Philippe Meyer 
email: philippe.meyer@maths.ox.ac.uk
  
Cubic Dirac operators and the strange Freudenthal-de Vries formula for colour Lie algebras

Keywords: cubic Dirac operator, colour Lie algebra, Freudenthal-de Vries formula. 2020 Mathematics Subject Classification: 17B10, 17B75

The aim of this paper is to define cubic Dirac operators for colour Lie algebras. We give a necessary and sufficient condition to construct a colour Lie algebra from an ǫ-orthogonal representation of an ǫ-quadratic colour Lie algebra. This is used to prove a strange Freudenthal-de Vries formula for basic colour Lie algebras as well as a Parthasarathy formula for cubic Dirac operators of colour Lie algebras. We calculate the cohomology induced by this Dirac operator, analogously to the algebraic Vogan conjecture proved by Huang and Pandžić.

Introduction

The use of Dirac operators in representation theory started by Parthasarathy in [START_REF] Parthasarathy | Dirac operator and the discrete series[END_REF] has been developed and generalised in many directions. An important advancement of this approach is the construction of discrete series representations of semisimple Lie groups as kernels of Dirac operators by Atiyah and Schmid ([AS77]). In [START_REF] Kostant | A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups[END_REF], Kostant studies Dirac operators in a more general setting and shows that the introduction of a cubic term in the usual Dirac operator is necessary for non-symmetric pairs. Huang and Pandžić calculated the cohomology associated to Dirac operators as conjectured by Vogan ( [START_REF] Huang | Dirac cohomology, unitary representations and a proof of a conjecture of Vogan[END_REF]) and then Dirac cohomologies have been studied in various situations (e.g. [START_REF] Kostant | Dirac cohomology for the cubic Dirac operator[END_REF], [START_REF] Huang | Dirac operators and Lie algebra cohomology[END_REF], [START_REF] Mehdi | The Dirac cohomology of a finite dimensional representation[END_REF]). The theory of Dirac operators has been extended to other algebraic structures: for example this has been studied for Lie superalgebras in [START_REF] Pengpan | Kostant's cubic Dirac operator of Lie superalgebras[END_REF], [START_REF] Huang | Dirac cohomology for Lie superalgebras[END_REF], [START_REF] Victor | Dirac operators and the very strange formula for Lie superalgebras[END_REF], [START_REF] Xiao | Dirac operators and cohomology for Lie superalgebra of type I[END_REF] and for Hecke algebras and rational Cherednik algebras in [START_REF] Barbasch | Dirac cohomology for graded affine Hecke algebras[END_REF], [START_REF] Ciubotaru | Dirac cohomology for symplectic reflection algebras[END_REF], [START_REF] Ciubotaru | Dirac Induction for Rational Cherednik Algebras[END_REF].

Colour Lie algebras generalise both Lie algebras and Lie superalgebras and have been originally introduced by Ree in [START_REF] Rimhak | Generalized Lie elements[END_REF]. The terminology "colour" comes from their use in mathematical physics by Rittenberg and Wyler in [START_REF] Rittenberg | Generalized superalgebras[END_REF], [START_REF] Rittenberg | Sequences of Z 2 ⊕ Z 2 graded Lie algebras and superalgebras[END_REF] and their study has been intensified by Scheunert in [START_REF] Scheunert | Generalized Lie algebras[END_REF], [START_REF] Scheunert | Casimir elements of ε Lie algebras[END_REF], [START_REF] Scheunert | Graded tensor calculus[END_REF].

In this article we define and study cubic Dirac operators for colour Lie algebras. We first recall general properties of the multilinear algebra of vector spaces graded by an abelian group Γ with respect to a commutation factor ǫ of Γ (Section 2). In particular, we give properties of the generalised Clifford theory developed in [START_REF] Nishiyama | Oscillator representations for orthosymplectic algebras[END_REF] and [START_REF] Chen | Generalized Clifford theory for graded spaces[END_REF] and we study some features of roots of "basic" colour Lie algebras similar to properties of semisimple complex Lie algebras.

In Section 3 we give a necessary and sufficient condition to extend the action of an ǫ-quadratic colour Lie algebra g on an ǫ-orthogonal representation V to define a colour Lie algebra structure on g = g ⊕ V (see Theorem 3.1). If this condition is satisfied we say that the representation V is of colour Lie type. This is similar to the conditions of [START_REF] Meyer | The Kostant invariant and special ǫ-orthogonal representations for ǫ-quadratic colour Lie algebras[END_REF] and generalises the results of Kostant ([Kos99], [START_REF] Kostant | The Weyl algebra and the structure of all Lie superalgebras of Riemannian type[END_REF]) for orthogonal and symplectic complex representations of quadratic Lie algebras and the results of Chen and Kang ([CK15]) for orthosymplectic complex representations of quadratic Lie superalgebras. If g is a basic colour Lie algebra, then this condition for the adjoint representation of g compared to the action of the Casimir element of g on an oscillator representation of the ǫ-Clifford algebra of V ( [START_REF] Nishiyama | Oscillator representations for orthosymplectic algebras[END_REF]) leads to the strange Freudenthal-de Vries formula for colour Lie algebras: Theorem 1. Let k be a field of characteristic 0. Let g be a finite-dimensional basic colour Lie algebra in the sense of Subsection 2.4 and such that its ǫ-Killing form B g is non-degenerate. We have dim ǫ (g) = 24B g * (ρ, ρ), where ρ is the Weyl vector of g with respect to a Cartan subalgebra h of g and a choice of a full set of positive roots for the action of ad(h).

Note that the proof of Freudenthal and de Vries of this formula for Lie algebras uses the Weyl character formula ( [START_REF] Freudenthal | Linear Lie groups[END_REF]), the proof of Möseneder, Kac and Papi of this formula for Lie superalgebras uses vertex algebras ( [START_REF] Victor | Dirac operators and the very strange formula for Lie superalgebras[END_REF]), but our proof uses Clifford theory and is more in the spirit of Fegan and Steer ([FS89]).

Afterwards, in Section 4, we define a cubic Dirac operator for the ǫ-orthogonal representation of colour Lie type V of the ǫ-quadratic colour Lie algebra g. The operator D is defined to be the identity Id ∈ End(V ) under the canonical isomorphism between End(V ) and V ⊗ V and the cubic Dirac operator D is defined by adding to D the cubic term ψ in the ǫ-Clifford algebra of V which is defined by the projection on V of the bracket of g = g ⊕ V restricted to V × V similarly to [START_REF] Kostant | A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups[END_REF]. We calculate the square of this cubic Dirac operator analogously to Parthasarathy's formula ( [START_REF] Parthasarathy | Dirac operator and the discrete series[END_REF]) for the square of the Dirac operator of a Cartan decomposition of a reductive Lie algebra: Theorem 2. Let k be a field of characteristic not 2 or 3. Let π : g → so ǫ (V, ( , )) be a finite-dimensional ǫ-orthogonal representation of colour Lie type of a finite-dimensional ǫ-quadratic colour Lie algebra (g, B g ). Let g = g ⊕ V be the associated colour Lie algebra and let D be the cubic Dirac operator. In

U ǫ (g) ⊗ C ǫ (V, ( , )), we have D2 = Ω(g) ⊗ 1 -∆(Ω(g)) + 1 24 T r ǫ (ad g(Ω(g))) -T r ǫ (ad g (Ω(g))) 1 ⊗ 1,
where Ω(g) (resp. Ω(g)) is the Casimir element of g (resp. g).

In this theorem, ∆ is the diagonal embedding of g in U ǫ (g) ⊗ C ǫ (V, ( , )) coming from the fact that the ǫ-orthogonal colour Lie algebra so ǫ (V, ( , )) is canonically isomorphic to the second ǫ-exterior power Λ 2 ǫ (V ) and that we can quantise Λ 2 ǫ (V ) to the ǫ-Clifford algebra of V (Section 2). Finally, this cubic Dirac operator induces a differential map and we calculate the cohomology of this differential complex in Section 5, similarly to the proof of Huang and Pandžić of the Vogan conjecture ([HP02]): Theorem 3. Let k be a field of characteristic 0. Let π : g → so ǫ (V, ( , )) be a finite-dimensional ǫ-orthogonal representation of colour Lie type of a finite-dimensional ǫ-quadratic colour Lie algebra (g, B g ). Let g = g ⊕ V be the associated colour Lie algebra, let D be the cubic Dirac operator and let d be its induced differential on (U ǫ (g) ⊗ C ǫ (V, ( , ))) g . Then we have

Ker(d) = Z ǫ (∆(g)) ⊕ Im(d).
To prove this theorem, we have to define a "standard resolution" of the field k similar to the Koszul and de Rham differentials and to prove the analogues of the Koszul cohomology and the Poincaré lemma in the context of ǫ-symmetric modules (Lemma 5.4).

Notation.

Let k be a field of characteristic not 2 or 3, let Γ be an abelian group and let ǫ be a commutation factor of Γ. The reader which is only interested in supersymmetry and Lie superalgebras can assume Γ = Z 2 and ǫ(a, b) = (-1) ab for all a, b ∈ Z 2 .

Multilinear algebra over vector spaces graded by an abelian group

Basic definitions and properties about graded vector spaces

Let V = γ∈Γ V γ be a Γ-graded vector space. For v ∈ V γ we set |v| := γ. For convenience, whenever the degree of an element is used in a formula, it is assumed that this element is homogeneous and that we extend by linearity the formula for non-homogeneous elements. For v, w in V we denote ǫ(|v|, |w|) by ǫ(v, w) and ǫ(|v|, |v|) by ǫ(v). We always assume that a basis of a Γ-graded vector space is composed of homogeneous elements and that the base field k has the trivial Γ-gradation.

If V and W are Γ-graded vector spaces, then V ⊕ W and V ⊗ W are Γ-graded in an obvious way. Define the Γ-graded vector space Homgr(V, W ) by

Homgr(V, W ) γ := {f ∈ Hom(V, W ) | f (V a ) ⊆ W a+γ ∀a ∈ Γ} ∀γ ∈ Γ.
If V and W are finite-dimensional, then Homgr(V, W ) = Hom(V, W ) and so

V * = Hom(V, k) is Γ-graded. If {e i } is a basis of V and {e * i } is the basis of V * dual to {e i } in the sense that e * i (e j ) = δ ij , then |e * i | = -|e i |. Define also E ∈ End(V ) by E(v) := ǫ(v)v, the ǫ-trace of f ∈ End(V ) by T r ǫ (f ) := T r(E • f ) and the ǫ-dimension of V by dim ǫ (V ) := T r ǫ (Id V ).
Remark 2.1. The isomorphism of Γ-graded vector spaces between V ⊗ W and W ⊗ V is given by v ⊗ w → ǫ(v, w)w⊗v and hence the isomorphism of Γ-graded vector spaces between End(V ) and

V ⊗V * by f → i f (e i )⊗e * i .
It-is known that if V is a Γ-graded vector space, there is a unique right group action π : S n → GL(V ⊗n ) of the permutation group S n on V ⊗n such that the action of a transposition τ i,i+1 ∈ S n is given by

π(τ i,i+1 )(v 1 ⊗ . . . ⊗ v n ) = -ǫ(v i , v i+1 )v 1 ⊗ . . . ⊗ v i+1 ⊗ v i ⊗ . . . ⊗ v n
for all v 1 , . . . , v n ∈ V . For arbitrary elements σ, σ ′ ∈ S n , this action is given by

π(σ)(v 1 ⊗ . . . ⊗ v n ) = p(σ; v 1 , . . . , v n )v σ(1) ⊗ . . . ⊗ v σ(n) where p(σ; v 1 , . . . , v n ) = sgn(σ) 1≤i<j≤n σ -1 (i)>σ -1 (j) ǫ(v i , v j )
and satisfies to

p(σσ ′ ; v 1 , . . . , v n ) = p(σ ′ ; v σ(1) , . . . , v σ(n) )p(σ; v 1 , . . . , v n ), p(Id; v 1 , . . . , v n ) = 1.
Recall that for multilinear maps on Γ-graded vector spaces there is a notion of symmetry and antisymmetry with respect to the commutation factor ǫ.

Definition 2.2. Let V and W be Γ-graded vector spaces and let B :

V × V → W be a bilinear map. a) We say that B is ǫ-symmetric if B(v, w) = ǫ(v, w)B(w, v) for all v, w ∈ V . b) We say that B is ǫ-antisymmetric if B(v, w) = -ǫ(v, w)B(w, v) for all v, w ∈ V . c) If V is finite-dimensional, {e i } is a basis of V and ( , )
is a non-degenerate ǫ-symmetric bilinear form of degree 0 on V , then the unique basis {e i } of V such that (e i , e j ) = δ ij is called the dual basis of {e i }.

Unless otherwise stated, we always assume the bilinear forms to be of degree 0. The basic features of a basis and its dual basis are given in the following remark.

Remark 2.3. Let V be a finite-dimensional Γ-graded vector space together with a non-degenerate ǫ-symmetric bilinear form ( , ), let {e i } be a basis of V and let {e i } be its dual basis.

a) We have |e

i | = -|e i |.
b) As Γ-graded vector spaces, V is canonically isomorphic to V * by v → (v, ) and we have e * i = ǫ(e i )(e i , ).

c) Using b) and Remark 2.1 the Γ-graded vector spaces End(V ) and V ⊗ V are canonically isomorphic and the identity map

Id V ∈ End(V ) corresponds to i e i ⊗ e i = i ǫ(e i )e i ⊗ e i ∈ V ⊗ V.
In particular, i e i ⊗ e i is independent of the choice of the basis {e i }.

d) We have v = i (v, e i )e i = i ǫ(e i )(v, e i )e i = i (e i , v)e i ∀v ∈ V. (1)
e) Let W be a Γ-graded vector space and let f : V ⊗ V → W be an ǫ-antisymmetric bilinear map. Using c) we have f (

i e i ⊗ e i ) = 0.

ǫ-exterior algebra and ǫ-Clifford algebra

Let (V, ( , )) be a finite-dimensional Γ-graded vector space together with a non-degenerate ǫ-symmetric bilinear form. In this subsection we recall basic properties of the ǫ-exterior algebra V and of the ǫ-Clifford algebra of (V, ( , )) (see [START_REF] Chen | Generalized Clifford theory for graded spaces[END_REF]).

Definition 2.4. a) The ǫ-Clifford algebra C ǫ (V, ( , )) of V is defined by

C ǫ (V, ( , 
)) := T (V )/I(V ),
where T (V ) is the tensor algebra over V and I(V ) is the two-sided ideal of T (V ) generated by elements of the form

x ⊗ y + ǫ(x, y)y ⊗ x -2(x, y)1 ∀x, y ∈ V.
b) The ǫ-exterior algebra Λ ǫ (V ) of V is defined to be C ǫ (V, ( , )) where ( , ) is totally degenerate.

The tensor algebra T (V ) is a Z × Γ-graded algebra and then the ǫ-Clifford algebra C ǫ (V, ( , )) is a Z 2 × Γgraded algebra and the ǫ-exterior algebra Λ ǫ (V ) is a Z × Γ-graded algebra. For the universal property of the ǫ-Clifford algebra, see [START_REF] Chen | Generalized Clifford theory for graded spaces[END_REF]. The ǫ-Clifford algebra C ǫ (V, ( , )) is filtered and its associated graded algebra is isomorphic to Λ ǫ (V ). Define e : V → End(Λ ǫ (V )) by e(v)(w) := v ∧ w for all v ∈ V , for all w ∈ Λ ǫ (V ) and define i :

V → End(T (V )) by i(v)(w 1 ⊗. . .⊗w n ) := i (-1) i-1 ǫ(v, w 1 +. . .+w i-1 )(v, w i )w 1 ⊗. . .⊗ ŵi ⊗. . .⊗w n ∀v ∈ V, ∀w 1 ⊗. . .⊗w n ∈ T (V ).
This descends to define i : V → End(Λ ǫ (V )) and by the universal property of the ǫ-Clifford algebra, the map

γ : V → End(Λ ǫ (V )) defined by γ(v) = e(v) + i(v) for all v ∈ V extends to define γ : C ǫ (V, ( , )) → End(Λ ǫ (V )).
Using the maps e and i we can define oscillator representations for a particular class of ǫ-Clifford algebras.

Definition 2.5. Suppose that one of the following holds: a) there are two maximal isotropic Γ-graded subspaces W and

W ′ such that V = W ⊕ W ′ ; b) there are two maximal isotropic Γ-graded subspaces W and W ′ , a one-dimensional subspace U of degree 0 orthogonal to W and W ′ , u ∈ U such that (u, u) = 1 and V = W ⊕ W ′ ⊕ U . Define the oscillator representation m : V → End(Λ ǫ (W )) by m(w + w ′ ) := e(w) + 2i(w ′ ) ∀w ∈ W, ∀w ′ ∈ W ′ , and, if b) holds, by m(u) := Id| Λǫ(W )0 -Id| Λǫ(W )1 , where Λ ǫ (W )0 := i∈N Λ 2i ǫ (W ) and Λ ǫ (W )1 := i∈N Λ 2i+1 ǫ (W ).
Using the universal property of the ǫ-Clifford algebra, this extends to define m : C ǫ (V, ( , )) → End(Λ ǫ (W )). There is a quantisation map from the ǫ-exterior algebra to the ǫ-Clifford algebra: Definition 2.6. Let n ∈ N and suppose that char(k) = 0 or n < char(k). Define the quantisation map

Q n : Λ n ǫ (V ) → C ǫ (V, ( , )) by Q n (v 1 ∧ . . . ∧ v n ) := 1 n! σ∈Sn p(σ; v 1 , . . . , v n )v σ(1) • . . . • v σ(n) .
Since the graded map gr

(Q n ) ∈ End(Λ n ǫ (V )) is the identity, the map Q n is injective. Furthermore, if char(k) = 0, then the map n Q n : Λ ǫ (V ) → C ǫ (V, ( , )
) is an isomorphism of Γ-graded vector spaces and its inverse map

is γ ′ : C ǫ (V, ( , )) → Λ ǫ (V ) given by γ ′ (v) = γ(v)(1) for all v ∈ C ǫ (V, ( , )) (see [CK16]).
We now extend ( , ) to Λ ǫ (V ). Let u 1 , . . . , u n , v 1 , . . . , v n ∈ V and consider the bilinear forms on T n (V ) defined by

B(u 1 ⊗ . . . ⊗ u n , v 1 ⊗ . . . ⊗ v n ) := n-1 i=0 (u n-i , v 1+i ) and (u 1 ⊗ . . . ⊗ u n , v 1 ⊗ . . . ⊗ v n ) Λ := σ∈Sn B(π(σ)(u 1 ⊗ . . . ⊗ u n ), v 1 ⊗ . . . ⊗ v n ).
One can check that

(u 1 ⊗ . . . ⊗ u n , v 1 ⊗ . . . ⊗ v n ) Λ = σ∈Sn B(u 1 ⊗ . . . ⊗ u n , π(σ)(v 1 ⊗ . . . ⊗ v n ))
and so this descends to define a bilinear form on Λ n ǫ (V ).

Proposition 2.7. Let n ∈ N and suppose that char(k) = 0 or n < char(k).

a) The bilinear form ( , ) Λ of Λ n ǫ (V ) defined above is ǫ-symmetric and non-degenerate.

b) The linear map Λ n ǫ (V ) → Λ n ǫ (V ) * given by f → (f, ) Λ is an isomorphism of Γ-graded vector spaces and for f ∈ Λ n ǫ (V ) * , the element f ∈ Λ n ǫ (V ) corresponding to f under this isomorphism satisfies to

f = 1 n! i1,...,in f (e i1 ∧ . . . ∧ e in )e in ∧ . . . ∧ e i1 ∈ Λ n ǫ (V ) and Q n ( f ) = 1 n! i1,...,in f (e i1 ∧ . . . ∧ e in )e in • . . . • e i1 ∈ C ǫ (V, ( , ))
where {e i } is a basis of V and {e i } its dual basis.

Proof. A straightforward calculation shows that ( ,

) Λ is ǫ-symmetric. Let (i ′ 1 , . . . , i ′ n ). It is non-degenerate since (e i ′ n ∧ . . . ∧ e i ′ 1 , e i ′ 1 ∧ . . . ∧ e i ′ n ) Λ = |{σ ∈ S n | σ • (i ′ 1 , . . . , i ′ n ) = (i ′ 1 , . . . , i ′ n )}|.
We want to show that

1 n! i1,...,in f (e i1 ∧ . . . ∧ e in )e in ∧ . . . ∧ e i1 , e i ′ 1 ∧ . . . ∧ e i ′ n Λ = f (e i ′ 1 ∧ . . . ∧ e i ′ n ). (2) 
Let (i 1 , . . . , i n ) such that for all σ ∈ S n we have σ

• (i 1 , . . . , i n ) = (i ′ 1 , . . . , i ′ n ). Hence e in ∧ . . . ∧ e i1 , e i ′ 1 ∧ . . . ∧ e i ′ n Λ = 0
and so

1 n! i1,...,in f (e i1 ∧. . .∧e in )e in ∧. . .∧e i1 , e i ′ 1 ∧. . .∧e i ′ n Λ = 1 n! (i1,...,in)∈S f (e i1 ∧. . .∧e in )(e in ∧. . .∧e i1 , e i ′ 1 ∧. . .∧e i ′ n ) Λ
where S is the set of all (i 1 , . . . , i n ) such that there exists σ ∈ S n such that σ

• (i 1 , . . . , i n ) = (i ′ 1 , . . . , i ′ n ). For each (i 1 , . . . , i n ) ∈ S we have f (e i1 ∧ . . . ∧ e in )e in ∧ . . . ∧ e i1 = f (e i ′ 1 ∧ . . . ∧ e i ′ n )e i ′ n ∧ . . . ∧ e i ′ 1
and then

1 n! i1,...,in f (e i1 ∧ . . . ∧ e in )e in ∧ . . . ∧ e i1 , e i ′ 1 ∧ . . . ∧ e i ′ n Λ = |S| n! (e i ′ n ∧ . . . ∧ e i ′ 1 , e i ′ 1 ∧ . . . ∧ e i ′ n ) Λ .
Finally,

(e i ′ n ∧ . . . ∧ e i ′ 1 , e i ′ 1 ∧ . . . ∧ e i ′ n ) Λ = |{σ ∈ S n | σ • (i ′ 1 , . . . , i ′ n ) = (i ′ 1 , . . . , i ′ n )}| and since |S||{σ ∈ S n | σ • (i ′ 1 , . . . , i ′ n ) = (i ′ 1 , . . . , i ′ n )}| = n! we obtain Equation (2). For i j , i k , by (1), we have i1,...,in f (e i1 ∧ . . . ∧ e in )(e ij , e i k ) = i1,..., îj ,...,in f (e i1 ∧ . . . ∧ ij (e ij , e i k )e ij ∧ . . . ∧ e i k ∧ . . . ∧ e in ) = i1,..., îj ,...,in f (e i1 ∧ . . . ∧ e i k ∧ . . . ∧ e i k ∧ . . . ∧ e in ) = 0.
(3)

Using the Clifford relation uv = -ǫ(u, v)vu + 2(u, v) we have that

Q n (e in ∧ . . . ∧ e i1 ) = e in • . . . • e i1 + B
where B is a sum of elements of the form (e ij , e i k )X and hence by Equation (3) we obtain

Q n ( f ) = 1 n! i1,...,in f (e i1 ∧ . . . ∧ e in )e in • . . . • e i1 .

Colour Lie algebras

In this subsection, following [START_REF] Rimhak | Generalized Lie elements[END_REF], we define colour Lie algebras, representations of colour Lie algebras ([RW78a], [START_REF] Rittenberg | Sequences of Z 2 ⊕ Z 2 graded Lie algebras and superalgebras[END_REF], [START_REF] Scheunert | Generalized Lie algebras[END_REF]) and give some properties of the moment map of an ǫ-orthogonal representation of an ǫ-quadratic colour Lie algebra.

Definition 2.8. A colour Lie algebra is a Γ-graded vector space g together with a bilinear map { , } : Example 2.9. Let V be a Γ-graded vector space.

g × g → g such that a) {g α , g β } ⊆ g α+β for all α, β ∈ Γ, b) {x, y} = -ǫ(x,
a) The associative Γ-graded algebra Homgr(V, V ) is a colour Lie algebra for the bracket {a, b} := ab -ǫ(a, b)ba for a, b in Homgr(V, V ) and is denoted gl ǫ (V ).

b) Let ( , ) be an ǫ-symmetric bilinear form on V . We set so ǫ (V, ( , )) := γ∈Γ so ǫ (V, ( , )) γ where

so ǫ (V, ( , 
)) γ := {f ∈ Homgr(V, V ) γ | (f (v), w) + ǫ(f, v)(v, f (w)) = 0 ∀v, w ∈ V }.
One can show that so ǫ (V, ( , )) is stable under the bracket of gl ǫ (V ) and hence is a colour Lie algebra.

Let g and g ′ be colour Lie algebras. A degree 0 linear map f ∈ Homgr(g, g ′ ) is a morphism of colour Lie algebras if f ({x, y}) = {f (x), f (y)} for all x, y ∈ g and we say that g and g ′ are isomorphic if f is a linear isomorphism. A representation V of g is a Γ-graded vector space V together with a morphism of colour Lie algebras π : g → gl ǫ (V ) and the adjoint representation ad : g → gl ǫ (g) is defined by ad(x) := {x, } for all x ∈ g. An ǫ-orthogonal representation V of g is a Γ-graded vector space V together with a non-degenerate ǫ-symmetric bilinear form ( , ) and a morphism of colour Lie algebras π : g → so ǫ (V, ( , )). We say that g is ǫ-quadratic if there is a bilinear form B on g which is ǫ-symmetric, non-degenerate and ad-invariant is the sense that

B({x, y}, z) = -ǫ(x, y)B(y, {x, z}) ∀x, y, z ∈ g.
The ǫ-Killing form K is the ǫ-symmetric ad-invariant bilinear form on g given by

K(x, y) := T r ǫ (ad(x)ad(y)) ∀x, y ∈ g. Remark 2.10. a) If π 1 : g → End(V 1 ) and π 2 : g → End(V 2 ) are representations of a colour Lie algebra g, then π : g → End(V 1 ⊗ V 2 ) given by π(x)(v 1 ⊗ v 2 ) := π 1 (x)(v 1 ) ⊗ v 2 + ǫ(x, v 1 )v 1 ⊗ π 2 (x)(v 2 ) ∀x ∈ g, ∀v 1 ⊗ v 2 ∈ V 1 ⊗ V 2
is also a representation of g. In particular, if V is a finite-dimensional representation of g, then T (V ) and Λ ǫ (V ) are representations of g. If (V, ( , )) is an ǫ-orthogonal representation of g, then C ǫ (V, ( , )) is also a representation of g.

b) If g is a finite-dimensional ǫ-quadratic colour Lie algebra, the isomorphism between End(g) and g ⊗ g is g-equivariant.

Unless otherwise stated, we suppose all ǫ-orthogonal representations of dimension at least two.

Definition 2.11. Let g be a finite-dimensional colour Lie algebra.

a) The ǫ-universal enveloping algebra U ǫ (g) of g is defined by

U ǫ (g) := T (g)/I(g),
where T (g) is the tensor algebra over g and I(g) is the two-sided ideal of T (g) generated by elements of the form x ⊗ y -ǫ(x, y)y ⊗ x -{x, y} ∀x, y ∈ g.

b) The ǫ-symmetric algebra S ǫ (g) of g is defined to be U ǫ (g) where the bracket of g is trivial.

c) If g is ǫ-quadratic, then the Casimir element Ω(g) ∈ U ǫ (g) is defined by

Ω(g) := i x i x i ∈ U ǫ (g)
where {x i } is a basis of g and {x i } its dual basis.

The action of g on T (g) of Remark 2.10 defines an action of g on U ǫ (g). For the universal property of the ǫ-universal enveloping algebra, see [START_REF] Scheunert | Generalized Lie algebras[END_REF]. Since Ω(g) ∈ U ǫ (g) corresponds to Id g ∈ End(g), then Ω(g) is in the ǫ-centre Z ǫ (g) of U ǫ (g) where the ǫ-centre is defined by

Z ǫ (g) := {x ∈ U ǫ (g) | xy = ǫ(x, y)yx ∀y ∈ U ǫ (g)}.
We now define and study the moment map associated to an ǫ-orthogonal representation.

Definition 2.12. Let π : g → so ǫ (V, ( , )) be a finite-dimensional ǫ-orthogonal representation of a finitedimensional ǫ-quadratic colour Lie algebra (g, B g ). We define the moment map µ : V × V → g to be the bilinear map given by

B g (x, µ(v, w)) = (π(x)(v), w) ∀v, w ∈ V, ∀x ∈ g.
The moment map µ is ǫ-antisymmetric and of degree 0. The classical example of a moment map is the moment map of the fundamental representation of so ǫ (V, ( , )).

Proposition 2.13. Let V be a finite-dimensional Γ-graded vector space together with a non-degenerate ǫ-symmetric bilinear form ( , ). a) Consider the ǫ-orthogonal representation of the ǫ-quadratic colour Lie algebra (so ǫ (V, ( , )), B) where B(f, g) = -1 2 T r ǫ (f g) for all f, g ∈ so ǫ (V, ( , )). Then, the corresponding moment map µ can satisfies

µ can (u, v)(w) = ǫ(v, w)(u, w)v -(v, w)u ∀u, v, w ∈ V. b) The moment map µ can : Λ 2 ǫ (V ) → so ǫ (V, ( , 
)
) is an isomorphism of Γ-graded vector spaces. c) For f ∈ so ǫ (V, ( , )), we have

µ -1 can (f ) = - 1 2 i f (e i ) ∧ e i , Q 2 (µ -1 can (f )) = - 1 2 i f (e i )e i
where {e i } is a basis of V and {e i } its dual basis.

Proof. A straightforward calculation shows a) (or see [START_REF] Meyer | The Kostant invariant and special ǫ-orthogonal representations for ǫ-quadratic colour Lie algebras[END_REF]). For b), see [START_REF] Chen | Generalized Clifford theory for graded spaces[END_REF] if char(k) = 0 or chapter 3 of [START_REF] Meyer | Representations associated to gradations of Lie algebras and colour Lie algebras[END_REF]. We now prove c). Let v ∈ V . We have

µ can - 1 2 i f (e i ) ∧ e i (v) = - 1 2 i,j ǫ(e i , v)(f (e i ), v)e i -(e i , v)f (e i ) = f (v).
Since i (f (e i ), e i ) = 0 by Remark 2.3, we have

Q 2 (µ -1 can (f )) = - 1 2 i f (e i )e i + 1 2 i (f (e i ), e i ) = i f (e i )e i .

Basic colour Lie algebras

Suppose that char(k) = 0. Let (g, B g ) be a finite-dimensional ǫ-quadratic colour Lie algebra and let h be a Cartan subalgebra of the Lie algebra g 0 . For α ∈ h * , define

g α = {x ∈ g | {h, x} = α(h)x ∀h ∈ h}.
We have

{g α , g β } ⊆ g α+β ∀α, β ∈ h * .
Suppose that dim(g α ) ≤ 1 for all non-zero α ∈ h * , ad(h) is diagonalisable in the sense that g = α∈h *

g α and h is self-normalising in the sense that g 0 = h. A non-zero element α ∈ h * with g α = {0} is called a root of g with respect to h and the set of all roots is denoted ∆.

Proposition 2.14. We have the following.

a) If α, β ∈ h * are such that α + β = 0, then B g (g α , g β ) = 0.
b) The restriction of B g to g α × g -α is non-degenerate.

Proof. Since α + β = 0, there exists h ∈ h such that (α + β)(h) = 0. Let x ∈ g α and let y ∈ g β . We have

α(h)B g (x, y) = B g ({h, x}, y) = -B g (x, {h, y}) = -β(h)B g (x, y),
then (α + β)(h)B g (x, y) = 0 which implies B g (x, y) = 0. This shows a) and b) follows since B g is non-degenerate.

Thus, if α is a root, -α is also a root and so one can define ∆ + and ∆ -such that ∆ = ∆ + ∪ ∆ -and such that α ∈ ∆ ± implies -α ∈ ∆ ∓ . Suppose that the vanishing of a linear combination α∈∆ ± c α α with integral coefficients c α ≥ 0 implies that c α = 0 for all α ∈ ∆ ± . The elements in ∆ + (resp. ∆ -) are called the positive (resp. negative) roots. For α ∈ ∆ we set ǫ(α) := ǫ(x) where x is a non-zero element of g α and we define the Weyl vector ρ by

ρ := 1 2 α∈∆ + ǫ(α)α.
If we define g + = α∈∆ + g α and g -= α∈∆ - g α , we have that g + and g -are nilpotent colour Lie algebras and a

decomposition g = g -⊕ h ⊕ g + .
By Proposition 2.14 (h, B g | h ) is a non-degenerate quadratic vector space. For α ∈ h * define h α ∈ h to be the unique element in h such that α = B g (h α , ) ∈ h * and define a non-degenerate symmetric bilinear form

B g * ( , ) on h * by B g * (α, β) = B g (h α , h β ) ∀α, β ∈ h * .
Proposition 2.15. We have the following. a) Let {h i } be a basis of h and let {h i } its dual basis. We have

B g * (α, β) = i α(h i )β(h i ) ∀α, β ∈ h * .
b) For a root α and x ∈ g α , y ∈ g -α we have {x, y} = B g (x, y)h α .

Proof. a) We have

B g * (α, β) = B g (h α , h β ) = i B g (B g (h α , h i )h i , β) = i α(h i )β(h i ).
b) For z ∈ g γ , where γ ∈ h * \{0}, by Proposition 2.14 we have

B g (z, {x, y}) = B g (z, B g (x, y)h α ) = 0.
For h ∈ h we have

B g (h, {x, y}) = B g ({h, x}, y) = α(h)B g (x, y) = B g (h α , h)B g (x, y) = B g (h, B g (x, y)h α )
and so {x, y} = B g (x, y)h α .

Definition 2.16. Let π : g → End(V ) be a representation of g. We say that V is a representation of g of highest weight λ if there exist a homogeneous non-zero element v ∈ V and a linear form λ ∈ h * such that

• v generates V as g-module;

• v is annihilated by g + ;

• π(h)(v) = λ(h)v for all h ∈ h.
The set of the elements u ∈ V such that π(h)(u) = λ(h)u for all h ∈ h is one dimensional. We have:

Proposition 2.17. The Casimir element Ω(g) ∈ U ǫ (g) satisfies to

π(Ω(g)) = B g * (λ + 2ρ, λ)Id V .
Proof. Since Ω(g) ∈ Z ǫ (g), cleary it acts on V as a multiple of the identity. Let {h i } be a basis of h and let {h i } be its dual basis. For each α ∈ ∆ + let e α ∈ g α and e -α ∈ g -α be such that B g (e α , e -α ) = 1. The set

{h i } ∪ {e α , ∀α ∈ ∆ + } ∪ {e -α , ∀α ∈ ∆ + }
is a basis of g and its dual basis is

{h i } ∪ {e -α , ∀α ∈ ∆ + } ∪ {ǫ(α)e α , ∀α ∈ ∆ + }.

Hence we have Ω(g) =

i

h i h i + α∈∆ + e -α e α + α∈∆ + ǫ(α)e α e -α .
By Proposition 2.15 we have {e α , e -α } = h α and so

Ω(g) = i h i h i + 2 α∈∆ + e -α e α + α∈∆ + ǫ(α)h α . (4) 
We have π(

i h i h i )(v) = i λ(h i )λ(h i )v = B g * (λ, λ)v. ( 5 
)
Since e α ∈ g + annihilates v, we have π(2

α∈∆ + e -α e α )(v) = 0. (6) 
Finally, we have π(

α∈∆ + ǫ(α)h α )(v) = α∈∆ + ǫ(α)λ(h α )v and since 2B g * (ρ, λ) = i α∈∆ + ǫ(α)α(h i )λ(h i ) = i α∈∆ + ǫ(α)B g (h α , h i )B g (h λ , h i ) = α∈∆ + ǫ(α)B g (h λ , i B g (h α , h i )h i ) = α∈∆ + ǫ(α)B g (h λ , h α ) = α∈∆ + ǫ(α)λ(h α )
we obtain that π(

α∈∆ + ǫ(α)h α )(v) = 2B g * (ρ, λ)v. ( 7 
)
From Equations (4), ( 5), ( 6) and ( 7) we obtain that

π(Ω(g))(v) = B g * (λ + 2ρ, λ)v.

Representations of colour Lie type and the strange Freudenthal-de Vries formula

In this section, from a finite-dimensional ǫ-orthogonal representation π : g → so ǫ (V, ( , )) of a finite-dimensional ǫ-quadratic colour Lie algebra g, we show how to construct an ǫ-quadratic colour Lie algebra structure on g ⊕ V using a slight different point of view than in [START_REF] Meyer | The Kostant invariant and special ǫ-orthogonal representations for ǫ-quadratic colour Lie algebras[END_REF]. Using this characterisation we state a strange Freudenthal and de Vries formula ([FdV69]) for basic colour Lie algebras.

The ǫ-Clifford algebra C ǫ (V, ( , )) is Z 2 × Γ-graded and so consider the commutation factor ǫ of Z 2 × Γ given by ǫ((a 1 , γ 1 ), (a 2 , γ 2 )

) := (-1) a1a2 ǫ(γ 1 , γ 2 ) ∀(a 1 , γ 1 ), (a 2 , γ 2 ) ∈ Z 2 × Γ. Then C ǫ (V, ( , 
)) is a (Z 2 × Γ, ǫ)-colour Lie algebra for the bracket {x, y} := x • y -ǫ(x, y)y • x ∀x, y ∈ C ǫ (V, ( , 
)). Define π * : g → C ǫ (V, ( , 
)
) by

π * = - 1 2 Q 2 • µ -1 can • π,
where

Q 2 : Λ 2 ǫ (V ) → C ǫ (V, ( , 
)
) is the quantisation map of Definition 2.6 and where µ can : Λ 2 ǫ (V ) → so ǫ (V, ( , )) is the isomorphism of Proposition 2.13. We have

π * (x) = 1 4 i π(x)(e i )e i ∀x ∈ g (8)
where {e i } is a basis of V and {e i } its dual basis. The map π * is a colour Lie algebra morphism and so we extend it to π * : U ǫ (g) → C ǫ (V, ( , )) using the universal property of the ǫ-universal enveloping algebra U ǫ (g).

Theorem 3.1. Let π : g → so ǫ (V, ( , )) be a finite-dimensional ǫ-orthogonal representation of a finite-dimensional ǫ-quadratic colour Lie algebra (g, B g ) and let µ : Λ 2 ǫ (V ) → g be its moment map. Let φ : Λ 2 ǫ (V ) → V be of degree 0 and satisfy

π(x)(φ(v, w)) = φ(π(x)(v), w) + ǫ(x, v)φ(v, π(x)(w)) ∀x ∈ g, ∀v, w ∈ V, (9) (φ(u, v), w) = -ǫ(u, v)(v, φ(u, w)) ∀u, v, w ∈ V. ( 10 
)
Let g := g ⊕ V , let B g := B g ⊥ ( , ) and let { , } ∈ Λ 2 ǫ (g) → g be the unique map which extends the bracket of g, the action of g on V and such that

{v, w} = µ(v, w) + φ(v, w) ∀v, w ∈ V.
Define the cubic term ψ ∈ C ǫ (V, ( , )) to be the element corresponding to the ǫ-alternating trilinear map (u, v, w) → 1 2 (u, φ(v, w)) under the isomorphism of vector spaces between Λ 3 ǫ (V ) * and Λ 3 ǫ (V ) of Proposition 2.7 and under the quantisation map

Q 3 : Λ 3 ǫ (V ) → C ǫ (V, ( , 
)). The following are equivalent: a) (g, B g, { , }) is an ǫ-quadratic colour Lie algebra. b) π * (Ω(g)) + ψ 2 ∈ k.
Proof. For u, v, w ∈ g, if u, v or w is an element of g then a straightforward calculation shows that ǫ(w, u){{u, v}, w} + ǫ(u, v){{v, w}, u} + ǫ(v, w){{w, u}, v} = 0. Let u, v, w ∈ V and x ∈ g. We have

B g ({u, {v, w}}, x) = -ǫ(u, v + w)ǫ(u + v + w, x)(π(x)(φ(v, w)), u)
and by Equation ( 9) we obtain

B g ({u, {v, w}}, x) = -ǫ(u, v + w)B g ({v, {w, u}}, x) + ǫ(u, v + w)ǫ(v, w)B g ({w, {v, u}}, x).
Hence, B g (ǫ(w, u){{u, v}, w} + ǫ(u, v){{v, w}, u} + ǫ(v, w){{w, u}, v}, x) = 0.

It follows that g is a colour Lie algebra if and only if

(ǫ(v 3 , v 1 ){{v 1 , v 2 }, v 3 } + ǫ(v 1 , v 2 ){{v 2 , v 3 }, v 1 } + ǫ(v 2 , v 3 ){{v 3 , v 1 }, v 2 }, v 4 ) = 0 ∀v 1 , v 2 , v 3 , v 4 ∈ V.
Define the map J ∈ Λ ǫ (V ) * by

J(v 1 , v 2 , v 3 , v 4 ) = ǫ(v 1 , v 3 )(ǫ(v 3 , v 1 ){{v 1 , v 2 }, v 3 } + ǫ(v 1 , v 2 ){{v 2 , v 3 }, v 1 } + ǫ(v 2 , v 3 ){{v 3 , v 1 }, v 2 }, v 4 ) ∀v 1 , v 2 , v 3 , v 4 ∈ V
and J ∈ Λ ǫ (V ) to be the corresponding element of J under the isomorphism of Proposition 2.7. By Proposition 2.7, we have

Q 4 ( J) = 1 4! i,j,n,m
J(e i ∧ e j ∧ e n ∧ e m )e m e n e j e i and so (µ(e j , e n )(e n ) + φ(φ(e j , e n ), e n ))e j .

Q 4 ( J ) = 1 4! i,j,
Hence we have

Q 4 ( J) = 1 8 i,j,n,m
({{e i , e j }, e n }, e m )e m e n e j e i -1 4

j,n (µ(e j , e n )(e n ) + φ(φ(e j , e n ), e n ))e j .
We have

j,n (µ(e j , e n )(e n ) + φ(φ(e j , e n ), e n ))e j =Q 2 j,n (µ(e j , e n )(e n ) + φ(φ(e j , e n ), e n )) ∧ e j + j,n
(µ(e j , e n )(e n ) + φ(φ(e j , e n ), e n )), e j and since j,n (µ(e j , e n )(e n ) + φ(φ(e j , e n ), e n )) ∧ e j = 0 we obtain

Q 4 ( J ) = 1 8 i,j,n,m
({{e i , e j }, e n }, e m )e m e n e j e i -1 4 j,n

µ(e j , e n )(e n ) + φ(φ(e j , e n ), e n ), e j .

(11)

On the other hand, we have

π * (Ω(g)) = 1 16 k i,j,n,m (π(x k )(e j ), e i )(π(x k )(e m
), e n )e i e j e n e m = 1 16

k i,j,n,m B g (x k , µ(e j , e i ))B g (x k , µ(e m , e n ))e i e j e n e m = 1 16 i,j,n,m B g k B g (x k , µ(e m , e n ))
x k , µ(e j , e i ) e i e j e n e m = 1 16

i,j,n,m B g (µ(e m , e n ), µ(e j , e i ))e i e j e n e m .

Finally, since

ψ = 1 12 i,j
φ(e i , e j )e j e i , one can show that

ψ 2 = 1 16 i,j ,k (φ(φ 
(e i , e j ), e k ), e l )e l e k e j e i -1

(e k , e l ), e l ), e k ) and so

π * (Ω(g)) + ψ 2 = 1 16 i,j,n,m (B g (µ(e m , e n )(e j
), e i ) + (φ(φ(e m , e n ), e j ), e i ))e i e j e n e m -1 12 k,l (φ(φ(e k , e l ), e l ), e k ).

Using (11) we obtain

π * (Ω(g)) + ψ 2 = 1 2 Q 4 ( J) + 1 8 j,n
(µ(e j , e n )(e n ), e j ) + 1 24 j,n (φ(φ(e j , e n ), e n )), e j ).

Since g is a colour Lie algebra if and only if J ≡ 0, it follows from (12) that this is equivalent to

π * (Ω(g)) + ψ 2 ∈ k.
If there exist a cubic term ψ such that one of the equivalent conditions of this Theorem is satisfied, we say that the representation π : g → so ǫ (V, ( , )) is of colour Lie type. If one of this conditions is satisfied for ψ = 0, we say that the representation is of colour Z 2 -Lie type. The scalar involved in this Theorem can be more explicitly characterised.

Corollary 3.2. If π : g → so ǫ (V, ( , )) is of colour Lie type for a cubic term ψ, then π * (Ω(g)) + ψ 2 = 1 24 T r ǫ (ad g(Ω(g))) -T r ǫ (ad g (Ω(g))) .

Proof. We have

T r ǫ (ad g(Ω(g))) -T r ǫ (ad g (Ω(g))) = i B g (ad(Ω(g))(x i ), x i ) + i (ad(Ω(g))(e i ), e i ) - i B g (ad(Ω(g))(x i ), x i ) = i,j B g ({e j , {e j , x i }}, x i ) + i,j ({x j , {x j , e i }}, e i ) + i,j ({e j , {e j , e i }}, e i ) = 2 i,j B g ({e j , {e j , x i }}, x i ) + i,j
({e j , {e j , e i }}, e i ).

Since i,j

({e i , {e i , x j }}, x j ) = i,j
(µ(e j , e i )(e i ), e j ) and i,j ({e j , {e j , e i }}, e i ) = i,j

(µ(e j , e i )(e i ), e j ) + i,j

(φ(e j , φ(e j , e i )), e i )

we have T r ǫ (ad g(Ω(g))) -T r ǫ (ad g (Ω(g))) = 3 i,j

(µ(e j , e i )(e i ), e j ) + i,j

(φ(e j , φ(e j , e i )), e i ).

Using (12), we obtain

π * (Ω(g)) + ψ 2 = 1 24 T r ǫ (ad g(Ω(g))) -T r ǫ (ad g (Ω(g)))
.

Here is a particular family of examples of representations of colour Z 2 -Lie type.

Proposition 3.3. Let g be a finite-dimensional colour Lie algebra such that its ǫ-Killing form B g is nondegenerate. The ǫ-orthogonal adjoint representation ad : g → so ǫ (g, B g ) is of colour Z 2 -Lie type and

ad * (Ω(g)) = 1 8 dim ǫ (g).
Proof. The moment map µ of ad : g → so ǫ (g, B g ) satisfies to µ(u, v) = {u, v} for u, v ∈ g and then g = g ⊕ g is a Z 2 -graded colour Lie algebra. From Theorem 3.1 and Corollary 3.2 we have ad * (Ω(g)) = 1 24 T r ǫ (ad g(Ω(g))) -T r ǫ (ad g (Ω(g))) .

The ǫ-quadratic form B g is the ǫ-Killing form of g and then the ǫ-quadratic form B g = B g ⊥ B g on g satisfies to

B g = 1 2 K g
where K g is the ǫ-Killing form of g. Hence, if Ω K (g) ∈ U ǫ (g) is the Casimir element corresponding to K g, we have Ω(g) = 2Ω K (g).

Thus, T r ǫ (ad g(Ω(g))) = 2T r ǫ (ad g(Ω K (g))) = 2dim ǫ (g) = 4dim ǫ (g)
and so ad * (Ω(g)) = 1 8 dim ǫ (g).

Comparing the scalar coming from the previous example with the action of the Casimir element on an oscillator representation we obtain a strange Freudenthal and de Vries formula for basic colour Lie algebras. Theorem 3.4. Suppose that char(k) = 0. Let g be a finite-dimensional basic colour Lie algebra in the sense of Subsection 2.4 and such that its ǫ-Killing form B g is non-degenerate. We have

dim ǫ (g) = 24B g * (ρ, ρ),
where ρ is the Weyl vector of g with respect to a Cartan subalgebra h of g and a choice of a full set of positive roots for the action of ad(h).

Proof. We use here the same notation as in Subsection 2.4 and we can suppose without loss of generality that k is algebraically closed.

From Proposition 2.15 we know that g + and g -are isotropic for B g . Let W , W * be maximal isotropic subspaces of h and let U be {0} or a one-dimensional vector space of degree 0 orthogonal to W and W ′ such that h = W * ⊕ W ⊕ U . If we define W = W ⊕ g -and W * = W * ⊕ g + then W and W * are maximal isotropic subspaces of g and we can consider the oscillator representation m : C ǫ (g, B g ) → End(Λ ǫ (W )) (see Definition 2.5). Composing m with ad * : g → C ǫ (V, B g ) we obtain a representation m * : g → End(Λ ǫ (W )).

For Let {H i } be a basis of W * and let {H i } be the basis of W such that B g (H i , H j ) = δ ij . If U = {0} let u be a basis of U such that B g (u, u) = 1. The basis {h i } can be chosen such that

{h i } = {H i } ∪ {H i } if U = {0} or such that {h i } = {H i } ∪ {H i } ∪ {u} if U = {0}. Since H i ∈ W * we have 1 4 i m({e γ , H i }H i + {e γ , H i }H i )(1) = 1 4 i m({e γ , H i }H i )(1) = - 1 4 i γ(H i )m(e γ H i )(1) = - 1 2 i γ(H i )B g (e γ , H i ) = 0.
and if U = {0} we also have Hence, from Equations ( 13) and ( 14), we have that m * (g)(1) is a representation of g of highest weight ρ. By Proposition 2.17 we have m * (Ω(g))| m * (g)(1) = 3B g * (ρ, ρ).

Since m * = m • ad * , by Proposition 3.3, we also have

m * (Ω(g))| m * (g)(1) = 1 8 dim ǫ (g)
and so dim ǫ (g) = 24B g * (ρ, ρ).

The cubic Dirac operator

In this section, we define cubic Dirac operators for ǫ-orthogonal representations of ǫ-quadratic colour Lie algebras and we prove a Parthasarathy formula ( [START_REF] Parthasarathy | Dirac operator and the discrete series[END_REF]).

Let π : g → so ǫ (V, ( , )) be a finite-dimensional ǫ-orthogonal representation of colour Lie type of a finitedimensional ǫ-quadratic colour Lie algebra (g, B g ) and consider the associated ǫ-quadratic colour Lie algebra (g, B g) where g = g ⊕ V and B g = B g ⊥ ( , ). The ǫ-enveloping algebra U ǫ (g) is Γ-graded, the ǫ-Clifford algebra

C ǫ (V, ( , )) is Z 2 × Γ-graded, hence U ǫ (g) ⊗ C ǫ (V, ( , )) is Z 2 × Γ-graded and we consider the product a ⊗ b • c ⊗ d := ǫ(b, c)ac ⊗ bd ∀a ⊗ b, c ⊗ d ∈ U ǫ (g) ⊗ C ǫ (V, ( , )). 
Then

U ǫ (g) ⊗ C ǫ (V, ( , )) is a (Z 2 × Γ, ǫ)-colour Lie algebra for the bracket {x, y} := x • y -ǫ(x, y)y • x ∀x, y ∈ U ǫ (g) ⊗ C ǫ (V, ( , )). 
We now define the cubic Dirac operator of the representation π : g → so ǫ (V, ( , )) of colour Lie type.

Definition 4.1. Let {e i } be a basis of V and let {e i } be its dual basis. Define D ∈ U ǫ (g) ⊗ C ǫ (V, ( , )) by

D = i e i ⊗ e i ,
and the cubic Dirac operator D ∈ U ǫ (g) ⊗ C ǫ (V, ( , )) by

D = D + 1 ⊗ ψ,
where ψ is the cubic term of the colour Lie type representation π : g → so ǫ (V, ( , )).

Define the diagonal embedding ∆ :

g → U ǫ (g) ⊗ C ǫ (V, ( , 
)) by ∆(x) = x ⊗ 1 + 1 ⊗ π * (x) ∀x ∈ g.
This is a colour Lie algebra morphism and we extend it to ∆ :

U ǫ (g) → U ǫ (g) ⊗ C ǫ (V, ( , )).
We calculate the square of the cubic Dirac operator of a representation of colour Lie type analogously to the Parthasarathy formula for the square of the Dirac operator of a Cartan decomposition of a reductive Lie algebra. Theorem 4.2. Let π : g → so ǫ (V, ( , )) be a finite-dimensional ǫ-orthogonal representation of colour Lie type of a finite-dimensional ǫ-quadratic colour Lie algebra (g, B g ). Let g be the associated colour Lie algebra and let D be the cubic Dirac operator. We have

D2 = Ω(g) ⊗ 1 -∆(Ω(g)) + 1 24 T r ǫ (ad g(Ω(g))) -T r ǫ (ad g (Ω(g))) 1 ⊗ 1,
where Ω(g) (resp. Ω(g)) is the Casimir element of g (resp. g).

Proof. Let ψ be the cubic term of the representation of colour Lie type π : g → so ǫ (V, ( , )). We have

D 2 = 1 2 i,j e i ⊗ e i • e j ⊗ e j + e j ⊗ e j • e i ⊗ e i = 1 2 i,j
ǫ(e j , e i )e i e j ⊗ e i e j + ǫ(e i , e j )e j e i ⊗ e j e i = 1 2 i,j

ǫ(e j , e i )e i e j ⊗ e i e j -e j e i ⊗ e i e j + i,j

ǫ(e i , e j )e j e i ⊗ (e j , e i )

= -1 2 i,j {e j , e i } ⊗ e i e j + i,j

ǫ(e i , e j )e j e i ⊗ (e j , e i )

= -1 2 i,j

µ(e j , e i ) ⊗ e i e j -1 2 i,j

φ(e j , e i ) ⊗ e i e j + i,j

ǫ(e i , e j )e j e i ⊗ (e j , e i ).

Firstly, using Equation (1), we have i,j

ǫ(e i , e j )e j e i ⊗ (e j , e i ) = i,j e j (e i , e j )e i ⊗ 1

= Ω(g) -Ω(g) ⊗ 1, using Equations ( 1) and ( 8), we also have

- 1 2 i,j µ(e j , e i ) ⊗ e i e j = - 1 2 i,j k B g (x k , µ(e j , e i ))x k ⊗ e i e j = - 1 2 i,j k (π(x k )(e j ), e i )x k ⊗ e i e j = - 1 2 k x k ⊗ j π(x k )(e j )e j = -2 k x k ⊗ π * (x k )
and hence

D 2 = -2 k x k ⊗ π * (x k ) - 1 2 i,j
φ(e j , e i ) ⊗ e i e j + Ω(g) -Ω(g) ⊗ 1.

We have 1 ǫ(e l )e l ⊗ ψ(e k , e j , e i )e l e i e j e k we have φ(e j , e i ) ⊗ e i e j and so from Equation (15) we obtain

⊗ ψ • D = 1 12 i,j,k,l ǫ(e l )e l ⊗ ψ(e k ,
D • 1 ⊗ ψ + 1 ⊗ ψ • D = l e l ⊗ e l • 1 ⊗ 1 12 i,j,k ψ(e k ,
D 2 = -2 k x k ⊗ π * (x k ) + Ω(g) -Ω(g) ⊗ 1 + 1 ⊗ ψ 2 .
We have

∆(Ω(g)) = k ∆(x k )∆(x k ) = k x k ⊗ 1 + 1 ⊗ π * (x k ) x k ⊗ 1 + 1 ⊗ π * (x k ) = k x k x k ⊗ 1 + k x k ⊗ π * (x k ) + k ǫ(x k )x k ⊗ π * (x k ) + k 1 ⊗ π * (x k )π * (x k ) = Ω(g) ⊗ 1 + 2 k x k ⊗ π * (x k ) + 1 ⊗ π * (Ω(g)), hence (D + 1 ⊗ ψ) 2 = Ω(g) ⊗ 1 -∆(Ω(g)) + 1 ⊗ π * (Ω(g)) + 1 ⊗ ψ 2
and from Corollary 3.2 we obtain D2 = Ω(g) ⊗ 1 -∆(Ω(g)) + 1 24 T r ǫ (ad g(Ω(g))) -T r ǫ (ad g (Ω(g))) 1 ⊗ 1.

Corollary 4.3. Suppose that char(k) = 0, the colour Lie algebras g and g are basic in the sense of Subsection 2.4 and B g (resp. B g ) is a multiple of the ǫ-Killing form of g (resp. g). We have D2 = Ω(g) ⊗ 1 -∆(Ω(g)) + B g * (ρ g, ρ g) -B g * (ρ g , ρ g ) 1 ⊗ 1, where ρ g (resp. ρ g ) is the Weyl vector of g (resp. g) with respect to a Cartan subalgebra h g (resp. h g ) of g (resp. g) and a choice of a full set of positive roots for the action of ad(h g) (resp. ad(h g )).

Proof. Let c ∈ k * be such that B g = cK g , where K g is the ǫ-Killing form of g. Hence, if Ω K (g) ∈ U ǫ (g) is the Casimir element corresponding to K g , we have

Ω(g) = 1 c Ω K (g).
Thus, T r ǫ (ad g (Ω(g))) = 1 c T r ǫ (ad g (Ω K (g))) = 1 c dim ǫ (g) and by the strange Freudenthal-de Vries formula (Theorem 3.4) we obtain T r ǫ (ad g (Ω(g))) = 24 c K g * (ρ g , ρ g ).

Since B g * = 1 c K g * , we have T r ǫ (ad g (Ω(g))) = 24B g * (ρ g , ρ g ).

Then

. . . where d 0 : S ǫ (V ) ⊗ k → k is the augmentation map, is an exact chain complex. That is to say that (X • (V ), d) is a standard resolution of the trivial S ǫ (V )-module k.

Proof. One can check that d n • d n+1 = 0 and that ( 16) is exact in X -1 (V ) = k. We now show by induction on dim(V ) that this chain complex is exact.

• Initialisation: Suppose that dim(V ) = 1 and let v be a basis of V . If ǫ(v) = 1, we have Λ n ǫ (V ) = {0} for all n ≥ 2 and then the chain complex (X • (V ), d) is of the form

{0} → S(V ) ⊗ V d1 -→ S(V ) ⊗ k d0 -→ k → {0}. ( 17 
)
The map d 1 is clearly injective. We have Ker(d 0 ) = y ∈ Im(d n+1 ) and so the chain complex ( 16) is exact.

• Induction: Let n ∈ N and suppose that the chain complex ( 16) is exact for every Γ-graded vector space V of dimension n. Let V be a Γ-graded vector space of dimension n + 1. Let v be an homogeneous element of V and let W ⊂ V be a Γ-graded vector space such that V = W ⊕ kv.

Since Λ ǫ (V ) ∼ = Λ ǫ (W ) ⊗ Λ ǫ (kv) and since the family {v ∧i , ∀i ∈ N} generates Λ ǫ (kv), we define a filtration of X n (V ) by

F p (X n (V )) := S ǫ (V ) ⊗ p ⊕ i=0 Λ n-i ǫ (W ) ∧ v ∧i .
The multiplication on the right by v ∧p defines an isomorphism between the chain complex (gr(X) • , gr(d)) and the chain complex (S ǫ (V ) ⊗ Sǫ(W ) X •-p (W ), 1 ⊗ d). The chain complex (X • (W ), d) is exact by assumption. Moreover, S ǫ (V ) is a free S ǫ (W )-module, so the chain complex (S ǫ (V ) ⊗ Sǫ(W ) X • (W ), 1 ⊗ d) is exact and hence (X • (V ), d) is exact.

Denote by α(x) the Z 2 -degree of x ∈ U ǫ (g) ⊗ C ǫ (V, ( , )). The standard filtration of U ǫ (g) induces a filtration of U ǫ (g) ⊗ C ǫ (V, ( , )) and since g • F n (U ǫ (g) ⊗ C ǫ (V, ( , ))) ⊆ F n (U ǫ (g) ⊗ C ǫ (V, ( , ))), then we have a filtration of (U ǫ (g) ⊗ C ǫ (V, ( , ))) g by F n ((U ǫ (g) ⊗ C ǫ (V, ( , ))) g ) := F n (U ǫ (g) ⊗ C ǫ (V, ( , ))) g .

Since gr(U ǫ (g)) ∼ = S ǫ (g) (see [START_REF] Scheunert | Generalized Lie algebras[END_REF]) and S ǫ (g ⊕ V ) ∼ = S ǫ (g) ⊗ S ǫ (V ) the map 

  γ , u}u)(1) = -γ(u) 4 m(e γ u)(1) = -γ(u) 4 m(e γ )(1) = 0 and so m * (e γ )(1) = 0. (14)

  ) ⊗ k and since for x ⊗ v ∈ S ǫ (V ) ⊗ V we have d 1 (x ⊗ v) = xv ⊗ 1 we obtain that Ker(d 0 ) = Im(d 1 ). Hence (17) is a short exact sequence. If ǫ(v) = -1, every y in X n (V ) = Λ(V ) ⊗ S n (V ) is of the form y = ( i α i + β i v) ⊗ v n and then, since char(k) = 0, d n (y) = i nα i v ⊗ v n-1 is equal to 0 if and only if y = i β i v ⊗ v n thatis to say if and only if

d

  : U ǫ (g) ⊗ C ǫ (V, ( , )) → U ǫ (g) ⊗ C ǫ (V, ( , )) induces gr(d) : S ǫ (g) ⊗ S ǫ (V ) ⊗ C ǫ (V, (,)) → S ǫ (g) ⊗ S ǫ (V ) ⊗ C ǫ (V, ( , )). For a ⊗ x ⊗ y ∈ S ǫ (g) ⊗ S ǫ (V ) ⊗ C ǫ (V, (,)) we have gr(d)(a ⊗ x ⊗ y) = a ⊗ i xe i ⊗ e i y -(-1) α(y) ǫ(e i , y)ye i ,

  h ∈ h we have that Let γ ∈ ∆ + . Let {h i } be a basis of h and let {h i } be its dual basis. We have ({e γ , e -α }e α + ǫ(α){e γ , e α }e -α )and since e α ∈ W * we have

		ad * (h) =	1 4	α∈∆ +	({h, e -α }e α + ǫ(α){h, e α }e -α )
					=	1 4	α∈∆ +	(-α(h)e -α e α + ǫ(α)α(h)e α e -α )
					=	1 2	α∈∆ +	(-α(h)e -α e α + ǫ(α)α(h))
	and since e α ∈ W * we have					
							m * (h)(1) = ρ(h)1.	(13)
	ad * (e γ ) =	1 4				α∈∆ +
	m * (e γ )(1) =	1 4	i	m({e γ , h i }h i )(1) +	α∈∆ +	ǫ(α)m({e γ , e α }e -α )(1) .
	Using Proposition 2.14, we have				
	α∈∆ +	ǫ(α)m({e γ , e α }e -α )(1) =	1 2	α∈∆ +	ǫ(α)B g ({e γ , e α }, e -α ) = 0
	and so				m * (e γ )(1) =	1 4

i {e γ , h i }h i + i m({e γ , h i }h i )(1).

  e j , e i )e i e j e k e l .Sincee i e j e k e l = -ǫ(e l , e i + e j + e k )e l e i e j e k + 2ǫ(e l , e j + e k )δ il e j e k -2ǫ(e l , e k )δ jl e i e k + 2δ kl e i e j )e l ⊗ ψ(e k , e j , e i ) 2ǫ(e l , e j + e k )δ il e j e k -2ǫ(e l , e k )δ jl e i e k + 2δ kl e i e j = 1 2

	and							
	1 12	i,j,k,l	ǫ(e l j,k	φ(e k , e j ) ⊗ e j e k
	we obtain	1 ⊗ ψ • D = -	1 12	i,j,k,l	ǫ(e l )e l ⊗ ψ(e k , e j , e i )e l e i e j e k +	1 2	j,k	φ(e

k , e j ) ⊗ e j e k .

Since D • 1 ⊗ ψ = 1 12 i,j,k,l

  e j , e i )e i e j e k + 1 ⊗ 1 12 i,j,k ψ(e k , e j , e i )e i e j e k •

			e l ⊗ e l
			l
	=	1 2	i,j
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Differential complex induced by the cubic Dirac operator

In this section we show that the cubic Dirac operator of a representation of colour Lie type induces a differential complex and we calculate the associated cohomology, which is the analogue of the algebraic Vogan conjecture proved by Huang and Pandžić ([HP02]) for colour Lie algebras. Definition 5.1. Let π : g → so ǫ (V, ( , )) be a finite-dimensional ǫ-orthogonal representation of colour Lie type of a finite-dimensional ǫ-quadratic colour Lie algebra (g, B g ). Let g be the associated colour Lie algebra and let D be the cubic Dirac operator. Define the induced differential

Consider the g-invariant subspace of U ǫ (g) ⊗ C ǫ (V, ( , )) defined by

Proposition 5.2. In U ǫ (g) ⊗ C ǫ (V, ( , ))

g , we have d 2 = 0 and we have Z ǫ (∆(g)) ⊂ Ker(d).

Proof. We first prove that From Theorem 4.2, we have D2 = Ω(g) ⊗ 1 -∆(Ω(g)) + c1 ⊗ 1 where c ∈ k and hence

Since Ω(g) ∈ Z ǫ (g), we obtain

And hence, if

, then we obtain that d 2 (a) = 0.

The assertion Z ǫ (∆(g)) ⊂ Ker(d) follows from a straightforward calculation since D corresponds to Id V and since the cubic term ψ is invariant by the action of g.

We now prove the analogue of the Vogan conjecture for colour Lie algebras.

Theorem 5.3. Suppose char(k) = 0. Let π : g → so ǫ (V, ( , )) be a finite-dimensional ǫ-orthogonal representation of colour Lie type of a finite-dimensional ǫ-quadratic colour Lie algebra (g, B g ). Let g be the associated colour Lie algebra, let D be the cubic Dirac operator and let d be its induced differential on (U ǫ (g) ⊗ C ǫ (V, ( , ))) g . Then we have

Proof. We first need the following lemma.

Lemma 5.4. Suppose that ǫ(v) = 1 for all v ∈ V or suppose char(k) = 0. Let V be a finite-dimensional Γ-graded vector space. Let X n (V ) := S ǫ (V ) ⊗ Λ n ǫ (V ) and d n+1 : X n+1 (V ) → X n (V ) be defined by

where {e i } is a basis of V and {e i } its dual basis. The quantisation map

where S( 1, n , {n + 1}) denotes the shuffle permutations of 1, n and {n + 1} in 1, n + 1 , then one can show by induction on n that gr(d)

Hence, by Lemma 5.4, the kernel Ker(d

and so the kernel

Now we go back to the study of the kernel of d. We have

from Proposition 5.2 and we show the other inclusion by induction on the degree of the filtration of (U ǫ (g

•

• Induction: Let n ∈ N and suppose that Ker(d| Fn((Uǫ(g)⊗Cǫ(V,( , ))) g ) ) ⊆ Z ǫ (∆(g)) ⊕ Im(d).

Let x ∈ Ker(d| Fn+1((Uǫ(g)⊗Cǫ(V,( , ))) g ) ). We have gr(d)(gr(x)) = 0 and by (18), there exist y ∈ gr n ((U ǫ (g) ⊗ C ǫ (V, ( , ))) g ) and z ∈ S ǫ (g) g such that gr(x) = gr(d)(y) + z ⊗ 1.

Consider the symmetrisation s : S ǫ (g) → U ǫ (g) (see [START_REF] Scheunert | Graded tensor calculus[END_REF]). We have x -d(s(y)) -∆(s(z)) ∈ Ker(d) and

Hence, by assumption, there exist y