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Decoupled models for vehicle dynamics and estimation of coupling terms 
 

H.  NASSER, N. K. M’SIRDI, A. NAAMANE LSIS, CNRS UMR 6168 

 
 

Abstract: This paper presents different dynamic models of 

vehicles to compare their dynamics. The main objective is to 

appreciate the couplings between the different model blocks 

after splitting systems to five sub models. The passivity 

approach is used and illustrated by simulation results 

obtained by the proposed simulator SimK106N. 

Keywords: vehicles; dynamic models; submodels; coupling 

terms; simulation. 

 

I. INTRODUCTION : 

The intelligent vehicle is a relevant research issue for 

autonomous Vehicle and assistance system. This topic 

requires accurate models representing the dynamic vehicle 

behavior. A nominal dynamic vehicle model with different 

Degrees of Freedom (DoF) is developed by using the 

classical Robotics techniques. The main idea is to compare 

several vehicles dynamics in order to learn about the 

mobile behavior. This will help to emphasize of systems 

parts in the dynamics, like for example suspensions or 

chassis rotations on the behavior. 

The first stage of this work consists in splitting all variable 

structure systems in only two coupled sub systems (M’sirdi 

and A. R.) [1], respectively, the frame and wheels. This 

decomposition is achieved to permit the analysis and 

control, by exploiting the passivity theory. This passivity 

approach allows to understand the stabilizing influences of 

non linear parameters present in the analytical expression of 

the sub-models. 

Few researches approached the study and the problem of 

the variable structure system. There are no, in our 

knowledge, studies which take in to account all kinds of 

vehicles in the same time as a real application to analyze 

and simulate the model parts and theirs dynamic behavior. 

We are going to try throughout this paper to describe the 

dynamic behavior and the advancement of the coupling 

terms relating different components of the vehicles.  

A simulator, under Matlab/Simulink (SimK106N [2]), is 

used for modeling and simulating different vehicle 

dynamics behavior in interaction with its environment. This 

simulation prototype has been validated with experimental 

results of LCPC’s Peugeot 406 (M’sirdi and al. [1]). It is 

transformed for the simulation of our various models. This 

simulator is used to examine the evolution of vehicle sub-

systems in the case of a variable structure system. This new 

structure of the dynamic model is very suitable for 

surveillance and diagnosis purposes based on robust 

observers (sliding mode) and passivity based control. 

II. DYNAMIC MODEL OF THE VEHICLE: 

Our objective is to establish a model describing the 

dynamics of all considered vehicles for comparison (car, 

kart, quad, motorcycle and bike). Nevertheless, we will 

obtain a simulated behavior very close to the real physical 

system in a typical configuration of the vehicle and its 

environment. To compute the global system of equations of 

the kart model, we have used symbolic calculations 

software (Maple). This program allows generating the 

equations of the geometrical, kinematic and dynamic 

models of global system with rigid bodies.   

 

A.  Hypotheses of modeling: 

The considered assumptions allow reducing the complexity 

of the system while guaranteeing certain degree of realism 

and efficiency of modeling. The model of dynamic 

behavior is generated by the method of Lagrange, assuming 

the vehicle in the air without contact. The wheels will 

undergo the constraint of the tire-ground contact and the 

generated force will obey geometrical and kinematic 

models calculated at points of tire-ground contact.  

To represent the tire-ground contact, we can use the model 

of Pacejka (Magic formula) (H.B. Pacejka [3]). To take into 

account only the important dynamic influence, we propose 

the following assumptions (N.K. M’sirdi B.J. [4] [5]):  

- We consider as main mechanical bodies of the vehicle, 

a frame and wheels;  

- The frame is considered as a rigid body with 6 DoF;  

- Each wheel is considered rigid body in rotation around 

its frame; 

- The contact is punctual and located in the wheel 

symmetry plan at a distance equal to a radius R; 

- The dynamics of variation of rolling radius is assumed 

to be negligible; 

- The pneumatic contact is assumed permanent. 

B. Geometric model : 

The tree structure is used to draw the reference marks, to 

raise the arborescence of the mechanism and to define the 

terminal organs. Figure 1 illustrates the tree structure of 

global vehicle. The reference R0 is arbitrary defined 

according to simplified assumptions. The 3D movement of 

the vehicle is represented by: 

𝜉 = [𝑞1 , 𝑞2, 𝑞3, 𝑞4, 𝑞5 , 𝑞6]𝑇                                                    (1) 

These six degrees of freedom are composed by 5 virtual 

non dynamics bodies and the frame.  

- R0 is attached to the ground, R1, R2 … R5 are the virtual 

bodies which define the posture of the vehicle, and their 

variables are 𝑞1 , 𝑞2, 𝑞3 , 𝑞4 𝑎𝑛𝑑 𝑞5; 
- R6 is the frame, presented by the variable q6. 

The vector of generalized coordinates for the P406, q ∈ R
16

 

is defined as following: 

𝑞 = [𝑞𝑖]
𝑇with i=1…16,                                                               (2) 

With R11, R21, R31 and R41 represent the suspension 

system (𝑞7, 𝑞8 , 𝑞9,𝑞10), R12 and R22 (𝑞11 , 𝑞12) the steering 

locks around the axis z, R13, R32, R23 and R42 (or 

𝑞13 , 𝑞14 , 𝑞15 , 𝑞16) are the rotations of four wheels around their 

axis y, 𝑞 , 𝑞  ∈ R
16

 are respectively the vectors of speeds and 

corresponding generalized accelerations (M’sirdi 2007 [6]). 



 

 

 

 

 

 

 

 

 

 

 

Fig. 1 & 2: Tree representation of global vehicle (left) & 

Right : of the kart 

 

 

 

 

 

 

 

 

 

Fig. 3 left: Tree representation of the quad 

Fig. 4 right: Tree representation of the motorcycle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Tree representation of bicycle 

We can summarize the DoF belonging to each system in the 

following table: 

R0 P406 QUAD KART MOTO BIKE 

DoF 16 15 12 11 9 
Table1: DoF for each vehicle 

C. Dynamic model: 

Several formalisms, in the literature, can be used to obtain 

dynamic models of vehicles. The most often used are: 

- The formalism of Lagrange (Khalil [7]) (Beurier[8]);   

- The formalism of Newton-Euler (Khalil [9]). 

In this study, we are more interested in the formalism of 

Lagrange. This formalism describes the equations of the 

movement in terms of energy which is defined by the 

following expression: 

Γ𝑖 =
𝑑

𝑑𝑡

𝑑𝐿

𝑑𝑞 𝑖
−

𝑑𝐿

𝑑𝑞𝑖
 i=1…n,                                                (3) 

- With L : Lagrangian of the equal system in E-U ; 

- E : Total kinetic energy of the system; 

- U: Total potential energy of the system. 

The vehicle nominal model is developed assuming that the 

pneumatic contact is permanent and reduced to a single 

point for each wheel. The dynamics of the vehicle can be 

described by the passive model (M’sirdi 2004): 

𝜏 = 𝑀 𝑞 𝑞 + 𝐶 𝑞, 𝑞  𝑞 + 𝑉 𝑞, 𝑞  + 𝜂0(𝑡, 𝑞, 𝑞 )   

𝜏 = Γ𝑒 + Γ = Γ𝑒 + 𝐽𝑇𝐹         𝐹 = 𝑓(𝜆,𝜎,𝛼, 𝑞)                   (4) 

The inertia matrix 𝑀(𝑞) of the system is defined in R
16x16

, 

which is a symmetric positive definite matrix. The 

coefficients of the matrix 𝐶(𝑞, 𝑞 )  of centrifugal and 

Coriolis forces are established by respecting the property of 

passivity (M’sirdi [2]). 

The vector 𝑉(𝑞, 𝑞 ) is composed by the gravity and 

frictional forces at the joints.   

The vector 𝜂0(𝑡, 𝑞, 𝑞 ) represents the uncertainties and the 

neglected dynamics in the vehicle modeling. 

The equation (4) demonstrates that input torque consists of 

two parts; the first part is produced by the active 

articulations such as motorization, braking and steering. 

The second one represents the generalized forces due to the 

contact applied at the terminal organs. These forces of tire-

ground contact (longitudinal, lateral and normal of each 

wheel) are gathered in the vector F. 

This Kino-dynamic model, with constraints attached to the 

tire-ground contact, possesses the following properties: 

-  P1: The inertia matrix M(q) is Symmetric Positive 

Definite (SPD) and its opposite is uniformly restricted. 

-    P2: With an appropriate definition of 𝐶(𝑞, 𝑞 ) the matrix 

𝐴 𝑞, 𝑞  = 𝑀  𝑞 − 2.𝐶(𝑞, 𝑞 ) is Antisymmetric: 

 𝑣𝑇𝐴 𝑞, 𝑞  𝑣 = 𝑣𝑇  𝑀  𝑞 − 2.𝐶 𝑞, 𝑞   𝑣 = 0 ∀𝑣 ∈ 𝑅 

- P3: The dynamic equation (4) can be put in a linear 

parameter form in a set of dynamic parameter 𝜃 like 

𝜏 = 𝜑𝑇𝜃. 

The property P1 assures that the effect acceleration function 

is inertial (stable system). P2 assures that the transfer of  

𝜏 − 𝜂0 toward 𝑞  is a passive system and verifies the 

inequality of Popov. It assures a sufficient condition of 

system stability linked to its passivity. These proprieties are 

verified in the same time as computing the model equation 

in Maple software.       

III. DIVISION OF THE MODEL IN BLOCKS: 

Our challenge is to describe the vehicle dynamics in terms 

of blocks and find a common area that connects the five 

systems studied in paragraph 2. These models have almost 

the same major components, indeed we have identified five 

different blocks as follows: 

- Translations of the frame (x, y and z); 

- Rotations of the frame (psi, theta and phi); 

- Suspension System; - Steering; - Spins wheels. 

Afterwards we will split each vehicle in the form of blocks 

and show that the coupling terms are passive and have low 

values. Hence the possibility of applying our observers and 

robust command, and switch easily between different 

systems.       

We subdivided the vehicles into three subsets as follows: 

- The global model is P406 which is the biggest model; 

-  Second subset contains Quad and motorcycle;  

- Third subset includes kart and bike. 

A.  First application for a car (P406):  

We split the car dynamic model while considering:  

the inertia matrix (5x5) and the state vector are expressed as 

following sets (M’sirdi IROS [10]):     ℎ𝑇 = [ℎ1
𝑇ℎ2

𝑇ℎ3
𝑇ℎ4

𝑇ℎ5
𝑇] 

With:ℎ1
𝑇 = [𝑞1𝑞2𝑞3]ℎ2

𝑇 = [𝑞4𝑞5𝑞6],  ℎ3
𝑇 =

[𝑞7𝑞8𝑞9𝑞10],ℎ3
𝑇 = [𝑞11𝑞12 ]ℎ4

𝑇 = [𝑞13𝑞14𝑞15𝑞16 ]           (a5) 

In the same way, we subdivide vectors Γ𝑒 , 𝑉(𝑞, 𝑞 ) and 

𝜂0(𝑡, 𝑞, 𝑞 ) as it follows: 

Γ𝑒 = [0, 0, 0, Γ𝑒3, Γ𝑒4]T                                                                                   
(a6)

 

𝑉 𝑞, 𝑞  = [𝑉1𝑉2 𝑉3 0 0]𝑇                                                   (a7) 

R0 



𝜂0 𝑡, 𝑞, 𝑞  = [𝜂1𝜂2𝜂3𝜂4𝜂5]𝑇                                            (a8) 

The 16 DoF model of the car has the following form:  

 
 
 
 
 

0
0
0
Γe4

Γ𝑒5 
 
 
 
 

+

 
 
 
 
 
𝐽1
𝑇

𝐽2
𝑇

𝐽3
𝑇

0
0  
 
 
 
 

𝐹 =

 
 
 
 
 
𝑀11 𝑀12 𝑀13    0      0

𝑀21 𝑀22  𝑀23  𝑀24  𝑀25

𝑀31

0
0

𝑀32

𝑀42

𝑀52

𝑀33

𝑀43

0

0      0
𝑀44  0

   0     𝑀55 
 
 
 
 

 
 
 
 
 
 
ℎ 1
ℎ 2
ℎ 3
ℎ 4
ℎ 5 
 
 
 
 
 

 +

 
 
 
 
 
0 𝐶12 𝐶13  0   0

0 𝐶22 𝐶23 𝐶24 𝐶25

0
0
0

𝐶32

𝐶42

𝐶52

0
0
0

  
0
0
𝐶54

0
𝐶45

0  
 
 
 
 

 
 
 
 
 
 
ℎ 1
ℎ 2
ℎ 3
ℎ 4
ℎ 5 
 
 
 
 
 

+

 
 
 
 
 
𝑉1

𝑉2

𝑉3

0
0  
 
 
 
 

+

 
 
 
 
 
𝜂1

𝜂2
𝜂3

𝜂4
𝜂5 
 
 
 
 

                    (a9)  

The model is described by five equations which correspond 

respectively to the frame translations, frame rotations, 

suspension system, the steering and the wheels rotations. 

From this new representation, we obtain the forces 

translations as following:                           (a10) 
𝐹𝑇 = 𝐽1

𝑇𝐹 = 𝑀11ℎ 1 + 𝑀12ℎ 2 + 𝑀13ℎ 3 + 𝐶12ℎ 2 + 𝐶13ℎ 3 + 𝑉1 + 𝜂1                                                                            
The next equation describes the frame rotations forces. 

𝐹𝑅 = 𝐽2
𝑇𝐹 = 𝑀21ℎ 1 + 𝑀22ℎ 2 + 𝑀23ℎ 3 + 𝑀24ℎ 4 +

𝑀25ℎ 5 + 𝐶22ℎ 2 + 𝐶23ℎ 3 + 𝐶24ℎ 4 + 𝐶25ℎ 5 + 𝑉2 + 𝜂2  (a11)                                                                                                                                                                                                                             

The equation below represents the forces of suspension 

system (four dampers):    (a12) 

𝐹𝑠𝑢𝑠𝑝 = 𝐽3
𝑇𝐹 = 𝑀31ℎ 1 + 𝑀32ℎ 2 + 𝑀33ℎ 3 + 𝐶32ℎ 2 + 𝑉3 + 𝜂3                                                                                     

The forces of steering and wheels rotations are:    (a13) 

Г𝑒4 = 𝑀42ℎ 2 + 𝑀43ℎ 3 + 𝑀44  ℎ 4 + 𝐶42ℎ 2 + 𝐶45ℎ 5 + 𝑉4 + 𝜂4                                                                                     

Г𝑒5 = 𝑀52ℎ 2 + 𝑀55ℎ 5 + 𝐶52ℎ 2 + 𝐶54ℎ 4 + 𝑉5 + 𝜂5     (a14) 

Most of the researchers neglect the effect of coupling terms. 

The spitting of the 16 DoF model is rich in terms of data, 

especially, the evolution of the coupling terms 𝜂𝑐
𝑖  which 

connect the different submodels. We can show that these 

variables are bounded ∀t and the submodels can be written: 

 11 : ℎ 1 = 𝑓1 ℎ1, ℎ 1,𝐹𝑇 + 𝜂𝑐
1                                     (a15) 

 12 : ℎ 2 = 𝑓2 ℎ2 , ℎ 2,𝐹𝑅 + 𝜂𝑐
2                                     (a16) 

 2 : ℎ 3 = 𝑓3 ℎ3 , ℎ 3,𝐹𝑠𝑢𝑠𝑝  + 𝜂𝑐
3                                   (a17) 

 31 : ℎ 4 = 𝑓4 ℎ4 , ℎ 4, Г𝑒4 + 𝜂𝑐
4                                    (a18) 

 32 : ℎ 5 = 𝑓5 ℎ5 , ℎ 5, Г𝑒5 + 𝜂𝑐
5                                    (a19) 

A.1. Representation in 3 subsystems:  - Movements of the 

frame: The equation (a20) gives a general frame 

representation (translation and rotation): 

  1  
𝐹𝑇
𝐹𝑅
 =  

𝑀11 𝑀12

𝑀21 𝑀22
  
ℎ 1
ℎ 2
 +  

𝐶12

𝐶22
 ℎ 2 +  

𝑉1

𝑉2
 +  

𝜂𝑐
1

𝜂𝑐
2        (a20)                                                                       

The two coupling terms 𝜂𝑐
1 and  𝜂𝑐

2 verify:  

𝜂𝑐
1 = 𝑀13ℎ 3 + 𝐶13ℎ 3 + 𝜂1                                             (a21) 

𝜂𝑐
2 = 𝑀23ℎ 3 + 𝑀24ℎ 4 + 𝑀25ℎ 5 + 𝐶23ℎ 3 + 𝐶24ℎ 4 +

𝐶25ℎ 5 + 𝜂2                                                                     (a22) 

By choosing the state variables 𝑥11 = (ℎ1 , ℎ2) and 𝑥12 =

(ℎ 1, ℎ 2). We have the following state representation: 

 

𝑥 11 = 𝑥12                                                    

𝑥 12 = 𝑀1
−1(𝐽12

𝑇 𝐹 − 𝐶1𝑥12 − 𝑉12 − 𝜇1)

𝑦1 = 𝑠 𝑥11 , 𝑥12                                     

                         (a23) 

With:𝑀1 =  
𝑀11 𝑀12

𝑀21 𝑀22
 , 𝐶1 =  

𝐶12

𝐶22
 , 𝐽12

𝑇 =  
𝐽1
𝑇

𝐽2
𝑇 ,𝑉12 =  

𝑉1

𝑉2
  

and 𝜇1 =  
𝜂𝑐

1

𝜂𝑐
2  Which are respectively the inertia matrix, 

the matrix of centrifugal and Coriolis forces, the reduced 

Jacobian matrix, vector gravity and the vector of coupling 

terms linked to the first sub system.    

- Suspension system: 

The suspension system ( 2) contains the fours 

suspensions in the car. 

 𝐹𝑠𝑢𝑠𝑝 = 𝑀33ℎ 3 + 𝑉3+𝜂𝑐
3                                               (a24) 

 𝜂𝑐
3 = 𝑀31ℎ 1 + 𝐶32ℎ 2 + 𝑀32ℎ 2 + 𝜂3. 

Let𝑥2 = ( 𝑥21 ,  𝑥22 ) = (ℎ3 , ℎ 3), the state space 

representation of the subsystem ( 2) is then: 

  

𝑥 21 = 𝑥22                                   

𝑥 22 = 𝑀1
−1(𝐽3

𝑇𝐹 − 𝑉3 − 𝜇2)

𝑦2 = 𝑠 𝑥21 , 𝑥22                       

                                       (a25) 

Where 𝜇2 = 𝜂𝑐
3 

- Dynamic of wheels: 

The wheels dynamic ( 3) contains two blocks: the 

steering of the two front wheels ( 31) and the rotations of 

four wheels following their axis y( 32).  

The equations (a13, a14) give the following dynamic 

model:              Г𝑒4 = 𝑀44ℎ 4 + 𝐶45ℎ 5 + 𝜂𝑐
4                 (a26) 

Г𝑒5 = 𝑀55ℎ 5 + 𝐶54ℎ 4 + 𝜂𝑐
5                                          (a27) 

By identification, we obtain the coupling terms 𝜂𝑐
4 and 𝜂𝑐

5 : 

𝜂𝑐
4 = 𝑀42ℎ 2 + 𝑀43ℎ 3 + 𝐶42ℎ 2 + 𝜂4                             (a28) 

𝜂𝑐
5 = 𝑀52ℎ 2 + 𝐶52ℎ 2 + 𝜂5                                            (a29) 

If we combine the equations together we will have: 

 
Γ𝑒4

Γ𝑒5
 =  

𝑀44 0
0 𝑀55

  
ℎ 4
ℎ 5
 +  

0 𝐶34

𝐶43 0
  
ℎ 4
ℎ 5
 +  

𝜂𝑐
4

𝜂𝑐
5        (a30) 

For the same reasoning, we chose the state variables 

𝑥21 = (ℎ4, ℎ5) and 𝑥22 = (ℎ 4, ℎ 5), in order to obtain the 

following state representation :  

 

𝑥 21 = 𝑥22                                                    

𝑥 22 = 𝑀2
−1 Γ𝑒45 − 𝐶2𝑥22 − 𝜇3             

𝑦2 = 𝑠 𝑥21 , 𝑥22                                      

                        (a31) 

With : 𝑀2 =  
𝑀44 0

0 𝑀55
 ,𝐶2 =  

0 𝐶45

𝐶54 0
 ,Γ𝑒45 =  

Γ𝑒4

Γ𝑒5
 , and 

𝜇3 =  
𝜂𝑐

4

𝜂𝑐
5  Which are respectively the reduced inertia 

matrix, the reduced matrix of centrifugal and Coriolis 

forces, the vector of input torque and the vector of coupling 

terms attached to the third sub system.  

B.  Second application for a Quad:  

Quad is an all-terrain vehicle, also known as a four-

wheeler, with one seat that is straddled by the driver, along 

with handlebars for steering control.  

It has only three dampers-springs: 

- Two front dampers-springs; 

- Single rear damper-spring.  

We split the dynamic model while considering: the inertia 

matrix (5x5) and the state vector are expressed as following 

sets:  ℎ𝑇 = [ℎ1
𝑇ℎ2

𝑇ℎ3
𝑇ℎ4

𝑇ℎ5
𝑇]   

With:ℎ1
𝑇 = [𝑞1𝑞2𝑞3]ℎ2

𝑇 = [𝑞4𝑞5𝑞6],  ℎ3
𝑇 = [𝑞7𝑞8 𝑞9], ℎ3

𝑇 =
[𝑞10𝑞11]ℎ4

𝑇 = [𝑞12𝑞13𝑞14𝑞15]                                          (b5) 

In the same way, we subdivide vectors Γ𝑒 , 𝑉(𝑞, 𝑞 ) and 

𝜂0(𝑡, 𝑞, 𝑞 ) as it follows: 

Γ𝑒 = [0, 0, 0, Γ𝑒3, Γ𝑒4]T                                                                                  
(b6)

 

𝑉 𝑞, 𝑞  = [𝑉1𝑉2 𝑉3 0 0]𝑇                                                  (b7) 

𝜂0 𝑡, 𝑞, 𝑞  = [𝜂1𝜂2𝜂3𝜂4𝜂5]𝑇                                           (b8) 

Then the 15 DoF model of the quad has the following form: 



 
 
 
 
 

0
0
0
Γe4

Γ𝑒5 
 
 
 
 

+

 
 
 
 
 
 
𝐽1
𝑇

𝐽2
𝑇

𝐽3
𝑇

0
𝐽5
𝑇 
 
 
 
 
 

𝐹 =

 
 
 
 
 
𝑀11 𝑀12 𝑀13    0      0

𝑀21 𝑀22  𝑀23  𝑀24  𝑀25

𝑀31

0
0

𝑀32

𝑀42

𝑀52

𝑀33

𝑀43

0

0      0
𝑀44  0

   0     𝑀55 
 
 
 
 

 
 
 
 
 
 
ℎ 1
ℎ 2
ℎ 3
ℎ 4
ℎ 5 
 
 
 
 
 

 +

 
 
 
 
 
0 𝐶12 𝐶13  0   0

0 𝐶22 𝐶23 𝐶24 𝐶25

0
0
0

𝐶32

𝐶42

𝐶52

0
0
0

  
0
0
𝐶54

0
𝐶45

0  
 
 
 
 

 
 
 
 
 
 
ℎ 1
ℎ 2
ℎ 3
ℎ 4
ℎ 5 
 
 
 
 
 

+

 
 
 
 
 
𝑉1

𝑉2

𝑉3

0
0  
 
 
 
 

+

 
 
 
 
 
𝜂1

𝜂2
𝜂3

𝜂4
𝜂5 
 
 
 
 

              (b9) 

The model is described by five equations which correspond 

respectively to the frame translations, frame rotations, 

suspension system, the steering and the wheels rotations. 

In conclusion, the difference with the previous car model is 

in the equation (b9) at the Jacobian level. The term 𝐽5
𝑇  is for 

description of the single back suspension axle-tree. Thus it 

will change the block of wheels rotations.  

C. Third application for a kart: 

The Kart which we dispose is a kind of battery-driven 

vehicle equipped with 4 mass OPTIMA batteries and an 

engine with separate excitement (brushless). The maximum 

speed is about 70 Km/h [H. NASSER, N.K. [11]]. It is 

generally accepted as the most economic form of 

motorsport available. Also wheels and tires are much 

smaller than those used on a normal car. Missing of a 

suspension system reduces the model of 4 DoF compared to 

the 16 DoF model of Peugeot 406 (M’sirdi 2004, 2007).     

We split the previous dynamic model while considering: 

the inertia matrix (5x5) and the state vector is expressed as 

following sets:     ℎ𝑇 = [ℎ1
𝑇ℎ2

𝑇0 ℎ3
𝑇ℎ4

𝑇]   
With: ℎ1

𝑇 = [𝑞1𝑞2𝑞3]  ℎ2
𝑇 = [𝑞4𝑞5𝑞6], ℎ3

𝑇 = [𝑞7𝑞8]  

ℎ4
𝑇 = [𝑞9𝑞10𝑞11𝑞12]                                                         (c5) 

In the same way, we subdivide vectors Γ𝑒 , 𝑉(𝑞, 𝑞 ) and 

𝜂0(𝑡, 𝑞, 𝑞 ) as it follows: 

Γ𝑒 = [0, 0, 0, Γ𝑒4, Γ𝑒5]T                                                                                  
(c6)

 

𝑉 𝑞, 𝑞  = [𝑉1𝑉20 0 0]𝑇                                                    (c7) 

𝜂0 𝑡, 𝑞, 𝑞  = [𝜂1𝜂20 𝜂4𝜂5]𝑇                                             (c8) 

The 12 Dof model of the kart has the following form:  
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                   (c9) 

The model is described by four equations which correspond 

respectively to the frame translations, frame rotations, the 

steering and the wheels rotations. 

From this new representation, we estimate the forces 

translations as following: 

𝐹𝑇 = 𝐽1
𝑇𝐹 = 𝑀11ℎ 1 + 𝑀12ℎ 2 + 𝐶12ℎ 2 + 𝑉1 + 𝜂1          (c10) 

The next equation describes the forces rotations of the 

frame. 

𝐹𝑅 = 𝐽2
𝑇𝐹 = 𝑀21ℎ 1 + 𝑀22ℎ 2 + 𝐶22ℎ 2 + 𝐶23ℎ 3 + 𝐶24ℎ 4 +

𝑉2 + 𝜂2                                                                           (c11) 

The forces of steering and wheels rotations are: 

Г𝑒4 = 𝑀32ℎ 2 + 𝑀33ℎ 3 + 𝐶32ℎ 2 + 𝐶34ℎ 4 + 𝑉3 + 𝜂4     (c12)  

Г𝑒5 = 𝑀42ℎ 2 + 𝑀44ℎ 4 + 𝐶42ℎ 2 + 𝐶43ℎ 3 + 𝑉4 + 𝜂5     (c13) 

The spitting of the 12 DoF model can be written as: 

 11 : ℎ 1 = 𝑓1 ℎ1, ℎ 1,𝐹𝑇 + 𝜂𝑐
1                                     (c14) 

 12 : ℎ 2 = 𝑓2 ℎ2 , ℎ 2,𝐹𝑅 + 𝜂𝑐
2                                     (c15) 

 31 : ℎ 3 = 𝑓3 ℎ3 , ℎ 3, Г𝑒3 + 𝜂𝑐
4                                    (c16) 

 32 : ℎ 4 = 𝑓4 ℎ4 , ℎ 4, Г𝑒4 + 𝜂𝑐
5                                    (c17) 

C.1 Representation in 2 under systems:  

 Movements of the frame: The equation (c18) gives a 

general frame representation (translation and rotation):  1:  

 
𝐹𝑇
𝐹𝑅
 =  

𝑀11 𝑀12

𝑀21 𝑀22
  
ℎ 1
ℎ 2
 +  

𝐶12

𝐶22
 ℎ 2 +  

𝑉1

𝑉2
 +  

𝜂𝑐
1

𝜂𝑐
2       (c18) 

The two coupling terms 𝜂𝑐
1 and  𝜂𝑐

2 verify:  

𝜂𝑐
1 = 𝜂1                                                                          (c19) 

𝜂𝑐
2 = 𝑀23ℎ 3 + 𝑀24ℎ 4 + 𝐶23ℎ 3 + 𝐶24ℎ 4 + 𝜂2               (c20) 

By choosing the state variables 𝑥11 = (ℎ1 , ℎ2) and 𝑥12 =

(ℎ 1, ℎ 2). We have the following state representation: 

 

𝑥 11 = 𝑥12                                                    

𝑥 12 = 𝑀1
−1(𝐽12

𝑇 𝐹 − 𝐶1𝑥12 − 𝑉12 − 𝜇1)

𝑦1 = 𝑠 𝑥11 , 𝑥12                                     

                         (c21) 

With:𝑀1 =  
𝑀11 𝑀12

𝑀21 𝑀22
 , 𝐶1 =  

𝐶12

𝐶22
 , 𝐽12

𝑇 =  
𝐽1
𝑇

𝐽2
𝑇 , 𝑉12 =

 
𝑉1

𝑉2
  and 𝜇1 =  

𝜂𝑐
1

𝜂𝑐
2  Which are respectively the inertia 

matrix, the matrix of centrifugal and Coriolis forces, the 

reduced Jacobian matrix, vector gravity and the vector of 

coupling terms linked to the first sub system.    

Dynamic of wheels: 

The wheels dynamic ( 2) contains two blocks: the 

steering of the two front wheels ( 31) and the rotations of 

four wheels following their axis y( 32).  

The eq(c12, c13) give the following dynamic model: 

Г𝑒3 = 𝑀33ℎ 3 + 𝐶34ℎ 4 + 𝜂𝑐
4                                           (c22) 

Г𝑒4 = 𝑀44ℎ 4 + 𝐶43ℎ 3 + 𝜂𝑐
5                                           (c23) 

By identification, we obtain the coupling terms 𝜂𝑐
4 and 𝜂𝑐

5 : 

𝜂𝑐
4 = 𝑀32ℎ 2 + 𝐶32ℎ 2 + 𝜂4                                            (c24) 

𝜂𝑐
5 = 𝑀42ℎ 2 + 𝐶42ℎ 2 + 𝜂5                                            (c25) 

If we combine the equations together we will have: 

 
Γ𝑒4

Γ𝑒5
 =  

𝑀33 0
0 𝑀44

  
𝑞 3
𝑞 4
 +  

0 𝐶34

𝐶43 0
  
𝑞 3
𝑞 4
 +  

𝜂𝑐
4

𝜂𝑐
5        (c26) 

For the same reasoning, we chose the state variables 

𝑥21 = (ℎ3, ℎ4) and 𝑥22 = (ℎ 3, ℎ 4), in order to obtain the 

following state representation :  

 

𝑥 21 = 𝑥22                                                    

𝑥 22 = 𝑀2
−1 Γ𝑒45 − 𝐶2𝑥22 − 𝜇2             

𝑦2 = 𝑠 𝑥21 , 𝑥22                                      

                        (c27) 

With : 𝑀2 =  
𝑀33 0

0 𝑀44
 ,𝐶2 =  

0 𝐶34

𝐶43 0
 ,Γ𝑒45 =  

Γ𝑒4

Γ𝑒5
 , and 

𝜇3 =  
𝜂𝑐

4

𝜂𝑐
5  Which are respectively the reduced inertia 

matrix, the reduced matrix of centrifugal and Coriolis 

forces, the vector of input torque and the vector of coupling 

terms attached to the second sub system. In conclusion the 

main difference with previous models is that there is no 

suspension dynamics (one line and one column disappear 

from inertial matrix and Coriolis and centrifuge matrix. The 

coupling terms are simpler as consequence. 

D.  Fourth application for a motorcycle: 



A motorcycle is a single-track, two-wheeled motor vehicle. 

Different types of motorcycles have different dynamics and 

these play a role in how a motorcycle performs in given 

conditions.  

We split its dynamic model while considering: the inertia 

matrix (5x5) and the state vector are expressed as following 

sets: ℎ𝑇 = [ℎ1
𝑇ℎ2

𝑇ℎ3
𝑇  ℎ4

𝑇ℎ5
𝑇]   

With: ℎ1
𝑇 = [𝑞1𝑞2𝑞3]  ℎ2

𝑇 = [𝑞4𝑞5𝑞6], ℎ3
𝑇 = [𝑞7𝑞8]  

ℎ4
𝑇 =  𝑞9  ℎ5

𝑇 = [𝑞10  𝑞11]                                                (d5) 

In the same way, we subdivide vectors Γ𝑒 , 𝑉(𝑞, 𝑞 ) and 

𝜂0(𝑡, 𝑞, 𝑞 ) as it follows: 

Γ𝑒 = [0, 0, 0, Γ𝑒4, Γ𝑒5]T                                                                                  
(d6)

 

𝑉 𝑞, 𝑞  = [𝑉1𝑉2𝑉3 0 0]𝑇                                                   (d7) 

𝜂0 𝑡, 𝑞, 𝑞  = [𝜂1𝜂2𝜂3𝜂4𝜂5]𝑇                                           (d8) 

Then the 11 DoF model of the motorcycle has the 

following form: 
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             (d9) 

The model is described by five equations which correspond 

respectively to the frame translations, frame rotations, 

suspension system, the steering and the wheels rotations. 

Basing on equation (d9), we constate that the form is 

similar to the P406 model.           

E. Fifth application for a bicycle: 

Bicycle, also known as bike, is a pedal-driven, having two 

wheels attached to frame which one behind the other. We 

considered a bike without any suspension system and we 

subdivide bicycle dynamic model while considering: the 

inertia matrix and the state vector are expressed as 

following: ℎ𝑇 = [ℎ1
𝑇ℎ2

𝑇0 ℎ3
𝑇ℎ4

𝑇]   
With: ℎ1

𝑇 = [𝑞1𝑞2𝑞3]  ℎ2
𝑇 = [𝑞4𝑞5𝑞6], ℎ3

𝑇 = [𝑞7]  

ℎ4
𝑇 = [𝑞8𝑞9]                                                                     (e5) 

In the same way, we subdivide vectors Γ𝑒 , 𝑉(𝑞, 𝑞 ) and 

𝜂0(𝑡, 𝑞, 𝑞 ) as it follows: 

Γ𝑒 = [0, 0, 0, Γ𝑒3, Γ𝑒4]T                                                                                  
(e6)

 

𝑉 𝑞, 𝑞  = [𝑉1𝑉20 0 0]𝑇                                                    (e7) 

𝜂0 𝑡, 𝑞, 𝑞  = [𝜂1𝜂20 𝜂3𝜂4]𝑇                                             (e8) 

The model is described by four equations which correspond 

respectively to the frame translations, frame rotations, the 

steering and the wheels rotations. 

Then the 9dof model of the bicycle has the following form: 
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                   (e9) 

In this case, we note that forces and coupling terms have 

similar form as the electrical kart (see P3.3).    

F.  Interpretation:  

To summarize, the following figure 6 describes the five 

blocks of the global and the second subset (the frame 

translations, frame rotations, suspension system, the 

steering and the wheels rotations). 

 

 

 

 

 

 

 

 

 

 

 

Fig.6: the 5 blocks of the P406, Quad and motorcycle 

The following figure 7 describes the four blocks of the third 

subset (the frame translations, frame rotations, the steering 

and the wheels rotations) with no suspension system. 

The 4 blocks of kart and bike dynamic models acquire the 

same properties as the global system (see paragraph 2). 

Thus it is important to remark that the coupling terms and 

the uncertainties of modeling, estimation and noises are 

going to appear in the same way as passive inputs in the 

system. So they will be dissipated.  

It will be the same for other sub systems of the nominal 

model, because the same reasoning applies “mutatis 

mutandis”. The importance of our approach shows that the 

employement of the neglected terms are well chosen. 

In this paper we consider the car as a parent agent and 

quad, kart, motorcycle and bicycle as its descendants. In 

fact, the reference dynamic model is the 16 DoF model 

which we will identify blocks of each descendant in this 

global model to facilitate any task switching from one 

system to another or from one structure to another. The 

table 2 shows a correlation between the kart and a P406 

models as follows: 

- The dashed blocks represent the dynamics of the kart;  

- The not dashed blocks represent the dynamics provided 

by the four suspensions of P406. 

With this strategy we can  classify the five models using 

only the global car model for ambitions goals such as 

drawing, motion analysis and diagnosis…   

 

 

IV. SIMULATION 

V.  

The dynamic model of the kart without contact is generated 

with the symbolic calculations software (Maple).  

 

 

 

 

 

 

 

Figure 8: Block of simulation under MATLAB 
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To validate this decoupled model, detailed in the previous 

paragraph, we used a modified simulator version of 

(SimK106N) (G. Beurier [8] M’sirdi [12]). For this 

simulation, we apply a constant direction -0.7°;  

So we will take the kart model for the following simulation 

as an example to analyze the evolution of coupling terms 

compared with torques.   

 

 

 

 

 

 

 

 

 

 

 

Figure 9: The evolution of 2
nd

 coupling term 

 

We compared the terms of the equations c21. We observe 

that the amplitudes of coupling terms are lower than the 

input torque (fig. 9). The absence of a suspension system 

on the kart is translated by vibration of these parameters. 

On a normal car the coupling terms 𝜂𝑐
𝑖  are passive and 

converge to zero. 

 

 

 

 

 

 

 

 

 

 

 

    

Figure 10.a: The evolution of compared torque 

Figure 10.b: The evolution of 4
rd

 coupling term 

 

Even, we can neglect the 4
rd

coupling term to the compared 

torques (see Fig. 10 and equation c27). On the other side, 

the excellent attenuation of 𝜂𝑐
𝑖   in the case of a car is 

explained by the absorption of these parameters at the 

suspension system level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.a: The evolution of steering torque term 

Figure 11.b: The evolution of 5
th

 coupling term 

 

Using equation c27, we obtain figure 11 which shows that 

the 5
th

 coupling term is smaller than the amplitudes of the 

torque of wheels rotations and it can be neglected. Also the 

equation (c19) proves that the 1
st
coupling term is equal to a 

neglected term 𝜂1because of the absence of a suspension 

system.  

 

VI. CONCLUSION 

 

In this paper, a 16 DoF global dynamic model of a car is 

developed and exploited with its suspension system. This 

geometrical and kinematics model takes into account the 

unknown tire–ground contact forces. For diagnosis purpose 

based on decentralized robust observers, we split the model 

in sub-blocks in order to illustrate the passivity of the 

global system and the sub systems. We have also compared 

dynamics of 5 vehicles. This comparison allows 

understanding the rationale of the behavior of vehicles in 

perspectives this will be used for control design and 

diagnosis.  The simulator (SimK106N) was transformed to 

simulate the dynamic model of five kind of vehicles, 

allowed us to appreciate the coupling energy level flowing 

through the whole systems. 
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