
HAL Id: hal-02496325
https://hal.science/hal-02496325v1

Preprint submitted on 2 Mar 2020 (v1), last revised 7 Jun 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving Block Low-Rank Linear Systems by LU
Factorization is Numerically Stable

Nicholas J Higham, Théo Mary

To cite this version:
Nicholas J Higham, Théo Mary. Solving Block Low-Rank Linear Systems by LU Factorization is
Numerically Stable. 2020. �hal-02496325v1�

https://hal.science/hal-02496325v1
https://hal.archives-ouvertes.fr

SOLVING BLOCK LOW-RANK LINEAR SYSTEMS
BY LU FACTORIZATION IS NUMERICALLY STABLE∗

NICHOLAS J. HIGHAM† AND THEO MARY†

Abstract. Block low-rank (BLR) matrices possess a blockwise low-rank property that can be
exploited to reduce the complexity of numerical linear algebra algorithms. The impact of these low-
rank approximations on the numerical stability of the algorithms in floating-point arithmetic has not
previously been analyzed. We present rounding error analysis for the solution of a linear system by LU
factorization of BLR matrices. Assuming that a stable pivoting scheme is used, we prove backward
stability: the relative backward error is bounded by a modest constant times ε, where the low-rank
threshold ε is the parameter controlling the accuracy of the blockwise low-rank approximations. In
addition to this key result, our analysis offers three new insights into the numerical behavior of
BLR algorithms. First, we compare the use of a global or local low-rank threshold and find that a
global one should be preferred. Second, we show that performing intermediate recompressions during
the factorization can significantly reduce its cost without compromising numerical stability. Third,
we consider different BLR factorization variants and determine the update–compress–factor (UCF)
variant to be the best. Tests on a wide range of matrices from various real-life applications show
that the predictions from the analysis are realized in practice.

Key words. Block low-rank matrices, rounding error analysis, floating-point arithmetic, nu-
merical stability, LU factorization

AMS subject classifications. 65F05, 65G50

1. Introduction. In many applications requiring the solution of a linear system
Ax = v, the coefficient matrix A has been shown to have a blockwise low-rank prop-
erty: most of its off-diagonal blocks are of low numerical rank and can therefore be
well approximated by low-rank (LR) matrices. Several formats have been proposed
to exploit this property, differing in how the matrix is partitioned into blocks. In
this article, we focus on the block low-rank (BLR) format [3], which is based on a
flat, non-hierarchical partitioning allowing it to reduce both the theoretical complex-
ity [2] and the practical time and memory costs [5] of key numerical linear algebra
computations such as solving Ax = v by LU factorization.

Even though the BLR format has been extensively studied and widely used in
numerous applications (see, among others, [1,5,8,17,20,22]), little is known about its
numerical behavior in floating-point arithmetic. Indeed, no rounding error analysis
has been published for BLR matrix algorithms. The difficulty of such an analysis
lies in the fact that, unlike classical algorithms, there are two kinds of errors to
analyze: the floating-point errors (which depend on the unit roundoff u) and the low-
rank truncation errors (which depend on the low-rank threshold ε > u). Moreover,
these two kinds of errors cannot be easily isolated because the BLR compression
and factorization stages are often interlaced. Yet performing such an analysis is
crucial to better understand the effect of BLR approximations on the stability of
these algorithms and, in particular, to shed light on the following open problems.

1. It has been experimentally observed that the solution to BLR linear systems
generally yields a backward error closely related to the low-rank threshold ε. This is an
important and valuable property that has, however, never been formally proved. The
dependence of the backward error on the unit roundoff should also be investigated.

∗Version of March 1, 2020. Funding: This work was supported by Engineering and Physical
Sciences Research Council grant EP/P020720/1 and the Royal Society.
†Department of Mathematics, The University of Manchester, Manchester, M13 9PL, UK

(nick.higham@manchester.ac.uk, theo.mary@lip6.fr)

1

2. In contrast to hierarchical matrices, the number of block-rows and block-
columns in BLR matrices usually grows with the matrix size and may thus become
very large. It is therefore important to determine how the error grows as the matrix
size increases and whether it depends on the number of blocks.

3. The low-rank approximation Ãij to a block Aij is computed such that ‖Aij−
Ãij‖ ≤ εβij , where βij is a scalar that can be freely chosen and whose impact on the
numerical behavior of the algorithms is currently not well understood. In particular,
local (βij = ‖Aij‖) and global (βij = ‖A‖) low-rank thresholds have both been
proposed in the literature and should be compared.

4. Several BLR LU factorization algorithms can be distinguished, depending on
when the compression is performed. These algorithms have been compared in terms
of asymptotic complexity, performance, and storage requirements [19]. However, it is
not currently known how they compare in terms of numerical stability.

In this article, we answer these questions by doing detailed rounding error analyses
of various BLR matrix algorithms. We begin in section 2 with the preliminary material
necessary for the analysis. Section 3 analyzes several kernels involving LR matrices,
such as LR matrix–vector and matrix–matrix products. Then, section 4 builds upon
these results to analyze two BLR LU factorizations algorithms and their use to solve
BLR linear systems. Throughout the article, numerical experiments are interlaced
with theoretical results to illustrate them. We provide additional experiments on a
wide range of matrices coming from various real-life applications in section 5. We
gather our conclusions in section 6.

This article focuses on the direct solution of a BLR linear system Ax = v by LU
factorization of A. Such systems can be alternatively solved by iterative methods,
which rely on multiplying the BLR matrix A with a vector. We have also performed
the rounding error analysis of this algorithm, which we include as supplementary
material.

2. Technical background and experimental setting.

2.1. Low-rank (LR) and block low-rank (BLR) matrices. Let A ∈ Rb×b
have the SVD UΣV T , where Σ = diag(σi) with σ1 ≥ · · · ≥ σb ≥ 0. Given a target

rank k ≤ b, the quantity ‖A− Ã‖ for any rank-k matrix Ã is known to be minimized
for any unitarily invariant norm by the truncated SVD

Ã = U:,1:kΣ1:k,1:kV
T
:,1:k. (2.1)

If the singular values of A decay rapidly, ‖A− Ã‖ can be small even for k � b. In this

case, Ã is referred to as a low-rank (LR) matrix, and the cost of storing and computing

on Ã can be greatly reduced. While Ã can directly be represented by the truncated
SVD (2.1), in this article we use the alternative form Ã = XY T , where X = U:,1:k and
Y = V:,1:kΣ

T
1:k,1:k; the matrix X can thus be assumed to have orthonormal columns.

A block low-rank (BLR) representation Ã of a dense matrix A has the block p×p
form

Ã =


A11 Ã12 · · · Ã1p

Ã21 · · · · · ·
...

... · · · · · ·
...

Ãp1 · · · · · · App

 , (2.2)

where off-diagonal blocks Aij of size mi×nj are approximated by LR matrices Ãij =

2

XijY
T
ij of rank kij , where Xij ∈ Rmi×kij and Yij ∈ Rnj×kij .

We assume that the ranks kij are chosen as

kij = min
{
`ij : ‖Aij − Ãij‖ ≤ εβij , rank

(
Ãij
)

= `ij

}
, (2.3)

where ε > 0 is referred to as the low-rank threshold and controls the accuracy of
the approximations Ãij ≈ Aij , and where we have either βij = ‖Aij‖ or βij = ‖A‖.
The parameters βij therefore control whether the blocks are approximated relative to
their own norm ‖Aij‖ or the norm of the global matrix ‖A‖. We refer to the low-rank
threshold as local in the former case and as global in the latter case.

With a local threshold, kij corresponds to the usual definition of numerical rank.
Importantly, with a global threshold, blocks that do not have rapidly decaying singular
values may still be approximated by LR matrices if they are of small norm compared
with ‖A‖. Indeed, even though such blocks have high numerical rank relative to
their own norm, their contribution to the global computation can be considered to
be negligible compared with other blocks of larger norm. In the most extreme cases,
some blocks may be of norm smaller than ε: these blocks can then approximated
by zero-rank matrices, that is, they may be dropped entirely. Exploiting this fact
can drastically improve the compression, sometimes even leading to an improved
asymptotic complexity [2].

Hereinafter, we denote by r the largest of the ranks kij , and we assume for
simplicity that all blocks are of the same dimensions b × b, and so n = pb. We
emphasize that the compression of the blocks is controlled solely by the ε and βij
parameters. The maximal rank r is not tunable but rather depends on the matrix
and on the choice of threshold.

Throughout this article, the unsubscripted norm ‖ ·‖ denotes the Frobenius norm
‖A‖ = (

∑
i,j |aij |2)1/2, which we use for all our error analysis. We choose to work

with this norm for three of its useful properties. First, it is submultiplicative (also
called consistent): ‖AB‖ ≤ ‖A‖‖B‖. Second, it is invariant under multiplication on
the left by a matrix with orthonormal columns X: ‖XA‖ = ‖A‖ (note that X is not
necessarily unitary: XTX = I must hold but XXT = I need not). Finally, unlike for
the spectral norm, it is easy to switch between blockwise and global bounds using the

relation ‖A‖ =
(∑

i,j ‖Aij‖2
)1/2

for any block partitioning of A. We will use all these
properties of the Frobenius norm without comment. More specific examples of why
the Frobenius norm is the best choice for our analysis are given throughout sections
3 and 4.

2.2. Floating-point arithmetic and rounding error analysis. Throughout
the article, we use the standard model of floating-point arithmetic [13, sec. 2.2]

f l(x op y) = (x op y)(1 + δ), |δ| ≤ u, op ∈ {+,−,×, /}. (2.4)

We also define γk = ku/(1 − ku) for ku < 1. We will use without comment the
relations jγk ≤ γjk and γj + γk ≤ γj+k [13, Lem. 3.3], which hold for any j, k ≥ 1
(including non-integer j, k, which we will sometimes use).

We recall normwise error bounds for some basic matrix computations.

Lemma 2.1 (Error bounds for matrix–vector and matrix–matrix products [13,
p. 71]). Let A ∈ Ra×b, v ∈ Rb, and w = Av. The computed ŵ satisfies

ŵ = (A+∆A)v, ‖∆A‖ ≤ γb‖A‖. (2.5)

3

Let B ∈ Rb×c and let C = AB. The computed Ĉ satisfies

Ĉ = AB +∆C, ‖∆C‖ ≤ γb‖A‖‖B‖. (2.6)

Lemma 2.2 (Backward error bound for triangular systems [13, Thm. 8.5]). Let
T ∈ Rb×b be nonsingular and triangular and let v ∈ Rb. The computed solution x̂ to
the triangular system Tx = v satisfies

(T +∆T)x̂ = v, ‖∆T‖ ≤ γb‖T‖. (2.7)

The computed solution X̂ to the multiple right-hand side triangular system TX = V ,
where V ∈ Rb×c, satisfies

TX̂ = B +∆B, ‖∆B‖ ≤ γb‖T‖‖X̂‖. (2.8)

Lemma 2.3 (Backward error bound for LU factorization [13, Thm. 9.3]). If the

LU factorization of A ∈ Rb×b runs to completion then the computed LU factors L̂ and
Û satisfy

L̂Û = A+∆A, ‖∆A‖ ≤ γb‖L̂‖‖Û‖. (2.9)

Finally, we make the assumption that rounding errors can be ignored in the
computation of the LR approximation Ãij of any block Aij via its truncated SVD.

Assumption 2.4 (Error bound for the truncated SVD computation). Given a
block Aij ∈ Rb×b and two positive parameters ε (the low-rank threshold) and βij, the

LR block Ãij computed via the truncated SVD Ãij = X̂:,1:kij Σ̂1:kij ,1:kij Ŷ
T
:,1:kij

satisfies

Ãij = Aij +∆Aij , ‖∆Aij‖ ≤ εβij .

We recall that βij = ‖Aij‖ or βij = ‖A‖ controls whether we use a local or global
threshold, as explained in the previous section.

Note that Assumption 2.4 is only satisfied if the unit roundoff u is safely smaller
than the low-rank threshold ε, which we assume to be the case throughout the analysis.

2.3. Experimental setting. All numerical experiments reported in this article
have been performed with MATLAB R2018b. Unless otherwise specified, we use
IEEE double precision floating-point arithmetic. In some experiments we also use
IEEE single and half precisions. The use of half precision has been simulated as
described in [15]. We have made all our codes used for the experiments available
online1.

One of the most common application domains where block low-rank matrices arise
is the solution of discretized partial differential equations. These matrices are then
sparse. In our analysis we however consider dense matrices, which serve as building
blocks for sparse direct solvers. Therefore, in our experiments, we use a set of dense
matrices obtained from the Schur complements of sparse matrices: these correspond
to the root separator in the context of a nested dissection [10] solver.

In section 4, we illustrate our analysis by interlacing it with experiments on ma-
trices coming from a Poisson problem −∆u = f, discretized with a 7-point finite-
difference scheme on a 3D domain of dimensions k × k × k. This leads to a dense
k2× k2 matrix. We test variable sizes (from n = 322 to n = 1282) to explore how the

1https://gitlab.com/theo.andreas.mary/BLRstability

4

https://gitlab.com/theo.andreas.mary/BLRstability

error behaves as n = k2 increases. In section 5, we complement these tests with ex-
periments on matrices from the SuiteSparse collection [9] coming from various real-life
applications.

Throughout sections 4.1 and 4.2 we present experiments on the BLR LU factor-
ization. Instead of measuring the backward error for LU factorization ‖A− L̃Ũ‖/‖A‖,
which is expensive to compute, we solve a linear system Ax = v by forward and back-
ward substitutions with the BLR LU factors (as described in section 4.3), where x is
the vector of all ones. We then measure the backward error

‖Ax̂− v‖
‖A‖‖x̂‖+ ‖v‖

(2.10)

of the computed x̂, which is much cheaper to compute.
For all experiments, the block size is set to b = 256 unless otherwise specified.

3. Rounding error analysis of LR matrix kernels. In this section we ana-
lyze some key kernels involving LR matrices, which are necessary to the analysis of
the BLR matrix algorithms considered in the subsequent sections.

3.1. LR matrix times vector or full matrix. We begin by analyzing the
product of an LR matrix Ã with a vector v, for which we can establish a backward
error bound. We then generalize the analysis to the product of Ã with a full matrix
B, for which only a forward error bound can be derived.

Lemma 3.1 (LR matrix times vector). Let A ∈ Rb×b, X ∈ Rb×r, Y ∈ Rb×r, and

v ∈ Rb, where X has orthonormal columns and Ã = XY T is an LR approximation
of A satisfying ‖A − Ã‖ ≤ εβ for some β > 0. If the matrix–vector product Av is
computed as z = X(Y T v), the computed ẑ satisfies

ẑ = (Ã+∆Ã)v, ‖∆Ã‖ ≤ γc‖Ã‖, (3.1)

where c = b+ r3/2, and therefore

ẑ = (A+∆A)v, ‖∆A‖ ≤ γc‖A‖+ ε(1 + γc)β (3.2)

= γc‖A‖+ εβ +O(uε).

Proof. Let w = Y T v; the computed ŵ satisfies

ŵ = (Y +∆Y)T v, ‖∆Y ‖ ≤ γb‖Y ‖ = γb‖Ã‖. (3.3)

Let z = Xŵ; the computed ẑ satisfies

ẑ = (X +∆X)ŵ, ‖∆X‖ ≤ γr‖X‖ = γr
√
r. (3.4)

Combining (3.3) and (3.4), we obtain ẑ = (X + ∆X)(Y + ∆Y)T v = (Ã + ∆Ã)v,

with ‖∆Ã‖ ≤ (γb + γr
√
r + γbγr

√
r)‖Ã‖ ≤ γc‖Ã‖, yielding (3.1). The bound (3.2) is

obtained by replacing Ã by A+ E, where ‖E‖ ≤ εβ.

Note that for the particular choice β = ‖A‖, the bound (3.2) simplifies to

ẑ = (A+∆A)v, ‖∆A‖ ≤
(
ε+ γc + εγc

)
‖A‖.

This is a backward error bound, from which the forward error bound

‖ẑ −Av‖ ≤
(
ε+ γc + εγc

)
‖A‖‖v‖

5

trivially follows.
Before commenting on its significance, we immediately generalize this result to

the case where v is a full matrix rather than a vector, in which case only a forward
error bound can be obtained.

Lemma 3.2 (LR matrix times full matrix). Let A ∈ Rb×b and V ∈ Rb×m,

and let Ã = XY T be defined as in Lemma 3.1. If the product AV is computed as
Z = X(Y TV), the computed Ẑ satisfies

‖Ẑ − ÃV ‖ ≤ γc‖Ã‖‖V ‖ (3.5)

and therefore

‖Ẑ −AV ‖ ≤ γc‖A‖‖V ‖+ ε(1 + γc)β‖V ‖, (3.6)

= γc‖A‖‖V ‖+ εβ‖V ‖+O(uε),

with c = b+ r3/2.

Proof. The result follows from the columnwise bounds

‖ẑj − Ãvj‖ ≤ γc‖Ã‖‖vj‖, j = 1: m,

that are obtained from (3.1).

For β = ‖A‖, bound (3.6) simplifies to

‖Ẑ −AV ‖ ≤
(
ε+ γc + εγc

)
‖A‖‖V ‖. (3.7)

The bounds (3.1) and (3.5) generalize the classical bounds (2.5) and (2.6) to the

case where Ã is an LR matrix rather than a full one. The bounds (3.2) and (3.6) have
a more informative form, as they measure not only the effect of floating-point errors
but also that of the low-rank truncation errors. They consist of three terms: the term
ε, corresponding to the low-rank truncation errors; the term γc, corresponding to the
floating-point errors; and their product εγc, which reflects the fact that the two types
of error accumulate, although this O(uε) term can be considered to be of lower order
and will not always be explicitly tracked in the rest of the analysis below.

Since u � ε, the main conclusion of Lemma 3.1 is that the bound (3.2) is dom-
inated by the low-rank truncation error term εβ and is almost independent of both
the unit roundoff and the constants b and r. This is a very positive result, since for
β = ‖A‖ we have ‖∆A‖ . ε‖A‖, meaning that the computation is backward stable
with respect to the low-rank threshold ε. Moreover, a crucial consequence of this
result is that we can and should use the lowest floating-point precision such that u
remains safely smaller than ε. This is illustrated by Figure 3.1a, which shows that
the backward error is not affected by the use of single rather than double precision
arithmetic when ε � 10−8. Similarly, half precision arithmetic can be used with
no impact on the error when ε � 10−4. In this experiment, the backward error is
computed by the formula

‖ẑ −Av‖
‖A‖‖v‖

, (3.8)

which is a consequence of the Rigal–Gaches theorem [13, Thm. 7.1], [21].
It is important to note that Lemma 3.1, as well as all other results in this pa-

per, provides only a normwise error bound. This is unavoidable because low-rank

6

10
-15

10
-10

10
-5

10
0

10
-15

10
-10

10
-5

10
0

(a) Backward error (3.8) for three floating-
point precisions.

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

(b) Forward error (3.9) with multiplications
performed in single precision, either classi-
cally or by Strassen’s algorithm.

Fig. 3.1. Errors for different ε for computing z = Ãv (left) or C = ÃV (right), with β = ‖A‖,
b = 1024, A = gallery(’randsvd’,b,1e16,3), v = rand(b,1), and V = rand(b,128).

approximations do not satisfy useful componentwise error bounds. Interestingly, this
means that algorithms that sacrifice componentwise stability for speed, such as the
3M algorithm to multiply complex matrices with only three real multiplications [12],
or fast matrix algorithms such as Strassen’s algorithm, are much more attractive when
used on LR matrices, since only normwise stability can be expected anyway. Another
possible drawback of Strassen’s algorithm is that the constants in the error bound are
much larger: for example, for matrix multiplication, the constant b in (2.6) increases
to O(blog2 12) ≈ O(b3.6) [11], [13, sec. 23.2.2]. This larger constant is insignificant for
LR matrices because the low-rank errors dominate the floating-point ones, and so the
constant c in (3.2) has essentially no impact on the overall error. This is illustrated
in Figure 3.1b, where we compare the error2

‖Ẑ −AV ‖
‖A‖‖V ‖

(3.9)

for computing the product of two full matrices, Z = AV , with that for computing
the product of an LR matrix with a full one, Z = ÃV , for multiplication performed
classically and by Strassen’s algorithm. While the use of Strassen’s algorithm leads
to an error larger by about an order of magnitude for the product Z = AV , the error
for the product Z = ÃV does not increase as long as the threshold ε is large enough
to hide the larger constant of Strassen’s algorithm.

Even though the constant c = b + r3/2 has no significant impact on the overall
error, further insight can nevertheless be gained by analyzing its form. First, note
that c heavily depends on the choice of norm used for the analysis: the proof of
Lemma 3.1 repeatedly uses the fact that the Frobenius norm is both submultiplicative
and unitarily invariant, which helps us to obtain a relative small constant. With the
maximum norm ‖A‖M = maxi,j |aij | (for example) which satisfies neither of these
two properties, bound (3.5) holds with a much larger constant c = b3/2r(b + r).
Second, it may seem surprising that γc is larger than γb, the constant in the error

2Note that the quantity (3.9) is not a backward error; it can be interpreted as a combination of
the columnwise backward errors (3.8) for each column vi of V .

7

bound (2.5) for the classical matrix–vector product, since computing Ãv rather than
Av reduces the number of flops from 2b2 to 4br. However, not all flops are equal, as is
clearly illustrated by the case of inner and outer products xT y and xyT of two vectors
x, y ∈ Rn, which require O(n) and O(n2) flops, but yield error bounds proportional
to γn and γ1, respectively. In the case of Lemma 3.1, b rounding errors combine in
the first product w = Y T v, but r additional errors combine in the second product
Xw. The extra

√
r factor comes from the term ‖X‖, and could thus be avoided by

using the 2-norm rather than the Frobenius norm; however we need the Frobenius
norm when working on BLR matrices, as will become clear in section 4.

We also note the importance of assuming that X has orthonormal columns, as it
allows for replacing ‖Y ‖ by ‖Ã‖ in (3.3). Without that assumption, the bound would

be proportional to ‖X‖‖Y ‖ instead of ‖Ã‖, reflecting the fact that the computation

X(Y T v) would be subject to possibly severe cancellation when ‖X‖‖Y ‖ � ‖Ã‖. Note
that assuming the columns of Y , rather than X, to be orthonormal would lead to the
same bound. We also mention that using the alternative form Ã = XΣY T , with
Σ ∈ Rr×r and where both X and Y have orthonormal columns yields a similar bound
with a slightly different constant c.

3.2. LR matrix times LR matrix. Next we analyze the product of two LR
matrices Ã = XAY

T
A and B̃ = YBX

T
B , where XA and XB have orthonormal columns.

Note that we consider B̃ of the form YBX
T
B rather than XBY

T
B , for reasons which

will be made clear below.

Lemma 3.3 (LR matrix times LR matrix). Let A,B ∈ Rb×b and

Ã = XA︸︷︷︸
b×r

Y TA︸︷︷︸
r×b

, B̃ = YB︸︷︷︸
b×r

XT
B︸︷︷︸

r×b

,

where XA and XB have orthonormal columns and

‖A− Ã‖ ≤ εβA, ‖B − B̃‖ ≤ εβB .

If the product C = ÃB̃ is computed as C = (XA(Y TA YB))XT
B or C = XA((Y TA YB)XT

B),
where the parentheses indicate the order in which the intermediate products are per-
formed, then the computed Ĉ satisfies

‖Ĉ − ÃB̃‖ ≤ γc‖Ã‖‖B̃‖, (3.10)

where c = b+ 2r3/2, and therefore

‖Ĉ −AB‖ ≤ γc‖A‖‖B‖+ ε(1 + γc)
(
βA‖B‖+ ‖A‖βB + εβAβB

)
. (3.11)

Proof. We consider the case where the product is computed as (ÃYB)XT
B =

(XA(Y TA YB))XT
B , the other case being analogous. Let W = ÃYB ; by Lemma 3.2,

the computed W satisfies

Ŵ = ÃYB +∆W, ‖∆W‖ ≤ γb+r3/2‖Ã‖‖YB‖ = γb+r3/2‖Ã‖‖B̃‖.

Let C = ŴXT
B ; the computed Ĉ satisfies

Ĉ = ŴXT
B +∆C, ‖∆C‖ ≤ γr‖Ŵ‖‖XB‖ ≤ γr3/2(1 + γb+r3/2)‖Ã‖‖B̃‖,

= ÃB̃ +∆WXT
B +∆C = ÃB̃ + F.

8

Bounding ‖F‖ ≤ γc‖Ã‖‖B̃‖, with c = b+ 2r3/2, proves (3.10). We then replace Ã by

A+ EA and B̃ by B + EB to obtain

Ĉ = AB + F +G, ‖F‖ ≤ γc‖A‖‖B‖+ γcε
(
βA‖B‖+ ‖A‖βB + εβAβB

)
,

‖G‖ = ‖EAB +AEB + EAEB‖ ≤ ε
(
βA‖B‖+ ‖A‖βB + εβAβB

)
,

which yields (3.11).

In the case βA = ‖A‖, βB = ‖B‖, the bound (3.11) simplifies to

‖Ĉ −AB‖ ≤
(
2ε+ ε2 + γc(1 + ε)2

)
‖A‖‖B‖, (3.12)

which is similar to bound (3.7) from Lemma 3.2 for an LR matrix times a full matrix.
In the context of the BLR matrix LU factorization, computing products of LR

matrices asymptotically represents the dominant cost. This has generated interest
in strategies seeking to reduce this cost. For instance, in [2] it is proposed that the
middle product M = Y TA YB should be recompressed, that is, we should compute an

LR approximation M̃ = XMY
T
M ≈M . Indeed, matrix M often has a lower numerical

rank than A and B, because even though σmin(Ã) and σmin(B̃) are both larger than

ε, σmin(M) = σmin(ÃB̃) can potentially be as small as ε2. Note that this is only

true when Ã = XAY
T
A and B̃ = YBX

T
B , that is, when the matrices with orthonormal

columns XA and XB are on the outside of the product ÃB̃.
The cost of computing the product C = ÃB̃ can thus be reduced by replacing M

by an LR matrix. The following lemma bounds the additional errors introduced in
doing so.

Lemma 3.4 (LR matrix times LR matrix with intermediate recompression). Let

A,B, Ã, B̃ be defined as in Lemma 3.3 and let M = Y TA YB. If the product C =

ÃB̃ is computed as (XAXM)(Y TMX
T
B), where XM , YM ∈ Rr×r, XM has orthonormal

columns, and M̃ = XMY
T
M satisfies ‖M − M̃‖ ≤ εβM , then the computed Ĉ satisfies

‖Ĉ − ÃB̃‖ ≤ ε(1 + γc)βM + γc‖Ã‖‖B̃‖+O(u2), (3.13)

where c = b+ r2 + 2r3/2, and therefore

‖Ĉ−AB‖ ≤ γc‖A‖‖B‖+ ε(1 +γc)
(
βM +βA‖B‖+‖A‖βB + εβAβB

)
+O(u2). (3.14)

Proof. In order to do the compression, we first compute M = Y TA YB , obtaining

M̂ satisfying

M̂ = M +∆M, ‖∆M‖ ≤ γb‖YA‖‖YB‖ = γb‖Ã‖‖B̃‖.

Then, we compute an LR approximation to M̂ satisfying M̃ = M̂+EM , ‖EM‖ ≤ εβM .

Let W = XAXM and Z = Y TMX
T
B ; the computed Ŵ and Ẑ satisfy

Ŵ = XAXM +∆W, ‖∆W‖ ≤ γr‖XA‖‖XM‖ ≤ γr2 , (3.15)

Ẑ = Y TMX
T
B +∆Z, ‖∆Z‖ ≤ γr‖XB‖‖YM‖ ≤ γr3/2‖M̃‖. (3.16)

9

Finally, let C = Ŵ Ẑ; the computed Ĉ satisfies

Ĉ = Ŵ Ẑ + F, ‖F‖ ≤ γr‖Ŵ‖‖Ẑ‖ ≤ γr3/2‖M̃‖+O(u2),

= XAXMY
T
MX

T
B +∆WY TMX

T
B +XAXM∆Z +∆W∆Z + F

= XA

(
M̂ + EM

)
XT
B +∆WY TMX

T
B +XAXM∆Z +∆W∆Z + F

= ÃB̃ +XA

(
∆M + EM

)
XT
B +∆WY TMX

T
B +XAXM∆Z +∆W∆Z + F

= ÃB̃ +∆C, ‖∆C‖ ≤ ε(1 + γr2+2r3/2)βM + γc‖Ã‖‖B̃‖+O(u2),

where c = b + r2 + 2r3/2. We obtain the slightly weaker bound (3.13) by bounding

γr2+2r3/2 by γc. Replacing Ã by A+EA and B̃ by B+EB yields (3.14) and concludes
the proof.

The introduction of an intermediate low-rank approximation has two consequences.
First, the constant c is slightly larger in Lemma 3.4 than in Lemma 3.3, a consequence
of computing one more product than previously (four instead of three products). Sec-
ond, and more importantly, a new low-rank truncation term εβM is introduced and is
dominant in the bound (3.13) on ‖Ĉ − ÃB̃‖. However, in the overall bound (3.14) on

‖Ĉ−AB‖, εβM is just one more term that adds to ε
(
βA‖B‖+‖A‖βA

)
. For instance,

in the case βA = ‖A‖, βB = ‖B‖, and βM = ‖A‖‖B‖, the bound (3.14) simplifies to

‖Ĉ −AB‖ ≤
(
3ε+ ε2 + γc(1 + 3ε+ ε2)

)
‖A‖‖B‖+O(u2),

which is roughly 3ε‖A‖‖B‖, compared with roughly 2ε‖A‖‖B‖ in the bound (3.12).

3.3. Triangular system with LR right-hand side. We now consider the
solution of a triangular system where the right-hand side is an LR matrix B̃ = Y XT ,
which will be needed to analyze the UCF factorization in section 4.2. Note that we
consider B̃ of the form Y XT rather than XY T , where X has orthonormal columns,
because this is the form that arises in the UCF factorization.

Lemma 3.5 (Triangular system with LR right-hand side). Let T ∈ Rb×b be a

triangular matrix and let B ∈ Rb×m such that the LR matrix B̃ = Y XT , where X
has orthonormal columns, satisfies ‖B − B̃‖ ≤ εβ for some β > 0. If the solution to

the triangular system T Z̃ = B̃ is obtained as the LR matrix Z̃ = ŴXT , where Ŵ is
the computed solution ot the system TW = Y , then Z̃ satisfies

TZ̃ = B̃ +∆B̃, ‖∆B̃‖ ≤ γb‖T‖‖Z̃‖ (3.17)

and therefore
T Z̃ = B +∆B, ‖∆B‖ ≤ γb‖T‖‖Z̃‖+ εβ. (3.18)

Proof. By Lemma 2.2, the computed solution Ŵ to the triangular system TW =
Y satisfies TŴ = Y + ∆Y , where ‖∆Y ‖ ≤ γb‖T‖‖Ŵ‖. Defining Z̃ = ŴXT , we

obtain T Z̃ = B̃ + ∆B̃, with ‖∆B̃‖ = ‖∆Y ‖ ≤ γb‖T‖‖Z̃‖, proving (3.17). Replacing

B̃ by B + E, with ‖E‖ ≤ εβ, yields (3.18) and concludes the proof.

Note that the assumption that X has orthonormal columns is important, as oth-
erwise we could only prove that ‖∆B̃‖ ≤ γb‖T‖‖Ŵ‖‖X‖, reflecting the possibility of

cancellation if ‖Z̃‖ � ‖Ŵ‖‖X‖.
Also note that the solution Z̃ is given in LR form. If it is needed as a full matrix

instead, we must compute the product ŴXT and the analysis must therefore be
adapted to take into account the errors introduced by this additional computation.

10

4. Rounding error analysis of solving BLR linear systems by LU fac-
torization. We now turn to BLR matrices, building on the results on LR matrices
obtained in the previous section. We first analyze two LU factorization algorithms
in sections 4.1 and 4.2, and then turn to their use to solve to BLR linear systems in
section 4.3.

4.1. BLR matrix LU factorization: UFC algorithm. To compute the LU
factorization of BLR matrices, the classical partitioned LU factorization of full matri-
ces must be adapted by incorporating the compressions of the blocks into LR matrices.
Several algorithms have been distinguished depending on when this compression step
is performed. Algorithm 4.1 describes the UFC algorithm (standing for update, fac-
tor, compress). The algorithm is written in a left-looking fashion: at step k of the
UFC algorithm, the kth block-row and block-column are first updated (lines 4–7)
using the BLR LU factors “to the left” (note that at step k = 1, the update step
therefore does not do anything). Then, this block-row and block-column are factored
(lines 9–12) before being finally compressed (lines 14–17).

Another algorithm, referred to as UCF (update, compress, factor), is analyzed in
section 4.2.

Algorithm 4.1 BLR LU factorization: UFC algorithm

1: {Input: a p× p block matrix A. Output: its BLR LU factors L̃ and Ũ .}
2: for k = 1 to p do
3: Update:
4: Akk ← Akk −

∑k−1
j=1 L̃kjŨjk.

5: for i = k + 1 to p do
6: Aik ← Aik −

∑k−1
j=1 L̃ijŨjk and Aki ← Aki −

∑k−1
j=1 L̃kjŨji.

7: end for
8: Factor:
9: Compute the LU factorization LkkUkk = Akk.

10: for i = k + 1 to p do
11: Solve LikUkk = Aik for Lik and LkkUki = Aki for Uki.
12: end for
13: Compress:
14: Set L̃kk = Lkk and Ũkk = Ukk.
15: for i = k + 1 to p do
16: Compute LR approximations L̃ik ≈ Lik and Ũki ≈ Uki.
17: end for
18: end for

We recall that, for all the experiments on the BLR LU factorization, we measure
the backward error by solving a linear system as explained in section 2.3.

The next theorem analyzes the UFC algorithm. We recall that the βik parameters
control the type of threshold (global or local) and are defined by (2.3).

Theorem 4.1 (BLR LU factorization: UFC algorithm). Let A ∈ Rn×n be a
nonsingular matrix partitioned into p2 blocks of order b. If Algorithm 4.1 runs to
completion it produces computed BLR LU factors L̃ and Ũ of A satisfying

A = L̃Ũ +∆A+ F +G,

11

with ‖∆A‖ ≤ γp‖A‖ and ‖F‖ ≤ γc‖L̃‖‖Ũ‖+O(uε), where c = b+ 2r3/2 + p and

Gik =


EikŨkk i > k,

0 i = k,

L̃iiEik i < k,

‖Eik‖ ≤ εβik.

Proof. The (i, k) block of the L factor is computed by solving

LikŨkk = Rik, Rik = Aik −
k−1∑
j=1

L̃ijŨjk, i > k, (4.1)

where L̃ and Ũ are the partial BLR LU factors computed in the previous k − 1 steps

(line 16 of Algorithm 4.1). Let R
(j)
ik = L̃ijŨjk; by (3.10), the computed R̂

(j)
ik satisfies

R̂
(j)
ik = L̃ijŨjk +∆R

(j)
ik , ‖∆R(j)

ik ‖ ≤ γd‖L̃ij‖‖Ũjk‖+O(u2) (4.2)

with d = b+ 2r3/2. The computed R̂ik then satisfies

R̂ik = Aik ◦ (J +Θk)−
k−1∑
j=1

R̂
(j)
ik ◦ (J +Θj), |Θj | ≤ γpJ, (4.3)

where J is the matrix of ones and ◦ denotes the Hadamard product (A◦B = (aijbij)).
By (2.8) we have

L̂ikŨkk = R̂ik +∆R
(k)
ik , ‖∆R(k)

ik ‖ ≤ γb‖L̂ik‖‖Ũkk‖. (4.4)

After compression, we finally obtain the BLR factor L̃ik = L̂ik + Eik, with ‖Eik‖ ≤
εβik. Combining (4.2), (4.3), and (4.4) gives

Aik ◦ (J +Θk)−
k∑
j=1

L̃ijŨjk =

k−1∑
j=1

∆R
(j)
ik ◦ (J +Θj)−∆R(k)

ik − EikŨkk.

We therefore obtain

Aik −
k∑
j=1

L̃ijŨjk = ∆Aik + Fik +Gik, ‖∆Aik‖ ≤ γp‖Aik‖, (4.5)

‖Fik‖ ≤ γd+p+O(u)

(k−1∑
j=1

‖L̃ij‖‖Ũjk‖
)

+ γb‖L̂ik‖‖Ũkk‖

≤ γd+p+O(ε)

(k∑
j=1

‖L̃ij‖‖Ũjk‖
)
, (4.6)

‖Gik‖ ≤ ‖EikŨkk‖ ≤ εβik‖Ũkk‖, i > k. (4.7)

This concludes the blocks for i > k. For i = k, Lkk is determined together with Ukk on
line 9 of Algorithm 4.1, and by Lemma 2.3 we have ‖L̃kkŨkk− R̂kk‖ ≤ γb‖L̃kk‖‖Ũkk‖.
Therefore (4.4) holds for i = k, too, and hence so does (4.5), with the same bound (4.6)
on ‖Fkk‖ and with Gkk = 0, because diagonal blocks are not compressed. Finally,

12

the case i < k is analogous to the case i > k and yields (4.5) where the bound (4.6)
becomes

‖Fik‖ ≤ γd+p+O(ε)

(i∑
j=1

‖L̃ij‖‖Ũjk‖
)

(4.8)

and with
‖Gik‖ ≤ εβik‖L̃ii‖, i < k. (4.9)

We have therefore proved that A− L̃Ũ = ∆A+F +G, where Gkk = 0 and blockwise
bounds on ‖∆A‖, ‖F‖, and ‖G‖ are given by (4.5)–(4.9). It thus remains to derive
global bounds. Bounding ‖G‖ is delayed to section 4.1.1, as it depends on the choice
of the βik parameters. The bound ‖∆A‖ ≤ γp‖A‖ trivially holds. Finally, for matrix
F , the Cauchy–Schwarz inequality gives

‖F‖ ≤ γd+p+O(ε)

(p∑
i=1

p∑
k=1

(min(i,k)∑
j=1

‖L̃ij‖‖Ũjk‖
)2)1/2

≤ γd+p+O(ε)

(p∑
i=1

i∑
j=1

‖L̃ij‖2
p∑
k=1

k∑
j=1

‖Ũjk‖2
)1/2

≤ γd+p+O(ε)

((p∑
i=1

‖L̃i‖2
p∑
k=1

‖Ũk‖2
))1/2

≤ γd+p‖L̃‖‖Ũ‖+O(uε), (4.10)

where L̃i and Ũk denote the ith block-row of L̃ and kth block-column of Ũ , respec-
tively.

Theorem 4.1 yields a backward error bound that is comparable with the other
results obtained so far: we obtain a term ‖∆A‖+‖F‖ proportional to the unit roundoff
u, and a term ‖G‖ depending on the low-rank threshold ε, the latter likely dominating
the former. However, before further commenting on the significance of this bound, we
must compute a global bound on ‖G‖ by examining several possible choices for the
βik parameters.

4.1.1. Bounding ‖G‖ and choice of βik. The blockwise bounds on ‖Gik‖
given in Theorem 4.1 yield the global bound

‖G‖2 ≤ ε2
p∑
k=1

(
‖L̃kk‖2

k−1∑
i=1

β2
ik + ‖Ũkk‖2

p∑
i=k+1

β2
ik

)
.

With a local threshold βik = ‖Aik‖, we have

‖G‖ ≤ ε
(p∑
k=1

max
(
‖L̃kk‖, ‖Ũkk‖

)2 p∑
i 6=k

‖Aik‖2
)1/2

≤ ε max
k=1:p

(
max

(
‖L̃kk‖, ‖Ũkk‖

))
‖A‖. (4.11)

On the other hand, a global threshold βik = ‖A‖ yields

‖G‖ ≤ ε
(p∑
k=1

max
(
‖L̃kk‖, ‖Ũkk‖

)2 p∑
i 6=k

‖A‖2
)1/2

≤ (p− 1)1/2ε‖D‖‖A‖, (4.12)

13

where D is the diagonal matrix defined by Dkk = max
(
‖L̃kk‖, ‖Ũkk‖

)
. Bound (4.12)

is thus up to a factor
(
p(p− 1)

)1/2 ≈ p times larger than (4.11).
Two main observations can be made. First, the use of a global threshold leads

to a bound about p times larger than with a local threshold. The question is then
whether this increased error allows for a better compression and thus pays off by
reducing the number of flops for the computation. To answer this question we must
assess which type of threshold achieves the best flops–accuracy tradeoff. To do so,
we perform the following experiment in Figure 4.1a: taking several values of ε, we
plot the error (2.10) as a function of the corresponding number of flops required to
compute the factorization. This experiment shows that a global threshold achieves
the best tradeoff, since it is always closer to the bottom left corner of the plot: that
is, for the same accuracy as a local threshold, a global threshold performs fewer flops
or, equivalently, for the same number of flops as a local threshold, a global threshold
delivers a more accurate result. A global threshold is therefore the best choice for
this matrix and algorithm. We will show in section 5 this remains the case for LU
factorization of a wide range of BLR matrices.

The second important observation is that the error depends on the norm of the
diagonal blocks of the LU factors (max(‖L̃kk‖, ‖Ũkk‖) in (4.11) and ‖D‖ in (4.12)).
This is due to the compress step (lines 14–17 of Algorithm 4.1) being performed after
the factor step (lines 9–12). Indeed, the blocks that are compressed are equal to
AikU

−1
kk and L−1kkAki and so their norms depend on those of the diagonal blocks. This

property of the UFC factorization is undesirable because the L and U factors are
often not scaled comparably: the entries of L are bounded by 1 with partial pivoting,
whereas those of U are scaled similarly to those of A. As a consequence, the average
ranks of the blocks differ depending on whether they belong to the L or U factors,
even for symmetric matrices where U = LT . This is illustrated in Figure 4.1b, where
both the local and global threshold strategies lead to a U factor with lower ranks than
the L factor.

There exist several solutions to avoid the dependence of the ranks of the BLR
LU factors and the backward error on the norms of the diagonal blocks. One solution
consists in scaling the βik differently for the L and U factors: specifically, setting
βik = ‖Aik‖/‖Ũkk‖ (if i > k) and βik = ‖Aik‖/‖L̃ii‖ (if i < k) changes bound (4.11)
to

‖G‖ ≤ ε‖A‖ (4.13)

and setting βik = ‖A‖/‖Ũkk‖ (if i > k) and βik = ‖A‖/‖L̃ii‖ (if i < k) changes
bound (4.12) to

‖G‖ ≤ pε‖A‖. (4.14)

This scaling of the threshold yields similar ranks in both L and U , as shown in
Figure 4.1b. Even though this strategy does not achieve a visibly better flops–accuracy
tradeoff, as illustrated in Figure 4.1a, in the following we consider scaled thresholds
since they simplify the bounds.

Note that there are alternative strategies to scaling the threshold. For example
computing an LDU rather than LU factorization, where both the L and U factors have
entries bounded by one. Interestingly, as we show in section 4.2, another solution is
to perform a UCF factorization, which avoids this issue by compressing the blocks
before factorizing them.

4.1.2. General comments on Theorem 4.1. Outside the technical discus-
sion of the previous section on how to choose the βik parameters, some higher level

14

0.6 0.8 1 1.2 1.4 1.6 1.8

10
10

10
-15

10
-10

10
-5

(a) Flops–accuracy tradeoff. Each point cor-
responds to a different ε threshold.

10
-12

10
-10

10
-8

10
-6

10
-4

1

1.05

1.1

1.15

(b) Ratio between the storage for the BLR L̃

and Ũ factors.

Fig. 4.1. Comparison of several choices for βik in the BLR UFC factorization (Algorithm 4.1) of

a Poisson matrix of order n = 4096. Local: βik = ‖Aik‖; local scaled: βik = ‖Aik‖/‖Ũkk‖ (i > k)

and βik = ‖Aik‖/‖L̃ii‖ (i < k); global: βik = ‖A‖; global scaled: βik = ‖A‖/‖Ũkk‖ (i > k) and

βik = ‖A‖/‖L̃ii‖ (i < k).

conclusions can be drawn from Theorem 4.1, which we summarize in the following
result.

Corollary 4.2. Let A ∈ Rn×n be a nonsingular matrix partitioned into p2 blocks
of order b. If Algorithm 4.1 runs to completion, it produces BLR LU factors L̃ and
Ũ of A satisfying

A = L̃Ũ +∆A, ‖∆A‖ ≤
(
ξpε+ γp

)
‖A‖+ γc‖L̃‖‖Ũ‖+O(uε), (4.15)

where c = b + 2r3/2 + p, and ξp = 1 or ξp = p for a scaled local or global threshold,
respectively.

Proof. Directly follows from Theorem 4.1, (4.10), (4.13), and (4.14).

Corollary 4.2 states that the backward error ‖A − L̃Ũ‖ is of order O(ε‖A‖ +

u‖L̃‖‖Ũ‖). The first term corresponds to the low-rank truncations errors and the
second term to the floating-point errors. If we set ε = 0, we recover the backward
error bound (2.9) for classical LU factorization (with a slightly higher constant). If we
set u = 0, we obtain a bound on the error introduced by BLR approximations in exact
arithmetic. In the general case, since u � ε, the low-rank error term dominates if
‖L̃‖‖Ũ‖ is not too large compared with ‖A‖. For a stable LU factorization, using for

example partial pivoting, ‖L̃‖‖Ũ‖ is bounded and therefore the BLR factorization is
also stable. This is the main conclusion drawn from Corollary 4.2: it proves the long
conjectured rule of thumb that the backward error for the BLR LU factorization is
proportional to the low-rank threshold ε. This is a very desirable theoretical guarantee
that can now be given to the users of BLR solvers. This is illustrated by the numerical
experiments on a Poisson matrix reported in Figure 4.2a, which additionally show
that the unit roundoff u has no impact on the error as long as u� ε. We will verify
experimentally that this crucial result holds for a wide range of matrices in section 5.

The low-rank error term ξpε‖A‖ grows at most linearly with the number of blocks
p. Figure 4.2b illustrates that a roughly linear growth (indicated by the dashed lines)
is indeed observed in practice when using a global threshold (except for the largest

15

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

(a) Error for varying low-rank thresholds ε
and floating-point precisions.

4096 6400 9216 12544 16384

10
-14

10
-12

10
-10

10
-8

10
-6

(b) Error for increasing n. Dashed lines indi-
cate a linear growth.

Fig. 4.2. Backward error (2.10) for computing the BLR LU factorization of a Poisson matrix of
order n = 4096 with the UFC algorithm (Algorithm 4.1) and with a global threshold.

of the tested thresholds, ε = 10−4, for which the error growth is sublinear). This
seems quite acceptable, especially considering that the constant in the error bound
for traditional LU factorization is usually of order n3 [13, Thm. 9.5].

We also briefly comment on the use of fast matrix operations, such as Strassen’s
algorithm. Similarly to the LR matrix algorithms analyzed in section 3.1, fast matrix
algorithms are especially attractive with BLR matrices since only normwise stability is
expected, and because they only affect the floating-point error term, which is negligible
compared with the low-rank error term for large enough ε. Our analysis therefore
theoretically explains why the stability of the BLR factorization is much less sensitive
to the use of fast matrix arithmetic, as experimentally observed in [18]. We mention
that the algorithm proposed in [18] recasts the operations so as to work on matrices of
larger dimensions, which allows for exploiting fast matrix arithmetic more efficiently.
The error analysis of this new algorithm is outside our scope, but we expect it to
retain the same backward stability as the algorithms analyzed here.

More generally, any numerical instabilities coming from the algorithm (such as
when no pivoting is employed, leading to a large growth factor) may potentially
be hidden behind the low-rank error term, if ε is large enough compared with u.
We however wish to emphasize that, with pivoting, the BLR LU factorization is
numerically stable even if ε ∼ u. Indeed, the error bound (4.15) is not any worse than
standard LU factorization (modulo a slightly larger constant c).

4.1.3. Impact of intermediate recompressions. We now discuss the impact
on the accuracy of performing intermediate recompressions during the update step,
as described and analyzed in Lemma 3.4.

Adapting the proof of Theorem 4.1 to the use of intermediate recompressions is
straightforward. It suffices to invoke Lemma 3.4 instead of Lemma 3.3, which changes
the expression for Rik in (4.1) to

Rik = Aik −
k−1∑
j=1

(
L̃ijŨjk +H

(j)
ik

)
,

which has an extra term H
(j)
ik satisfying ‖H(j)

ik ‖ ≤ εβ
(j)
ik . For simplicity, let us consider

16

Table 4.1. Expression of ξp in Theorems 4.3, 4.4, and 4.6, depending on whether a local or
global threshold is used, and on whether intermediate recompressions are performed during the LU
factorization.

Local threshold Global threshold

Without recompressions 1 p

With recompressions p p2/
√

6

the same choice β
(j)
ik = βHik for all j. The rest of the proof carries over and we obtain

A = L̃Ũ +∆A+ F +G, where we now have

Gik =


EikŨkk +Hik, i > k,

0, i = k,

L̃iiEik +Hik, i < k,

‖Eik‖ ≤ εβik, ‖Hik‖ ≤ (min(i, k)− 1)εβHik .

To proceed further we must consider specific choices for the βik and βHik parameters,
as in section 4.1.1. For a scaled local threshold (4.13) and for βHik = ε‖Aik‖, we have
‖Gik‖ ≤ min(i, k)ε‖Aik‖, whereas for a scaled global threshold (4.14) and βHik = ε‖A‖,
we obtain instead ‖Gik‖ ≤ min(i, k)ε‖A‖.

Tedious but straightforward computations lead to the bound ‖G‖ ≤ ξpε‖A‖,
where ξp = p and ξp = p2/

√
6 for a local and global threshold, respectively. The

low-rank error is therefore a factor roughly p times larger when intermediate recom-
pressions are performed than when they are not, for both local and global thresholds.

Theorem 4.3. Let A ∈ Rn×n be a nonsingular matrix partitioned into p2 blocks
of order b. If Algorithm 4.1 runs to completion, it produces BLR LU factors L̃ and
Ũ of A satisfying

A = L̃Ũ +∆A, ‖∆A‖ ≤
(
ξpε+ γp

)
‖A‖+ γc‖L̃‖‖Ũ‖+O(uε), (4.16)

where c = b+ 2r3/2 + p, and where ξp is given in Table 4.1.

We illustrate the above analysis with some numerical experiments in Figure 4.3,
using a scaled global threshold (results with a local threshold are similar and omitted).
In Figure 4.3a, we compare the error growth with and without recompressions. Re-
compression increases the error by a noticeable factor; however, this factor increases
relatively slowly with n. The error growth of the factorization with recompression
therefore remains contained. To determine whether this increased error pays off in
terms of flops, we plot in Figure 4.3b the error as a function of the flop count for
the factorization for several values of ε. Clearly, for this Poisson matrix, the strategy
using recompressions achieves a better tradeoff. We will show that this remains true
for a wide range of matrices in section 5.

4.2. BLR matrix LU factorization: UCF algorithm. In the UFC algorithm
(Algorithm 4.1), the compress step is performed after the factor step and thus the
latter does not exploit the LR property of the blocks. The UCF algorithm, described
in Algorithm 4.2, is based on the idea of performing the compress step earlier, before
the factor step, so that the off-diagonal blocks may be factored in LR form, as shown
on line 15 and as analyzed in Lemma 3.5. This reduces the number of flops needed
for the factor step, which is especially important because this step is asymptotically

17

4096 6400 9216 12544 16384

10
-10

10
-5

(a) Backward error (2.10) for increasing n,
depending on whether recompressions are
“off” or “on”. The numbers indicate the ratio
between the corresponding errors.

0.5 1 1.5

10
10

10
-15

10
-10

10
-5

(b) Flops–accuracy tradeoff. Each point cor-
responds to a different ε threshold.

Fig. 4.3. Impact of intermediate recompressions on the backward error for a Poisson matrix of
order n = 4096 with the UFC algorithm (Algorithm 4.1) and with a global threshold.

Algorithm 4.2 BLR LU factorization: UCF algorithm

1: {Input: a p× p block matrix A. Output: its BLR LU factors L̃ and Ũ .}
2: for k = 1 to p do
3: Update:
4: Akk ← Akk −

∑k−1
j=1 L̃kjŨjk.

5: for i = k + 1 to p do
6: Aik ← Aik −

∑k−1
j=1 L̃ijŨjk and Aki ← Aki −

∑k−1
j=1 L̃kjŨji.

7: end for
8: Compress:
9: for i = k + 1 to p do

10: Compute LR approximations Ãik ≈ Aik and Ãki ≈ Aki.
11: end for
12: Factor:
13: Compute the LU factorization L̃kkŨkk = Akk.
14: for i = k + 1 to p do
15: Solve L̃ikŨkk = Ãik for L̃ik and L̃kkŨki = Ãki for Ũki.
16: end for
17: end for

dominant in the UFC algorithm. The UCF algorithm is thus necessary to achieve an
optimal complexity [2].

However, the UCF algorithm has not yet been widely accepted as the method
of choice, and some BLR solvers still use the UFC algorithm by default, such as
MUMPS [5]. There are two reasons for this. The first is that the impact on the
accuracy of switching from UFC to UCF was not fully understood and quantified.
The next theorem provides an answer to this open question. The second reason is
related to numerical pivoting. Performing pivoting requires access to the entries of
the entire row or column being factored; however, in the UCF algorithm, the blocks
have already been compressed and so the entries of the original block are no longer

18

available. Strategies estimating these entries based on the entries of the LR blocks
have been proposed [2,5,19] and appear to deliver satisfying results. This is however
the object of ongoing research and is outside our scope.

Theorem 4.4 (BLR LU factorization: UCF algorithm). Let A ∈ Rn×n be a
nonsingular matrix partitioned into p2 blocks of order b. If Algorithm 4.2 runs to
completion, it produces BLR LU factors of A satisfying

A = L̃Ũ +∆A, ‖∆A‖ ≤
(
ξpε+ γp

)
‖A‖+ γc‖L̃‖‖Ũ‖+O(uε), (4.17)

where c = b+ 2r3/2 + p, and where ξp is given in Table 4.1.

Proof. In contrast with (4.1) in the proof of Theorem 4.1, the (i, k) block of the
L factor is now computed by solving instead

LikŨkk = R̃ik, i > k, (4.18)

where R̃ik is a LR approximation to R̂ik satisfying R̃ik = R̂ik+Eik, with ‖Eik‖ ≤ εβik,

and where R̂ik still satisfies (4.3). (4.18) takes the form of a triangular solve with an
LR right-hand side, and thus by (3.17) we have

L̃ikŨkk = R̃ik +∆R
(k)
ik , ‖∆R(k)

ik ‖ ≤ γb‖L̃ik‖‖Ũkk‖. (4.19)

We therefore obtain

Aik ◦ (J +Θk)−
k∑
j=1

L̃ijŨjk =

k−1∑
j=1

∆R
(j)
ik −∆R

(k)
ik − Eik = Fik +Gik, (4.20)

with the same bound (4.6) on ‖Fik‖ as for the UFC algorithm, but a different bound

‖Gik‖ ≤ εβik instead of (4.7), without the term ‖Ũkk‖. This concludes the proof
for the case i > k. The cases i = k and i < k are similar and overall we have
A− L̃Ũ = ∆A+F +G, where the blockwise bounds on ‖∆A‖ and ‖F‖ are the same
as those for the UFC algorithm, whereas ‖Gik‖ ≤ εβik for all i (with βkk = 0). The
bound ‖G‖ ≤ ξp‖A‖ trivially follows with ξp = 1 or ξp = p depending on whether
βik = ‖Aik‖ or βik = ‖A‖, respectively.

A notable difference of the UCF algorithm is that, unlike the UFC algorithm,
it does not depend on the norm of the diagonal blocks of the LU factors. The UCF
algorithm thus avoids the issue of having different compression in the L and U factors,
as discussed in section 4.1.1, and hence there is no reason to scale the threshold as
suggested for the UFC algorithm (see (4.14)). The main conclusion to draw from
Theorem 4.4 is therefore that the UCF algorithm satisfies the same error bound as
the UFC one when the latter algorithm uses a scaled threshold (as in Theorem 4.3).

This conclusion is supported by numerical experiments in Figure 4.4. Figure 4.4a
shows that the UFC and UCF algorithms yield similar errors on Poisson matrices,
regardless of the matrix size n. Indeed, even though the UCF algorithm yields a
backward error larger by a noticeable factor, this factor does not increase with n.
Therefore, since the UCF algorithm achieves a lower flop count, it achieves a much
better tradeoff than the UFC one, and this is illustrated in Figure 4.4b. These obser-
vations will be extended to a wider range of matrices in section 5.

Finally, we briefly comment on some other BLR LU factorization variants, for
which we have performed similar analyses that we omit for the sake of conciseness.

19

4096 6400 9216 12544 16384

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

(a) Backward error (2.10) for increasing n
(without intermediate recompression). The
numbers indicate the ratio between the errors
for the UCF and UFC algorithms.

5 10 15

10
9

10
-15

10
-10

10
-5

(b) Flops–accuracy tradeoff (n = 4096).
Each point corresponds to a different ε
threshold.

Fig. 4.4. Comparison between UFC (Algorithm 4.1) and UCF (Algorithm 4.2) BLR LU factoriza-
tions for Poisson matrices.

The FUC algorithm [19] performs the compression step only after the completion
of the LU factorization. This variant therefore only reduces the storage, not the flops,
for performing the LU factorization. Its main advantage is to avoid the low-rank
and the floating-point errors accumulating together, replacing the O(uε) term in the
bounds of Theorems 4.1 and 4.4 by O(u2). This is however a negligible reduction of
the error, and therefore the FUC variant is not competitive with the other variants.

Another widely used algorithm is the CUF variant (see, for example, [2, 20]),
which compresses the entire matrix A and then computes its BLR LU factorization.
The CUF algorithm is very similar to the UCF one, only differing in that, at line 6 of
Algorithm 4.2, the blocks Aik (and Aki) are already in LR form. Therefore the result

of the product of the LR factors L̃ijŨjk may be obtained directly as an LR matrix,
avoiding the last product in Lemma 3.3: this just affects the constant in the error
bound and we therefore conclude that the UCF and CUF algorithms achieve similar
error bounds. Note that one particularity of the CUF algorithm is that the use of
intermediate recompressions (section 4.1.3) is mandatory to contain the growth of the
ranks of the BLR LU factors throughout the factorization.

4.3. BLR linear systems. We first analyze the solution of a triangular system
T̃ x = v, where T̃ is a BLR matrix.

Theorem 4.5 (BLR triangular system). Let T̃ ∈ Rn×n be a triangular BLR

matrix partitioned into p2 LR blocks T̃ij ∈ Rb×b and let v ∈ Rn. If the solution to the

system T̃ x = v is computed by solving the triangular system Tiixi = vi −
∑i−1
j=1 T̃ijxj

for each block xi = x((i− 1)b+ 1 : ib), the computed solution x̂ satisfies(
T̃ +∆T̃

)
x̂ = v +∆v, ‖∆T̃‖ ≤ γc‖T̃‖, ‖∆v‖ ≤ γp‖v‖, (4.21)

where c = b+ r3/2 + p.

Proof. Let w
(j)
i = T̃ij x̂j , where x̂j is the jth block-row of the computed x̂ in the

20

previous i− 1 steps. By Lemma 3.1, the computed ŵ
(j)
i satisfies

ŵ
(j)
i =

(
T̃ij + Fij

)
x̂j , ‖Fij‖ ≤ γd‖T̃ij‖,

with d = b+ r3/2. Let wi = vi −
∑i−1
j=1 w

(j)
i ; the computed ŵi satisfies

ŵi = vi ◦ (e+∆ei)−
i−1∑
j=1

ŵ
(j)
i ◦ (e+∆ej), |∆ej | ≤ γpe,

where e = [1, . . . , 1]T is the vector of ones. By Lemma 2.2, the computed solution x̂i
to Tiixi = ŵi satisfies (

Tii + Fii
)
x̂i = ŵi, ‖Fii‖ ≤ γb‖Tii‖.

Therefore, recalling that T̃ii = Tii, we have

i∑
j=1

(
T̃ij +∆T̃ij

)
x̂j = vi ◦ (e+∆ei), (4.22)

with ∆T̃ij = Θj ◦ T̃ij + Fij ◦ (J + Θj) and thus ‖∆T̃ij‖ ≤ γd+p+O(u)‖T̃ij‖. Gather-

ing (4.22) over all block-rows i, we obtain (T̃ +∆T̃)x̂ = v +∆v, with ‖∆v‖ ≤ γp‖v‖
and

‖∆T̃‖ ≤ γd+p+O(u)

(p∑
i=1

i∑
j=1

‖T̃ij‖2
)1/2

≤ γd+p‖T̃‖+O(u2),

as required.

We are ready for our final theorem, which builds upon all our previous analyses to
prove the backward stability of the solution to linear systems by BLR LU factorization.

Theorem 4.6 (BLR linear system). Let Ã ∈ Rn×n be a pb × pb BLR matrix

and let v ∈ Rn. If the linear system Ãx = v is solved by solving the triangular
systems L̃y = v, Ũx = y, where L̃ and Ũ are the BLR LU factors computed by either
Algorithm 4.1 or 4.2, then the computed solution x̂ satisfies(

A+∆A
)
x̂ = v +∆v, (4.23)

‖∆A‖ ≤
(
ξpε+ γp

)
‖A‖+ γ3c‖L̃‖‖Ũ‖+O(uε), (4.24)

‖∆v‖ ≤ γp
(
‖v‖+ ‖L̃‖‖Ũ‖‖x̂‖

)
+O(u2), (4.25)

where c = b+ 2r3/2 + p, and where ξp is given in Table 4.1.

Proof. By Theorems 4.3 and 4.4, the BLR LU factors computed by the UFC
algorithm or the UCF algorithm satisfy A+∆A = L̃Ũ , with

‖∆A‖ ≤
(
ξpε+ γp

)
‖A‖+ γc‖L̃‖‖Ũ‖+O(uε).

By Theorem 4.5, the computed ŷ satisfies(
L̃+∆L̃

)
ŷ = v +∆v, ‖∆L̃‖ ≤ γc‖L̃‖, ‖∆v‖ ≤ γp‖v‖.

Similarly the computed x̂ satisfies(
Ũ +∆Ũ

)
x̂ = ŷ +∆ŷ, ‖∆Ũ‖ ≤ γc‖Ũ‖, ‖∆ŷ‖ ≤ γp‖ŷ‖.

21

We therefore obtain on the one hand(
L̃+∆L̃

)(
Ũ +∆Ũ

)
x̂ =

(
A+∆A+∆L̃Ũ + L̃∆Ũ +∆L̃∆Ũ

)
x̂ =

(
A+∆A′

)
x̂

and on the other hand(
L̃+∆L̃

)(
Ũ +∆Ũ

)
x̂ = v +∆v + L̃∆ŷ +∆L̃∆ŷ = v +∆v′,

yielding
(
A+∆A′

)
x̂ = v +∆v′, with

‖∆A′‖ = ‖∆A+∆L̃Ũ + L̃∆Ũ +∆L̃∆Ũ‖ ≤
(
ξpε+ γp

)
‖A‖+ γ3c‖L̃‖‖Ũ‖+O(uε),

‖∆v′‖ = ‖∆v + L̃∆ŷ +∆L̃∆ŷ‖ ≤ γp
(
‖v‖+ ‖L̃‖‖Ũ‖‖x̂‖

)
+O(u2).

5. Additional experiments and discussion. In the previous sections we have
illustrated our analysis with numerical experiments performed on Poisson matrices (as
described in section 2.3). In this final section, we provide some additional experiments
to demonstrate that the conclusions drawn in the previous sections extend to many
other kind of problems coming from various real-life applications. We use 26 root
separators (Schur complements) obtained from sparse matrices from the SuiteSparse
collection [9]. The full list is given in Table 1.1 in the supplementary materials.

The main conclusions drawn from our analysis and experiments in the previous
sections were the following.

1. As predicted by our analysis, we have observed a tight correlation between
the low-rank threshold ε and the backward error. We show that this crucial result
remains true for a wide range of matrices in section 5.1.

2. We experimentally determined using a Poisson matrix of relatively small or-
der n = 4096 that the use of a global threshold, the UCF algorithm, and intermediate
recompressions achieves a better flops–accuracy tradeoff than the use of a local thresh-
old, the UFC algorithm, and no recompressions, respectively. In section 5.2, we first
analyze using Poisson matrices how this comparison evolves as n increases. Then, in
section 5.3, we extend these conclusions to a wide range of matrices.

5.1. Impact of ε for a wide range of matrices. For each matrix A we
solve a linear system Ax = v via BLR LU factorization, using the UCF algorithm
with a global threshold and intermediate recompressions. We report the backward
error (2.10) in Figure 5.1, which shows that for all these matrices there is a good and
often even excellent correlation between the threshold ε and the measured backward
error.

The main conclusion of our analysis, which is that the backward error is directly
determined by ε, is therefore confirmed experimentally for a wide range of matrices.

5.2. Flops–accuracy tradeoff for increasing n. On the one hand, the use of
a global threshold and intermediate recompressions both lead to a constant ξp larger
by about a factor p = n/b, as shown in Table 4.1. On the other hand, intermediate
recompressions and the UCF algorithm both reduce the asymptotic complexity of the
LU factorization [2]. Even a global threshold may provide an asymptotic improve-
ment, because the proportion of blocks of small norm with respect to the norm of the
global matrix increases with n.

It is therefore important to investigate whether the strategy achieving the best
flops–accuracy tradeoff depends on n. Figure 5.2 compares the tradeoff achieved by
two strategies: the first uses the UFC algorithm with a local threshold and without

22

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

Fig. 5.1. Backward error (2.10) for solving a linear system by BLR LU factorization for 26 real-
life matrices using the UCF algorithm (Algorithm 4.2) with a global threshold and intermediate
recompressions.

2 4 6 8 10 12 14

10
9

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

1 2 3 4

10
11

10
-14

10
-12

10
-10

10
-8

10
-6

Fig. 5.2. Flops–accuracy tradeoff for two opposite strategies for the solution of a BLR linear sys-
tem, using two Poisson matrices of different orders n = 4096 (left) and n = 16384 (right). The
numbers indicate the ratio between the flops required by the two strategies for a given cutoff value
of ε (corresponding to the dashed lines).

recompressions, whereas the second uses the UCF algorithm with a global threshold
and with recompressions. We compare these strategies for two Poisson matrices of
order n = 4096 and n = 16384. Not only is the second strategy the best choice for
both matrices, but the gap between the two is larger for n = 16384 than for n = 4096.
Indeed, for five different values of ε (from 10−13 to 10−3, indicated by the dashed
lines on the figure), we measure the flops required by each strategy and plot the ratio
between the two. The figure shows that, except for ε = 10−3, this ratio is larger for
the larger matrix. Additional experiments (not shown) on matrices of intermediate
order between 4096 and 16384 show that this ratio gradually increases with n. We
conclude that the second strategy becomes more and more beneficial with respect to
the first strategy as n increases.

This experimental observation may in fact be justified theoretically for some
classes of matrices. For instance, for Poisson matrices, the ranks of the blocks are
known to be logarithmically dependent on the threshold ε, that is, r = O(log 1/ε) [6].
The impact of a larger ξp on the error can be compensated by simply using a smaller
threshold ε′ = ε/ξp, which in turn yields a larger rank r′ = O(log ξp/ε). Therefore,
as p = n/b increases, compensating for the error increase due to a larger ξp only

23

1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

Fig. 5.3. Performance profile of the eight possible strategies to solve a BLR linear system over 26
real-life matrices. ρ (y-axis) indicates the percentage of matrices for which a given strategy requires
less than α (x-axis) times the flops required by the best strategy. For any given matrix, all eight
strategies achieve roughly the same backward error.

increases the cost of the factorization by logarithmic factors of n. Since a global
threshold, intermediate recompressions, and the UCF algorithm all reduce this cost
by factors O(nα), with α > 0, we conclude that the use of these strategies must
eventually become beneficial for large enough n.

5.3. Flops–accuracy tradeoff for a wide range of matrices. We finally
compare the flops–accuracy tradeoff achieved by global and local thresholds, the UFC
and UCF algorithms, and the use of intermediate recompressions on the set of real-life
matrices. We compare the eight possible strategies depending on the combination of
parameters.

For each matrix, we run each strategy multiple times with slightly different values
of ε between 10−7 and 10−9. We then select a cutoff value and choose for each strategy
the largest ε producing a backward error smaller than this cutoff. This is done to
guarantee that all eight strategies achieve roughly the same backward error. We can
then measure the number of flops required by each strategy and plot the result as a
performance profile in Figure 5.3.

As the figure shows, the strategy using the UCF algorithm with a global thresh-
old and with recompressions achieves the best tradeoff for all 26 matrices, thereby
confirming our previous observations that this is the best parameter setting. This
strategy can reduce the number of flops by a factor up to 10 with no loss of accuracy.
The performance of the remaining seven strategies gives some indication of the rela-
tive importance of each parameter: using a global threshold has the greatest impact,
followed by the UCF algorithm, and finally the intermediate recompressions.

6. Conclusions. We have analyzed the errors introduced in various matrix al-
gorithms by the use of block low-rank (BLR) approximations. Our analysis provides
important new theoretical guarantees, as well as some new insights into the numerical
behavior of BLR matrix algorithms in floating-point arithmetic. We now gather and
summarize our main conclusions.

6.1. Summary. We have derived a set of normwise error bounds that share a
common point: they are expressed as the sum of two terms, one associated with
the low-rank truncation errors, whose magnitude can be controlled via the low-rank
threshold ε, and the other associated with the floating-point errors, whose magnitude
depends on the unit roundoff u.

24

Usually, we have u � ε, and therefore the error is mainly determined by ε. In
particular, we have proved in Theorem 4.6 that BLR linear systems Ax = v can be
solved with a backward error proportional to ξpε‖A‖, where ξp is a small constant
growing at most quadratically with the number of block-rows and block-columns p =
n/b. Our analysis therefore proves for the first time the backward stability of the
solution of BLR linear systems and provides a theoretical justification for the empirical
observation that the backward error is closely related to the low-rank threshold. Users
can therefore control the numerical behavior of BLR solvers simply by setting ε to
the target accuracy.

When u � ε, the unit roundoff has only a limited impact. This remark is of
particular relevance in the context where BLR solvers are used as preconditioners
for iterative methods [14], for which the low-rank threshold may be set to very large
values (such as ε = 0.01 or even 0.1). In this setting, our analysis indicates that the
use of low precisions, such as half precision, should be very attractive; see [16] and the
references therein for details of half precision and how it can be exploited in standard
LU factorization.

We have analyzed several key parameters in the BLR LU factorization and as-
sessed how to choose them to obtain the best possible tradeoff between flops and
accuracy. First, we have shown that the use of a global threshold (block Aij is com-
pressed such that ‖Aij − Ãij‖ ≤ ε‖A‖) should be preferred to that of a local one
(‖Aij − Ãij‖ ≤ ε‖Aij‖). Second, the use of intermediate recompressions in the up-
date step (the so-called LUAR strategy in [2]) only impacts the constant in the error
bound and is therefore recommended. Finally, we have compared two different fac-
torization variants, the UFC and UCF algorithms, which differ in when the BLR
compression is incorporated in the LU algorithm, and we have shown that they yield
similar error bounds; the UCF algorithm, which achieves the best complexity, should
therefore be preferred.

We have supported all of these conclusions with numerical experiments on a wide
range of matrices from various real-life applications.

6.2. Perspectives. There exist numerous structured matrix representations other
than BLR, such as multilevel [4] and hierarchical [6] representations, HSS matri-
ces [24], and so on. Our analysis could be extended to these other type of matrices
(we note the existing work regarding HSS matrices [23]), and we expect that the
resulting analyses would yield similar results.

If the threshold ε is chosen too close to the unit roundoff u, Assumption 2.4
no longer holds and we are unable to accurately detect the numerical rank of the
blocks, which dramatically increases the cost of the factorization. This situation is
becoming more likely with the growing use of low precision floating-point arithmetic.
In this context, recent advances that reduce rounding error accumulation [?] can help
to decrease the threshold of ε at which we are forced to switch to a higher precision
arithmetic.

Acknowledgments. Some experiments on the larger problems have been run
using the crunch machines at the LIP laboratory (ENS Lyon).

REFERENCES

[1] P. R. Amestoy, R. Brossier, A. Buttari, J.-Y. L’Excellent, T. Mary, L. Métivier, A. Miniussi, and
S. Operto. Fast 3D frequency-domain full waveform inversion with a parallel Block Low-
Rank multifrontal direct solver: application to OBC data from the North Sea. Geophysics,

25

http://personalpages.manchester.ac.uk/staff/theo.mary/doc/GEO16.pdf
http://personalpages.manchester.ac.uk/staff/theo.mary/doc/GEO16.pdf

81(6):R363–R383, 2016.
[2] P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary. On the complexity of the block

low-rank multifrontal factorization. SIAM J. Sci. Comput., 39(4):A1710–A1740, 2017.
[3] Patrick Amestoy, Cleve Ashcraft, Olivier Boiteau, Alfredo Buttari, Jean-Yves L’Excellent,

and Clément Weisbecker. Improving multifrontal methods by means of block low-rank
representations. SIAM J. Sci. Comput., 37(3):A1451–A1474, 2015.

[4] Patrick R. Amestoy, Alfredo Buttari, Jean-Yves L’Excellent, and Theo Mary. Bridging the
gap between flat and hierarchical low-rank matrix formats: The multilevel block low-rank
format. SIAM J. Sci. Comput., 41(3):A1414–A1442, 2019.

[5] Patrick R. Amestoy, Alfredo Buttari, Jean-Yves L’Excellent, and Theo Mary. Performance
and scalability of the block low-rank multifrontal factorization on multicore architectures.
ACM Trans. Math. Software, 45(1):2:1–2:26, 2019.

[6] Mario Bebendorf. Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary
Value Problems, volume 63 of Lecture Notes in Computational Science and Engineering
(LNCSE). Springer-Verlag, 2008. ISBN ISBN 978-3-540-77146-3.

[7] Pierre Blanchard, Nicholas J. Higham, and Theo Mary. A class of fast and accurate summation
algorithms. MIMS EPrint 2019.6, Manchester Institute for Mathematical Sciences, The
University of Manchester, UK, April 2019. 16 pp. Revised September 2019.

[8] Ali Charara, David Keyes, and Hatem Ltaief. Tile low-rank GEMM using batched operations
on GPUs. In Euro-Par 2018: Parallel Processing, Marco Aldinucci, Luca Padovani, and
Massimo Torquati, editors, Cham, 2018, pages 811–825. Springer International Publishing.

[9] Timothy A. Davis and Yifan Hu. The University of Florida Sparse Matrix Collection. ACM
Trans. Math. Software, 38(1):1:1–1:25, 2011.

[10] A. George. Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal., 10(2):
345–363, 1973.

[11] Nicholas J. Higham. Exploiting fast matrix multiplication within the level 3 BLAS. ACM
Trans. Math. Software, 16(4):352–368, 1990.

[12] Nicholas J. Higham. Stability of a method for multiplying complex matrices with three real
matrix multiplications. SIAM J. Matrix Anal. Appl., 13(3):681–687, 1992.

[13] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Second edition, Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2002. xxx+680 pp. ISBN
0-89871-521-0.

[14] Nicholas J. Higham and Theo Mary. A new preconditioner that exploits low-rank approxima-
tions to factorization error. SIAM J. Sci. Comput., 41(1):A59–A82, 2019.

[15] Nicholas J. Higham and Srikara Pranesh. Simulating low precision floating-point arithmetic.
SIAM J. Sci. Comput., 41(5):C585–C602, 2019.

[16] Nicholas J. Higham, Srikara Pranesh, and Mawussi Zounon. Squeezing a matrix into half
precision, with an application to solving linear systems. SIAM J. Sci. Comput., 41(4):
A2536–A2551, 2019.

[17] Akihiro Ida, Hiroshi Nakashima, and Masatoshi Kawai. Parallel hierarchical matrices with
block low-rank representation on distributed memory computer systems. In Proceedings
of the International Conference on High Performance Computing in Asia-Pacific Region,
HPC Asia 2018, New York, NY, USA, 2018, pages 232–240. ACM.

[18] C.-P. Jeannerod, T. Mary, C. Pernet, and D. Roche. Exploiting fast matrix arithmetic in block
low-rank factorizations. SIAM J. Matrix Anal. Appl., 2019. Submitted.

[19] Théo Mary. Block Low-Rank Multifrontal Solvers: Complexity, Performance, and Scalability.
PhD thesis, Université de Toulouse, Toulouse, France, November 2017.

[20] Grégoire Pichon, Eric Darve, Mathieu Faverge, Pierre Ramet, and Jean Roman. Sparse supern-
odal solver using block low-rank compression: Design, performance and analysis. Journal
of Computational Science, 27:255–270, 2018.

[21] J. L. Rigal and J. Gaches. On the compatibility of a given solution with the data of a linear
system. J. Assoc. Comput. Mach., 14(3):543–548, 1967.

[22] D. V. Shantsev, P. Jaysaval, S. de la Kethulle de Ryhove, P. R. Amestoy, A. Buttari, J.-Y.
L’Excellent, and T. Mary. Large-scale 3D EM modeling with a Block Low-Rank multi-
frontal direct solver. Geophys. J. Int., 209(3):1558–1571, 2017.

[23] Y. Xi and J. Xia. On the stability of some hierarchical rank structured matrix algorithms.
SIAM J. Matrix Anal. Appl., 37(3):1279–1303, 2016.

[24] Jianlin Xia, Shivkumar Chandrasekaran, Ming Gu, and Xiaoye S. Li. Fast algorithms for
hierarchically semiseparable matrices. Numer. Linear Algebra Appl., 17(6):953–976, 2010.

26

https://doi.org/10.1137/16M1077192
https://doi.org/10.1137/16M1077192
https://doi.org/10.1137/120903476
https://doi.org/10.1137/120903476
https://doi.org/10.1137/18M1182760
https://doi.org/10.1137/18M1182760
https://doi.org/10.1137/18M1182760
http://doi.acm.org/10.1145/3242094
http://doi.acm.org/10.1145/3242094
http://eprints.maths.manchester.ac.uk/2729/
http://eprints.maths.manchester.ac.uk/2729/
https://doi.org/10.1007/978-3-319-96983-1_57
https://doi.org/10.1007/978-3-319-96983-1_57
http://doi.acm.org/10.1145/2049662.2049663
https://doi.org/10.1137/0710032
https://doi.org/10.1145/98267.98290
https://doi.org/10.1137/0613043
https://doi.org/10.1137/0613043
http://dx.doi.org/10.1137/1.9780898718027
https://doi.org/10.1137/18M1182802
https://doi.org/10.1137/18M1182802
https://doi.org/10.1137/19M1251308
https://doi.org/10.1137/18M1229511
https://doi.org/10.1137/18M1229511
http://doi.acm.org/10.1145/3149457.3149477
http://doi.acm.org/10.1145/3149457.3149477
http://personalpages.manchester.ac.uk/staff/theo.mary/doc/FMA_BLR.pdf
http://personalpages.manchester.ac.uk/staff/theo.mary/doc/FMA_BLR.pdf
http://personalpages.manchester.ac.uk/staff/theo.mary/doc/thesis.pdf
http://www.sciencedirect.com/science/article/pii/S1877750317314497
http://www.sciencedirect.com/science/article/pii/S1877750317314497
http://doi.acm.org/10.1145/321406.321416
http://doi.acm.org/10.1145/321406.321416
http://personalpages.manchester.ac.uk/staff/theo.mary/doc/GJI17.pdf
http://personalpages.manchester.ac.uk/staff/theo.mary/doc/GJI17.pdf
https://doi.org/10.1137/15M1026195
https://doi.org/10.1002/nla.691
https://doi.org/10.1002/nla.691

	Introduction
	Technical background and experimental setting
	Low-rank (LR) and block low-rank (BLR) matrices
	Floating-point arithmetic and rounding error analysis
	Experimental setting

	Rounding error analysis of LR matrix kernels
	LR matrix times vector or full matrix
	LR matrix times LR matrix
	Triangular system with LR right-hand side

	Rounding error analysis of solving BLR linear systems by LU factorization
	BLR matrix LU factorization: UFC algorithm
	Bounding "026B30D G"026B30D and choice of ik
	General comments on Theorem 4.1
	Impact of intermediate recompressions

	BLR matrix LU factorization: UCF algorithm
	BLR linear systems

	Additional experiments and discussion
	Impact of for a wide range of matrices
	Flops–accuracy tradeoff for increasing n
	Flops–accuracy tradeoff for a wide range of matrices

	Conclusions
	Summary
	Perspectives

	References

