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Sliding Modes Observers for Vehicle Dynamics and Variable Structure Automatic Systems (SMO-VSAS)

This paper will show how to handle modeling of vehicles to get efficient and good Sliding Mode Observers. A car model with 16 DoF is decomposed for partial state observation with SMO. This decomposition method may lead, in VSAS, to good estimates of different kind variables and inputs (subsystems states, environment and ground variables, interfaces variables, connections and constraint variables). Robust Sliding Mode Observers and unknown input estimations are developed.

I. INTRODUCTION

 1In literature, many studies deal with vehicle modeling [START_REF] Ramirez Mendoza | Sur la modélisation et la commande des véhicules automobiles[END_REF][2] [START_REF] Venture | Identification des paramètres dynamiques d'une voiture[END_REF]. Vehicle dynamics can be represented by approximate models which are either too much simplified to be realistic or complex and too much wide involving big simulation softwares. In nature they have a variable structure (VSAS) but in literature, their properties are never detailed nor their passivity property emphasized. This kind of systems, like in general VSAS, are composed with many passively coupled subsystems: wheels, motor and braking control system, suspensions, steering, more and more inboard and embedded electronics. There are several non linear parts in VSAS, which are coupled. These coupling may be time varying and non stationary. Approximations have to be made carefully regarding to the desired application, see eg [START_REF] Rajaoarisoa | Modelling for control and diagnosis for a class of non linear complex switched systems[END_REF].

In our previous works a good nominal vehicle model with 16 DOF have been validated in a simulator, we developed for a French car type (Peugeot 406), [START_REF] M'sirdi | Simulation et observateurs pour l'estimation des performances dynamiques d'un vhicule[END_REF]. Several interesting applications was successful and have been evaluated by use of this simulator before actual results [START_REF] Rabhi | Observers with unknown inputs to estimate contact forces and road profile[END_REF]. We have also considered this modeling for estimation of unknown inputs [START_REF] Rabhi | Second order sliding mode observer for estimation of velocities, wheel sleep, radius and stiffness[END_REF], interaction parameters and exchanges of VSAS with environment [START_REF] Rabhi | Vrim: Vehicle road interaction modelling for estimation of contact forces[END_REF]. This approach has been used successfully also for heavy vehicles [START_REF] Rabhi | Estimation of performance of heavy vehicles by sliding modes observers[END_REF].

In this paper the car model is revisited as VSAS and structured for estimation of inputs and diagnosis. We split the model in five subsystems [START_REF] Sirdi | Vehicle models and estimation of contact forces and tire road friction[END_REF] and then show and justify the rationale behind the successful splitting to get simple and efficient partial (sub) models. The subsystems and the overall system obey the passivity property. This feature, like in Bond Graphs modeling emphasize the energy flow in VSAS and exchanges between the system parts and also with the environment. After the structure and model analysis, we consider estimation of the partial states for diagnosis and motion control in the vehicle.

Robust estimations are necessary to be able to obtain good evaluation of the VSAS driving situation at each time instant.

II. VEHICLE MODEL PARAMETRIZATION

A. The Nominal global model

The Nominal model of a car vehicle with uncertainties has been developed assuming the car body rigid and pneumatic contact permanent and reduced to one point for each wheel (see eg [START_REF] Rabhi | Vrim: Vehicle road interaction modelling for estimation of contact forces[END_REF] [9] [START_REF] Sirdi | A nominal model for vehicle dynamics and etimation of input forces and tire friction[END_REF]). It is composed by 4 non linear equations: one for the mechanical dynamics of the vehicle (equation ( 1)), one for interface torques and forces (vehicle inputs equation ( 2)), one for the contact with environment (equation ( 3)) and the last one for the environment normal reactions (equation( 4)). τ is the input vector composed by torques and forces applied to the vehicle.

τ = M (q)

.. q + C(q, q) q + V (q, q) + G(q) + η o (t, q, q) (1)

τ = Γ e + ξJ(x 1 ) T F (2) Ḟ = f (α, λ, q, F N ) + e(t) (3) 
F N = h(l f , l r , h, g, vx , vy , q, x road , β, γ) (4) 
The generalized coordinates vector q ∈ R 16 is defined as q T = [x, y, z, θ z , θ y , θ x , q 31 , q 32 , q 33 , q 34 , δ 3 , δ 4 , ϕ 1 , ϕ 2 , ϕ 3 , ϕ 4 ] where x, y, and z represent displacements. Angles of roll, pitch and yaw are θ x , θ y et θ z respectively. The suspensions elongations are noted q 3i : (i = 1..4). δ i : stands for the steering angles. ϕ i : are angles of wheels rotations (i = 1..4.). q, q ∈ R 16 are respectively velocities and corresponding accelerations. The state vector is x T = (x T 1 , x T 2 ) = (q T , qT ). The random part in forces e(t) is due to neglected and uncertain dynamics in wheels contact. the variable ξ is equal to unity when the corresponding wheel is in contact with the ground and zero if not.

Equation (1) describes the dynamics of the vehicle excited by the external forces of equation (2) which stands as interface with environment. ξJ(x 1 ) T F represents the environment reactions and control inputs are in U = M (x 1 ) -1 Γ e . The η o (t, q, q) represent external perturbations, uncertainties and neglected dynamics.

The gravity term is G(q). V (q, q) = ξ(K v q + K p q) are Suspensions forces (with respectively damping and stiffness matrices K v , K p ); We can have also in V (q, q) Coulomb friction which contain relay terms depending on velocities and positions (non linear frictions).

Equation [START_REF] Rajaoarisoa | Modelling for control and diagnosis for a class of non linear complex switched systems[END_REF] gives the environment reaction forces to vehicle posture. The latter forces produce the wheel-ground contact forces (3).

B. Mechanical Model Properties

Then we have the state space representation of our VSAS (see [START_REF] Sirdi | Vehicle models and estimation of contact forces and tire road friction[END_REF])

ẋ1 = x 2 ẋ2 = f (x 1 , x 2 ) + M -1 ξJ T F + U -η(x 1 , x 2 ) y = h(x) τ = Γ e + ξJ(x 1 ) T F, U = M -1 Γ e Ḟ = f (α, λ, q, F N ) + e(t) F N = h(l f , l r , h, g, vx , vy , q, x road , β, γ) (5) f (x 1 , x 2 ) = -M (x 1 ) -1 (C(x 1 , x 2 )x 2 + V (x 1 , x 2 ) + G(q)) ,
is the nominal dynamics assuming normal driving situation. η(x 1 , x 2 ) = M (x 1 ) -1 η o (t, x 1 , x 2 ) are the model uncertainties, input perturbations and neglected dynamics in VSAS.

The mechanical model part ( 1) is passive and has several interesting properties, which are well known and extensively used in robotics. We note that the system (1-4) can be cast in the Equivalent Passive Feedback Scheme (EPFS) shown in figure [START_REF] Ramirez Mendoza | Sur la modélisation et la commande des véhicules automobiles[END_REF] Figure 1. Vehicle dynamics in a Passive Feedback Equivalent Scheme.

Properties: Matrices M and C are such as (see [START_REF] Arimoto | Satability and robustness of PID feedback control for robot of sensory capability[END_REF][2] [START_REF] Velenis | Dynamic friction models for road/tire longitudinal interaction[END_REF]):

1) The inertia matrix M (q), of dimensions 16 × 16, is Symmetric Positive Definite(SPD).

2) N = Ṁ (q) -2C(q, q) is skew symmetric, i.e ∀υ ∈ R n , υ T N υ = 0 or N = -N T . 3) C(q, q)ǫ = C(q, υ)υ -Π(q, υ)ǫ, with ǫ = υ -q and Π(q, υ) = ∂ ∂x2 {C(q, q) q} q=υ .
4) The input torque w = τη 0 -G(q) is composed by two parts one from actuators (driver) and a second from environment reaction and perturbations. 5) All the perturbation terms η i (coupling, neglected dynamics), are bounded: ∃k i > 0, i = 1, ..5, such and as

|η i | < k i ∀t ∈ R

C. Coupled sub models

The VSAS model ( 1) is then split in 5 equations corresponding respectively to chassis translations, chassis rotations, Suspensions elongations, wheel steering and wheel rotations, with as positions q 1 , q 2 , q 3 , q 4 and q 5 . The fastest motions are wheel rotations and the slowest ones are the chassis translations and rotations with wheels steering.

Owing to the structure of his matrices M (x 1 ) and C(x 1 , x 2 ), we can split the model (1) in five parts as follows (see for details [START_REF] Msirdi | Robust observers and unknown input observers for estimation, diagnosis and control of vehicle dynamics[END_REF], [START_REF] Rajaoarisoa | Modelling for control and diagnosis for a class of non linear complex switched systems[END_REF]) with q T = q T 1 , q T 2 , q T 3 , q T 4 , q T 5 . q

T 1 = [x, y, z] q T 2 = [θ z , θ y , θ x ] q T 4 = [δ 3 , δ 4 ] q T 3 = [q 31 , q 32 , q 33 , q 34 ] q T 5 = [ϕ 1 , ϕ 2 , ϕ 3 , ϕ 4 ] (6)
The 16 Degrees of Freedom model (eq(1)) is rewritten:

      F T F R F S U 4 U 5       =       M1,1 M1,2 M1,3 0 0 M2,1 M2,2 M2,3 M2,4 M2,5 M3,1 M3,2 M3,3 0 0 0 M4,2 0 M4,4 0 0 M5,2 0 0 M5,5             q1 q2 q3 q4 q5       + (7) +       0 C12 C13 0 0 0 C22 C23 C24 C25 0 C32 C33 0 0 0 C42 0 0 C45 0 C52 0 C54 0             q1 q2 q3 q4 q5       +       η 1 η 2 η 3 η 4 η 5       +       V 1 V 2 V 3 V 4 V 5      
F T , F R and F S are forces or torques corresponding to translation, rotations of the chassis and excitation of suspensions respectively. They come from J(x 1 ) T F . U 4 is the steering control and U 5 stands for brake and motor torques. The terms V i contain the remaining part of equation ( 1) accounting for frictions, suspensions stiffness, damping and gravity. 1) Dynamics of the chassis Σ 1 : From the global system we keep the two first equations ( 7) for translations and rotations.

F 1 = M 1 q1 q2 + C 1 q1 q2 + V 1 V 2 + ν 1 F 1 = F T F R ; ν 1 = η 1 c η 2 c ; J T 1 = J 1,1 J 1,2 J 2,1 J 2,2 η c 1 = M1,3 q3 + C13 q3 + η 1 (8) η c 2 = M2,3 q3 + M2,4 q4 + M2,5 q5 + C23 q3 + + C24 q4 + C25 q5 + η 2 (9) • M 1 = M1,1 M1,2 M2,1 M2,2 is SPD , C 1 = 0 C12 0 C22 (composed
by the first elements of C(q, q)) is such that N 1 = Ṁ1 -2C 1 is a skew symmetric matrix (traducing the passivity property of the subsystem). ) is the Jacobian matrix reduced to the system Σ 1 and F 1 the corresponding forces vector.

• J T 1 = J T (x 11 ) ∈ R (6×12
• ν 1 represents the coupling terms du to dynamics of the other subsystems. These coupling terms affect a passive (sub) system. This is the key property of the proposed parametrization and the system decomposition in simpler subsystems. It highlights the interest of coupling terms coming from passive subsystems. By using x 11 = (q 1 , q 2 ) and x 12 = ( q1 , q2 ), an equivalent state space representation can be written:

ẋ11 = x 12 ẋ12 = M -1 1 (J T 1 F 1 -C 1 x 12 -V 12 (x 11 , x 12 ) -ν 1 ) y 1 = h(x 11 , x 12 ) (10)
2) Suspensions Dynamics Σ 2 : From the global equations we take the third one (equ 11).

F S = M33 q3 + C33 q3 + V 3 (q, q) + η 3 c (11) η 3 c = M31 q1 + M32 q2 + C32 q2 + η 3 (12) 
Let x 2 = (x 21 , x 22 ) = (q 3 , q3 ), the state space representation of (Σ 2 ) is then:

ẋ21 = x 22 ẋ22 = M -1 3,3 (J T 2 F 2 -C33 x 22 -V 3 (x 21 , x 22 ) -ν 2 ) y 2 = h(x 2 ) (13) with ν 2 = [η 3 c -J T 2 F 2 )
] and F S = J T 2 F 2 This subsystem can also be shown to be passive (N 2 = Ṁ2 -2C 2 is a skew symmetric matrix. 3) Wheels dynamics Σ 3 : The fastest dynamic in the vehicle model is the one of equation ( 7) is for wheels steering and rotations. The fourth equation of the model (1) stands for the steering front wheels with as inputs U 4 . The motor / brake torque U 5 is applied to the two rear wheels. 

η 4 c = M42 q2 + C42 q2 + η 4 (15) η 5 c = M52 q2 + C52 q2 + η 5 (16) 
By choosing x 31 = (q T 4 , q T 5 ) T and x 32 = ẋ 31 , the equivalent state space representation can be written:

ẋ31 = x 32 ẋ32 = M -1 3 (U 45 -C 3 x 32 -V 45 (x 31 , x 32 ) -ν 3 ) y 3 = h(x 31 , x 32 ) (17) with ν 3 = η 4 c η 5 c
and U 45 = U 4 U 5 Then in conclusion, the vehicle can be presented as subsystems Σ 1, Σ 2 and Σ 3 corresponding respectively to chassis translations and rotations, Suspensions elongations, wheel steering and rotations (see figure 2). It is worthwhile to note that until now there are no approximations when considering the 5 equations. All the subsystems can be shown to fulfill the previously presented Passive Feedback Equivalent Scheme (PEFS). Approximations will be made when neglecting the coupling terms η i c . In the previous expressions, we remark that splitting the model is helpful, when using reduced models, to identify what is neglected regard to our proposed nominal model with 16 DoF. This is emphasized by the PEFS which show us that the main system properties are preserved and what is neglected do not change stability properties. η i c are coupling terms du to connections with the other PEFS sub systems. We can verify that these terms are bounded such and as η i c < k i ∀t.

4) Evaluation of the coupling terms in simulation:

To evaluate the level of the coupling terms some simulation have been realized. We use in simulations, sinusoidal steering (with a period near to 5s) and a velocity near to 5m/s during 6 seconds and then decreasing (see figure 3). The inputs F t and F r (figure 5) are located at the same place as the coupling terms, which are then matched perturbations. Figures [START_REF] Rabhi | Second order sliding mode observer for estimation of velocities, wheel sleep, radius and stiffness[END_REF] appearing in the suspension block as perturbations. We remark also that they are very small and negligible compared to the inputs F s1..4 = J T 2 F 2 , drawn in the bottom of figure [START_REF] Rabhi | Observers with unknown inputs to estimate contact forces and road profile[END_REF]. The Sliding Mode Observers (SMO) technique is an attractive approach for its robustness and second for its finite time convergence feature. The latter is interesting to avoid use of costy sensors in complex systems. As we show in this work, to be able to estimate the unknown input forces and then adherence and road characteristics, we can use several steps of observations and estimations. Using partial state observers to get good and robust estimation of the vehicle state, using the previously presented blocks and splitting, we can consider estimation of the remaining variables in the process dynamics. This is done by filtering and estimating what have been considered as perturbations in the previous steps. This allowed us to avoid observability problems by using robust and cheap SMOs instead of sensors in a procedural estimation approach. In what follows, for the proposed observers, we consider the input forces unknown but slowly time varying. The assumption Ḟ ≈ 0 means that the changes in the forces are small in the mean as for example only one change with significant amplitude but during an intervall which is not too short. Adding a linearized model arround some operating point can enhance the estimations quality.

A. First Order Sliding Mode Observers 1) Observer for the chassis Dynamics Σ 1 :: Estimations of the nominal functions M (q), Ĉ(q, q), V (q, q), Ĝ(q) are assumed known. If not, some intermediate values can be considered to develop the following proposed observers. Let us note the states estimation errors

xij = xij -x ij
The proposed observer for the chassis dynamics is:

• x11 = x12 -Λ 11 sign(x 11 ) (18) 
• x12 = M -1 1 (J T 1 F1 -Ĉ1 (x 11 , x12 )x 12 -V12 ) -Λ 12 sign(x 11 ) • F1 = -P Λ 13 sign(x 11 ) (19) 
The observation error dynamics is (see eq10 and 18):

• x11 = x12 -Λ 11 sign(x 11 ) (20) • x12 = ζ 1 -M 1 (x 11 ) -1 J T 1 (x 11 ) F1 -Λ 12 sign(x 11 ) (21) • F1 = -P Λ 13 sign(x 11 ) (22) M -1 1 = M -1 1 -M -1 1 ; C1 = Ĉ1 -C 1 ; Ṽ12 = V12 -V 12 with ζ 1 as matched perturbation ζ 1 = M 1 (x 11 ) -1 (C 1 (x 1 , x 2 )x 2 -Ĉ1 (x 1 , x2 )x 2 + Ṽ12 (x 1 , x2 ) + ν 1 ) + M -1 11 (x 11 )( Ĉ1 (x 1 , x2 )x 2 + V12 (x 1 , x2 ) -J T 1 (x 11 ) F1
); Estimation errors on forces are: F1 = F1 -F 1 with ζ 1 all neglected terms and remaining modeling and coupling errors. These can be assumed bounded owing to fact that all involved terms are either estimates or come from a passive mechanical part of the system and

|ν 1 | < κ 0 ∀ t ∈ R + . The Lyapunov function V 1 = 1 2 xT 11 x11
, help to show that the sliding surface x11 = 0 is attractive if we choose λ i 12 such as xi 12 < λ i 12 for i = 1, .., 3. After a finite time t 01 , we will get in average x11 = 0 and • x11 = 0. We obtain a reduced dynamic for the estimation error:

• x12 = ζ 1 -M 1 (x 11 ) -1 J T 1 (x 11 ) F1 -Λ 12 Λ -1 11 x12 (23) 
• F = -P Λ 13 Λ -1 11 x12 (24) 
For the second step of the convergence proof, consider

V 2 (x 12 , F1 ) = 1 2 xT 12 x12 + 1 2 F T 1 P -1 F1 then V2 (x 12 , F1 ) be- comes if we let Λ 13 = M 1 (x 11 ) -1 J T 1 (x 11 ) Λ 11 V2 = -x T 12 Λ 12 Λ -1 11 x12 -xT 12 ζ 1
Now as previously choose λ i 11 and λ i 12 (the diagonal elements of the gain matrices Λ 11 , Λ 12 ) large enough and Λ 13 = M 1 (x 11 )J T 1 (x 11 ) Λ 11 .Then convergence of (x i 11 , xi 21 ) toward (x i 11 , x i 21 ) is obtained and estimation errors on forces are bounded.

2) Observer for Suspensions dynamics Σ 2 :: We assume that the wheels are always in contact with the ground (ξ = 1) and note xi 21 = xi 21x i 21 and xi 22 = xi 22x i 22 the estimation errors and Fi2 = Fi2 -F i2 force estimation error. The proposed observer, for each wheel suspension, is:

• x21 = x22 -λ 21 sign(x 21 ) (25) 
• x22 = M -1 33 (J T 2 F2 -Ĉ33 (x 21 , x22 )x 22 -V3 (x 21 , x22 )) -λ i 22 sign(x 2 (26) • F i2 = -P λ i 23 sign(x 21 ) (27) 
The observation error dynamics is (25-13): 

• x21 = x22 -λ 21 sign(x 21 ) (28) • x22 = -ζ 2 + M -1 33 (J T 2 (x 21 ) F2 -K v x22 ) -λ 22 signx 21 (29) 
) • x22 = -ζ 2 -M -1 33 (K v + λ 22 λ -1 21 )x 22 + M -1 33 J T (x 21 ) F2 (31) 
•

F 2 = -P λ 23 λ -1 21 x21 (32) Let V 2 = 1 2 xT 22 M33 (x 21 )x 22 + 1 2 F T 2 P -1 F2 , its derivative V2 becomes, if we take λ 23 = J T (x 21 )λ 12 , V2 = -x T 2 (K v + λ 23 λ -1 21 )x i 22 -xT 2 M2,2 ζ 2
We can conclude as previously that if we choose λ 21 and λ 22 (the diagonal elements of the gain matrices Λ 21 et Λ 22 ) large enough and Λ 23 = J T Λ 21 then convergence of (x 21 , x22 ) toward (x 21 , x 22 ) is obtained and estimation errors on forces F2 remains only bounded.

3) Observer for Wheels Dynamics Σ 3 : For each wheel i, the proposed observer is as follows:

• xi 31 = xi 32 -λ i 31 sign(x i 31 -x i 31 ) (33) 
• xi 32 = J -1 (τ -r F3i ) -λ i 32 sign(x i 31 -x i 31 ) (34) 
• F3i = -P λ i 33 sign(x i 31 -x i 31 ) (35) 
The torque τ is assumed known. This observer can be easily extended to estimate the torque by adding an equation defining the drive line producing the torque. Observation error dynamics is then:

• xi 31 = xi 32 -λ i 31 sign(x i 31 ) (36) 
• xi 32 = -rJ -1 F3i -λ i 32 sign(x i 31 ) + η 3i c ( 37 
) • F3i = -P λ i 33 sign(x i 31 ) (38) 
with xi 31 = xi 31x i 31 , xi 32 = xi 32x i 32 the errors on estimations of states x i 3 and forces F3i = F3i -F 3i . We can prove the convergence in finite time (t 03 ) of states estimates xi 31 and bounded of forces estimation by using the Lyapunov functions 

V 1 = 1 2 (x i 11 ) 2 , and V 2 = 1 2 (x i 21 ) 2 + 1 P ( Fi1 ) 2 . Let us note ξ T = [x i 21 , v 1i c ] then V2 become upper bounded V2 = -ξ T Qξ + (v 1i c ) 2 = -ξ T λ i 21 λ i 11 -1 2 -1 2 1 ξ + (v 1i c ) 2 V2 ≤ -λ inf {Q} ξ 2 + v 1i c 2 V2 ≤ -λ inf {Q} xi 21 2 + (1 -λ inf {Q}) v 1i c 

B. High Order Sliding Mode Observers

In this part we will use a High Order Sliding Mode observers (HOSM See [START_REF] Levant | Hight-order sliding modes, differentiation and outputfeedback control[END_REF]) to deduce our estimations. The HOSM dynamics converge in finite time. 

1) Observer for the chassis Dynamics

IV. SIMULATION RESULTS

The simulator previously developed by our staff (SimK106N, available on demand to first author) is used in order to test and validate the proposed observers and our approach of model splitting and developing partial state estimators. The used parameters and environment characteristics have been validated in a previous work in collaboration with the LCPC [START_REF] M'sirdi | Simulation et observateurs pour l'estimation des performances dynamiques d'un vhicule[END_REF][7] [START_REF] Rabhi | Observers with unknown inputs to estimate contact forces and road profile[END_REF].

The simulation results presented are obtained for a driving with sinusoidal steering command of 20 deg amplitude. The results are good for the First Order Sliding Mode Observers (see figure 7) and also for HOSM based observers (see figure 8); The two kind of observers may give very good results by adjusting the gain parameters.

V. CONCLUSION

In this paper, we have proposed efficient and robust observers allowing to estimate states and unknown inputs (torques or forces). The model formulation has been done such that the passivity property is preserved. This copes well for SMO approach and avoid chattering problems.

These observers obey to the first kind assuming that input forces and torques are constant or slowly time varying ( Ḟ ≃ 0). The robustness of the sliding mode observer versus uncertainties on model parameters is an important feature. First and Second Order Sliding Mode Observers have been developed and their performance evaluated. These observer are illustrated by simulation results to show effectiveness of their performance. These results validate the proposed observers and our approach of model splitting and developing partial state estimators. .
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 3 Figure 3. Vehicle behavior for a sinusoidal steering Figure (4) show the 3 components of the coupling terms η 1 c left column and η 2c on the right column. We can remark that they are very small and negligible compared to the inputs F t and F r , drawn bellow in figure[START_REF] Rabhi | Observers with unknown inputs to estimate contact forces and road profile[END_REF].
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 4 Figure 4. The components of the coupling terms η 1 c left and η 2 c right
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 35 Figure 5. The inputs Ft and Fr of the 2 first blocks for sinusoidal steering
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 6 Figure 6. The VSAS suspension Coupling terms for sinusoidal steering
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 121 The proposed observer is the following (with x11 = x11x 11 ):• x11 = υ 11 = x12λ 11 |x 11x 11 | sign(x 11x 11 ) (39) • x12 = -ζ 12λ 12 |x 12υ 11 | sign(x 12υ 11 )(40)withζ 12 = M -1 11 ( Ĉ1 (x 1 , x2 )x 2 + Ĝ -J T 1 F )

  = M -1 33 (C 33 (x 21 , x 22 )x 2 -C 33 (x 21 , x22 )x 2 + G + ν 2 ) + M -1 33 (( Kp xi 21 + C 33 (x 21 , x22 )x 2 + Ĝ) Like the previous case we choose V 1 = 1 2 (xT 21 x21 ) and show that x12 converges to x 12 in finite time t 02 if we ensure that ∀t > 0 that |x 22 | < λ 21 ,. Then we deduce the reduced average dynamics x22 = λ 21 sign(x 12

	with ζ 2	
	•	
	Fi2 = -P λ 23 sign(x 21 )	(30)
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