated [15] by

z

ez − 1
= 1− z

2
+

∞∑
k=1

B2k
z2k

(2k)!
, |z| < 2π.

Accordingly, we can derive

lim
y→∞

(
y2
[
ψ′(y) + yψ′′(y)

])
= lim
y→∞

{
y2

[
1

y
+

1

2y2
+

∞∑
k=1

B2k
(2k)!

(2k)!y2k+1

−y

(
1

y2
+

1

y3
+

∞∑
k=1

B2k
(2k + 1)!

(2k)!y2k+2

)]}

= lim
y→∞

[
−1

2
+
∞∑
k=1

B2k
(2k)!− (2k + 1)!

(2k)!y2k−1

]
= −1

2

and

lim
y→∞

(
y[1− yψ′(y)]

)
= lim
y→∞

{
y

[
1− y

(
1

y
+

1

2y2
+

∞∑
k=1

B2k
(2k)!

(2k)!y2k+1

)]}

= lim
y→∞

[
−1

2
−
∞∑
k=1

B2k
(2k)!

(2k)!y2k−1

]
= −1

2
.

Consequently, it follows that

lim
y→∞

lim
x→∞

K(x, y) =
1

4
lim
y→∞

ψ′(y) + yψ′′(y)

[1− yψ′(y)]2
=

1

4
lim
y→∞

y2
[
ψ′(y) + yψ′′(y)

]
y2[1− yψ′(y)]2

=
1

4

limy→∞
(
y2
[
ψ′(y) + yψ′′(y)

])
limy→∞(y[1− yψ′(y)])2

=
1

4

−1/2

(−1/2)2
= −1

2
.

The limit (3.6) is thus proved.
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Since K(x, y) = K(y, x), repeating the above arguments acquires the limits (3.2),
(3.4), and (3.5).

Since the sectional curvature K(x, y) is analytic on the first quadrant M , see
Theorem 2.1 in this paper, we have

lim
(x,y)→(∞,∞)

K(x, y) = lim
x→∞

lim
y→∞

K(x, y) = lim
y→∞

lim
x→∞

K(x, y) = −1

2
.

The limit in (3.7) is thus proved. The proof of Theorem 3.1 is complete. �

Theorem 3.2. The sectional curvature K(x, y) on the first quadrant M has the
limits

lim
x→0+

K(x, y) =
1

2

(
3

2
− ψ′(y)ψ(3)(y)

[ψ′′(y)]2

)
, (3.16)

lim
y→0+

K(x, y) =
1

2

(
3

2
− ψ′(x)ψ(3)(x)

[ψ′′(x)]2

)
, (3.17)

lim
y→∞

lim
x→0+

K(x, y) = −1

4
, (3.18)

lim
x→∞

lim
y→0+

K(x, y) = −1

4
, (3.19)

lim
y→0+

lim
x→0+

K(x, y) = 0, (3.20)

lim
x→0+

lim
y→0+

K(x, y) = 0, (3.21)

lim
(x,y)→(0+,0+)

K(x, y) = 0, (3.22)

lim
(x,y)→(0+,∞)

K(x, y) = −1

4
, (3.23)

lim
(x,y)→(∞,0+)

K(x, y) = −1

4
. (3.24)

Proof. By virtue of the L’Hôspital rule, we have

lim
x→0+

ψ′′(x+y)
ψ′(x+y) −

ψ′′(y)
ψ′(y)

x
= lim
x→0+

d

dx

[
ψ′′(x+ y)

ψ′(x+ y)

]
= lim
x→0+

ψ′(x+ y)ψ(3)(x+ y)−
[
ψ′′(x+ y)

]2
[ψ′(x+ y)]2

=
ψ′(y)ψ(3)(y)−

[
ψ′′(y)

]2
[ψ′(y)]2

(3.25)

and

lim
x→0+

ψ′(x+ y)− ψ′(y)

x
= lim

0→0+
ψ′′(x+ y) = ψ′′(y). (3.26)

Using the expression in (1.1) and the limits (3.15), (3.25), and (3.26) yields

K(x, y) =

[x3ψ′′(x)
]
ψ′(x+ y)ψ′(y)

ψ′′(x+y)
ψ′(x+y) −

ψ′′(y)
ψ′(y)

x

+
[
x2ψ′(x)

]
ψ′′(y)ψ′′(x+ y)


4
(
[x2ψ′(x)]ψ

′(x+y)−ψ′(y)
x + xψ′(x+ y)ψ′(y)

)2
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→
−2!
[
ψ′(y)

]2 ψ′(y)ψ(3)(y)−[ψ′′(y)]2

[ψ′(y)]2 + 1!
[
ψ′′(y)

]2
4[1!ψ′′(y) + 0]2

=
3
[
ψ′′(y)

]2 − 2ψ′(y)ψ(3)(y)

4[ψ′′(y)]2

as x→ 0+. The limit (3.16) is thus proved.
From the limits (3.9) and (3.16), it follows that

lim
y→∞

lim
x→0+

K(x, y) =
3

4
− 1

2
lim
y→∞

yψ′(y)y3ψ(3)(y)

[y2ψ′′(y)]2
=

3

4
− 1

2

0!2!

(1!)2
= −1

4
.

The limit (3.18) is thus proved.
Utilizing the limit (3.15) gives

3
[
ψ′′(y)

]2 − 2ψ′(y)ψ(3)(y)

[ψ′′(y)]2
=

3
[
y3ψ′′(y)

]2 − 2
[
y2ψ′(y)

][
y4ψ(3)(y)

]
[y3ψ′′(y)]2

→ 3(−2!)2 − 2× 1!× 3!

(−2!)2
= 0

as y → 0+. This means that the limit (3.20) is valid.
Since K(x, y) = K(y, x), repeating the above proofs of the limits (3.16), (3.18),

and (3.20), we can obtain the limits (3.17), (3.19), and (3.21) immediately.
Combining analyticity of the sectional curvature K(x, y) on M , see Theorem 2.1

in this paper, with the limits (3.20) and (3.21) leads to the limit (3.22).
Combining analyticity of the sectional curvature K(x, y) on the first quadrant M

with the limits (3.3), (3.4), (3.18), and (3.19) arrives at the limits (3.23) and (3.24).
The proof of Theorem 3.2 is complete. �

4. Complete monotonicity and a double inequality

In the is section, we demonstrate decreasing monotonicity of the function in (1.7),
complete monotonicity of the function in (1.8), and the double inequality (1.9).

Theorem 4.1. The function defined in (1.7) is decreasing from (0,∞) onto
(
− 1

4 , 0
)
.

The function defined in (1.8) is completely monotonic on (0,∞). The double in-
equality (1.9) is valid and sharp in the sense that the constant − 1

2 and 0 can not
be replaced by bigger and smaller ones respectively.

Proof. The decreasing monotonicity of the function in (1.7) follows from the fact

that the ratio [ψ′′(x)]2

ψ′(x)ψ(3)(x)
is deceasing from (0,∞) onto

(
1
2 ,

2
3

)
. This fact is a special

case of [32, Theorem 2] which states that the function [ψ(n+1)(x)]2

ψ(n)(x)ψ(n+2)(x)
for n ≥ 1 is

decreasing from (0,∞) onto
(

n
n+1 ,

n+1
n+2

)
.

Making use of the integra representation (2.1) and integrating by parts yield

xψ′(x) = x

∫ ∞
0

t

1− e−t
e−xtdt = −

∫ ∞
0

t

1− e−t
de−xt

dt
dt

= −
[
te−xt

1− e−t

∣∣∣∣t→∞
t→0+

−
∫ ∞
0

(
t

1− e−t

)′
e−xtdt

]
=

∫ ∞
0

et(et − 1− t)
(et − 1)2

e−xtdt+ 1 > 1

(4.1)
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and

xψ′′(x) = −x
∫ ∞
0

t2

1− e−t
e−xtdt =

∫ ∞
0

t2

1− e−t
de−xt

dt
dt

=

[
t2e−xt

1− e−t

∣∣∣∣t→∞
t→0+

−
∫ ∞
0

(
t2

1− e−t

)′
e−xtdt

]
= −

∫ ∞
0

et(2et − t− 2)t

(et − 1)2
e−xtdt.

(4.2)

Therefore, applying (2.1) for n = 1 and (4.2) gives

ψ′(x) + xψ′′(x) = −
∫ ∞
0

t(et − 1− t)et

(et − 1)2
e−xtdt < 0

on (0,∞). The right hand side of the double inequality (1.9) is thus proved.
Using the recurrent formula (3.14) and straightforward computing result in

H1(x) , H(x)−H(x+ 1) = 4

(
1

x2
+

2

x
+ 2

)
ψ′(x)

−4x3 + 7x2 + 6x+ 2

x4
− ψ′′(x)− 2(2x+ 1)[ψ′(x)]2,

H2(x) , H1(x)−H1(x+ 1) = 4[ψ′(x)]2

+

[
4x6 + 20x5 + 41x4 + 48x3 + 37x2 + 16x+ 4

−4(x+ 1)2
(
2x3 + 5x2 + 4x+ 2

)
x2ψ′(x)

]
x4(x+ 1)4

,

H2(x)−H2(x+ 1) =

4

[
ψ′(x)− 2x4 + 13x3 + 29x2 + 27x+ 8

2x(x+ 1)2(x+ 2)2

]
(x+ 1)2(x+ 2)2

,
4H3(x)

(x+ 1)2(x+ 2)2
,

where

H3(x) = ψ′(x)−
[

1

x
− 1

2(x+ 1)
+

1

2(x+ 1)2
+

1

2(x+ 2)
+

1

2(x+ 2)2

]
=

∫ ∞
0

[
t

1− e−t
−
(

1− e−t

2
+
te−t

2
+
e−2t

2
+
te−2t

2

)]
e−xtdt

=
1

2

∫ ∞
0

2(t− 1)e3t − (t− 3)e2t − 2et + t+ 1

et − 1
e−(x+2)tdt

=
1

2

∫ ∞
0

[ ∞∑
k=3

2
(
3× 2k−2 − 1

)
+ (k − 3)

(
2× 3k−1 − 2k−1

)
k!

]
e−(x+2)t

et − 1
dt.

Consequently, the function H3(x), and then the difference H2(x)−H2(x+ 1), is a
completely monotonic function on (0,∞). Hence, we have

(−1)n[H2(x)−H2(x+ 1)](n) = (−1)n[H2(x)]− (−1)n[H2(x+ 1)](n) ≥ 0

for n ≥ 0. By induction, it follows that

(−1)n[H2(x)](n) ≥ (−1)n[H2(x+ 1)](n) ≥ (−1)n[H2(x+ 2)](n) ≥ · · ·
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≥ (−1)n[H2(x+m)](n) ≥ · · · ≥ lim
m→∞

(−1)n[H2(x+m)](n).

It is not difficult to see that

[H2(x)](n) = 4
(
[ψ′(x)]2

)(n) − [4
(
2x3 + 5x2 + 4x+ 2

)
x2(x+ 1)2

ψ′(x)

](n)
+

[
4x6 + 20x5 + 41x4 + 48x3 + 37x2 + 16x+ 4

x4(x+ 1)4

](n)
→ 0

as x→∞ for all n ≥ 0. Accordingly, we obtain (−1)n[H2(x)](n) ≥ 0 on (0,∞) for
all n ≥ 0, that is, the function H2(x) is completely monotonic on (0,∞). Hence,
we have

(−1)n[H1(x)−H1(x+ 1)](n) = (−1)n[H1(x)]− (−1)n[H1(x+ 1)](n) ≥ 0

for n ≥ 0. By induction, it follows that

(−1)n[H1(x)](n) ≥ (−1)n[H1(x+ 1)](n) ≥ (−1)n[H1(x+ 2)](n) ≥ · · ·

≥ (−1)n[H1(x+m)](n) ≥ · · · ≥ lim
m→∞

(−1)n[H1(x+m)](n).

It is not difficult to see that

[H1(x)](n) = 4

[(
1

x2
+

2

x
+ 2

)
ψ′(x)

](n)
−
(

4x3 + 7x2 + 6x+ 2

x4

)(n)

−
[
ψ′′(x)

](n) −{2(2x+ 1)[ψ′(x)]2 → 0, n = 0

2(2x+ 1)
(
[ψ′(x)]2

)(n)
+ 4n

(
[ψ′(x)]2

)(n−1) → 0, n ≥ 1

as x→∞. This means that (−1)n[H1(x)](n) ≥ 0 on (0,∞) for all n ≥ 0. In other
words,

(−1)n[H(x)−H(x+ 1)](n) = (−1)n[H(x)](n) − (−1)n[H(x+ 1)](n) ≥ 0

which inductively reduces to

(−1)n[H(x)](n) ≥ (−1)n[H(x+ 1)](n) ≥ (−1)n[H(x+ 2)](n) ≥ · · ·

≥ (−1)n[H(x+m)](n) ≥ · · · ≥ lim
m→∞

(−1)n[H(x+m)](n)

for all n ≥ 0. From the integral representation (2.1) and the formulas (4.1)
and (4.2), it is immediate that

[H(x)](n) = ψ(n+1)(x)− (−1)n
∫ ∞
0

et(2et − t− 2)tn+1

(et − 1)2
e−xtdt

+2(−1)n
n∑
k=0

(
n

k

)[∫ ∞
0

et(et − 1− t)tk

(et − 1)2
e−xtdt

]
×
[∫ ∞

0

et(et − 1− t)tn−k

(et − 1)2
e−xtdt

]
→ 0

as x → ∞ for all n ≥ 0. This means that (−1)n[H(x)](n) ≥ 0 on (0,∞) for all
n ≥ 0. In other words, the function H(x) is completely monotonic on (0,∞).

The complete monotonicity of H(x) implies H(x) > 0 which is equivalent to the
left hand side of the double inequality (1.9) on (0,∞). The proof of Theorem 4.1
is complete. �
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