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Abstract

In order to describe or estimate different quantities related to a spe-
cific random variable, it is of prime interest to numerically generate such
a variate. In specific situations, the exact generation of random vari-
ables might be either momentarily unavailable or too expensive in terms
of computation time. It therefore needs to be replaced by an approxi-
mation procedure. As was previously the case, the ambitious exact sim-
ulation of exit times for diffusion processes was unreachable though it
concerns many applications in different fields like mathematical finance,
neuroscience or reliability. The usual way to describe exit times was to
use discretization schemes, that are of course approximation procedures.
Recently, Herrmann and Zucca [6] proposed a new algorithm, the so-
called GDET-algorithm (General Diffusion Exit Time), which permits to
simulate exactly the exit time for one-dimensional diffusions. The only
drawback of exact simulation methods using an acceptance-rejection sam-
pling is their time consumption. In this paper the authors highlight an
acceleration procedure for the GDET-algorithm based on a multi-armed
bandit model. The efficiency of this acceleration is pointed out through
numerical examples.

Key words and phrases: Exit time, Brownian motion, diffusion processes, re-
jection sampling, exact simulation, multi-armed bandit, randomized algorithm.
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Introduction
A precise description of the first time a given stochastic process exits from a
domain is required in many mathematical applications: it can for instance be
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related to the evaluation of risk of default in mathematical finance or to the
description of spike trains in neuroscience,... Unfortunately, in the diffusion
framework (solutions of stochastic differential equations) a simple and explicit
expression of the exit time distribution is not attainable except in a few specific
cases. It is therefore challenging to find out how to generate such variates. One
way to overcome this issue is to introduce an algorithm based on an approx-
imation procedure. Several studies are for instance based on a discretization
scheme for the corresponding stochastic differential equation. Most of them are
based on improvements of the classical Euler scheme (see for instance [3], [5],
[4]) which essentially consists in reducing the error stem from the approximation
procedure. Another way to deal with the distribution of first exit times consists
in approximating their probability density functions and thus in approximating
the solution of an integral equation [9].

Apart from all these approximation procedures, Herrmann and Zucca [6]
proposed an exact simulation of diffusion exit times based on an acceptance-
rejection method. The method is directly linked to the Girsanov transformation,
a crucial tool already used for the exact simulation of diffusion paths on a fixed
time interval [1, 2] or for the simulation of first passage times [7]. It is impossible
to reasonably compare the numerical methods listed so far since they are of very
different types. On the one hand, approximation methods are fast but induce
small errors to be controlled. On the other hand, exact method are rather
time-consuming.

The aim of this paper is to improve and accelerate the algorithm presented
in [6] which permits to generate numerically the first exit time and exit location
of a diffusion process from a given interval [a, b]. Let us consider the stochastic
process (Xt, t ≥ 0), solution of the SDE:

dXt = µ(Xt)dt+ σ(Xt)dBt, X0 = x ∈ (a, b), (0.1)

where (Bt, t ≥ 0) stands for the standard one-dimensional Brownian motion,
σ ∈ C3([a; b]) is a positive function on the whole interval [a, b] and µ ∈ C2([a; b]).
In the particular case when the function σ is constant we can relax the hypothesis
on µ and we just take µ ∈ C1([a; b]). We denote by τa,b the first time the diffusion
exits from the interval [a, b]:

τa,b(X) := inf{t > 0 : Xt /∈ [a, b]}. (0.2)

Let T > 0. We call BoxExit(x, [a, b], T ) the efficient algorithm which permits
to simulate exactly the random vector (τa,b(X)∧T,Xτa,b(X)∧T ), that is the first
time the path of the diffusion process (Xt)t≥0 exits from the time-space rectangle
[0, T ] × [a, b] and its associated location. A simple and unified version of this
algorithm is presented in Section 1, Figure 2 (it corresponds to the algorithms
DET and κ-DET introduced in [6]).

Of course BoxExit is only a basic component for the exit problem from the
interval [a, b]: the authors suggested in [6] to use the Markov property of the
time-homogeneous diffusion (0.1) in order to simulate τa,b(X). More precisely,
the iteration procedure is initialized by Z0 = x, the starting position of the
diffusion. Then the sequence defined by

(Tn+1, Zn+1)← BoxExit(Zn, [a, b], T )
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and stopped as soon as Zn reaches either the value a or b permits to generate
the couple (τa,b(X), Xτa,b(X)). The efficiency (time consumption) is just related
to the unique parameter T since the size of the time-space rectangle associated
to the basic component is [0, T ]× [a, b].

The main idea of the acceleration procedure is to choose in an optimal way
the box size related to the basic components. Instead of fixing the elementary
box size equal to [0, T ] × [a, b] ([a, b] being the interval of the initial problem),
we propose to cover the interval ]a, b[ by a fixed number (denoted N − 1 in
Section 2) of slices of identical width: ]a, b[= ∪N−1i=1 Ii and to successively use
the basic components BoxExit(·, Ii, T ) associated to the family of box sizes
([0, T ] × Ii)1≤i≤N−1 until the exit of the interval ]a, b[ occurs. In other words,
we introduce a random walk on small rectangles and stop it as soon as it reaches
either a or b, see Figure 1. At first glance, such a procedure seems to slow down
the exact simulation of the exit time since we introduce a new random walk
and increase the number of appeals to basic components. But the observation
reveals something surprising: for suitable choices of parameters N and T , the
introduction of the random walk effectively speeds up the algorithm. It is less
time-consuming for a diffusion process to exit from boxes of intermediate size
compared to boxes of small or large size due to the acceptance-rejection method.
This simple argument partly explains the over-performance of the modified al-
gorithm. It is therefore challenging to find the optimal parameters T and N
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Figure 1: Diffusion path and associated random walk on rectangles

in order to obtain the most efficient algorithm. Instead of considering in detail
all families of diffusion processes and determining the best choice of param-
eters on a case-by-case basis, we prefer to propose a randomized algorithmic
approach. We find a reasonable value of T and choose N with a multi-armed
bandit method (ε-greedy algorithm). Such general method can be applied to
any diffusion process.

The material is organized as follows: in Section 1, we emphasize a unified
and simple version for the exact simulation of exit times, denoted by BoxExit.
Section 2 concerns the introduction of the random walk on small rectangles of
area 2T × [a, b]/N . A multi-armed bandit method is introduced in Section 3 for
the optimal choice of the parameter N . Finally, in the last section we illustrate
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the efficiency of this new algorithm considering classical diffusion processes like
the Ornstein-Uhlenbeck process or the Cox-Ingersoll-Ross model.

1 Exit problem from a rectangle
Let us first recall the algorithm introduced in [6] (see Theorem 4.3) which per-
mits to exactly simulate the exit time from the rectangle [0, T ] × [l, u] for the
diffusion path (Xt, t ≥ 0). The algorithm essentially needs two basic elements:

1. the exact simulation of the exit time and location (T , BxT ) from the interval
[l, u] for the Brownian motion starting in x. The generation of such a
random vector is available (see Section 3 in [6]) and will be denoted by
ExitBm(x, [l, u]) in the sequel.

2. the generation of the Brownian position Bxt given T > t which is denoted
CondBm(x, [l, u], t) (see Section 2 in [6]).

Both elements allow the construction of a general algorithm for the simulation
of exit times. Before introducing the general procedure, we shall focus our
attention onto a particular diffusion process which corresponds to the unique
solution of a stochastic differential equation with unit diffusion coefficient:

dXt = µ0(Xt)dt+ dBt, X0 = x ∈ (a, b). (1.1)

Here the drift term is assumed to satisfy µ0 ∈ C2([a; b]). We define particular
functions associated to equation (1.1) as:

β(x) := exp

∫ x

0

µ0(y) dy and γ(x) :=
µ2
0(x) + µ′0(x)

2
.

These functions play an important role in the simulation and do not depend on
the considered interval [l, u]. Let us now complete these functions with different
parameters depending on the interval [l, u]:

β+ := sup
x∈[l,u]

β(x), γ− := inf
x∈[l,u]

γ(x) ∧ 0, γ+ := sup
x∈[l,u]

γ(x), γ0 := γ+ − γ−.

A unified statement of the exact simulation algorithms presented in [6] is
defined as follows:

Proposition 1.1. The couple (τl,u(X)∧T,Xτl,u(X)∧T ) which corresponds to the
exit problem of the diffusion path (1.1) from the rectangle [0, T ]× [l, u], has the
same distribution than the outcome (T , Z) of the algorithm BoxExit(x, [l, u], T )
for any T > 0 (see the flowchart in Figure 2).

It is worth noting that the random variables generated in the algorithm
BoxExit (i.e. E, U , V , W ) are independent (In Figure 2, U , V andW are rep-
resented by the same character U• which corresponds to independent uniformly
distributed variates).
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initialization
T = 0, Z = x, K = T

generate
(S, Y ) = ExitBm(Z, [l, u])

generate E ∼ E(γ0)

test S = min(K,E, S)

test β+U• ≤ β(Y ) and

log(U•) ≤ γ− (K − S)

T ← T + S
Z = Y

outcome: T and Z

test K = min(K,E, S)

generate
Yc = CondBm(Z, [l, u],K)

test β+U• ≤ β(Yc)

T ← T +K
Z = Yc

generate
Yc = CondBm(Z, [l, u], E)

test γ0U• > γ(Yc)− γ−

T ← T + E
Z = Yc, K ← K − E

No

Yes

No

Yes

Yes

Yes

No

No

Yes

No

Figure 2: Flowchart of the algorithm BoxExit(x, [l, u], T )

Data: x (starting position), T , l and u (box size), γ(·) and β(·) (input
functions).

Result: the random time T and the random location Z.

Initialization: K = T , Z = x, T = 0, test = 0;
Computation of γ−, γ0, β+ depending on the interval [l, u];

while test = 0 do
generate E ∼ E(γ0) and U ∼ V ∼W ∼ U([0, 1]);
generate (S, Y ) = ExitBm(Z, [l, u]);
if S = min(K,E, S) then

if β+U ≤ β(Y ) and log(W ) ≤ γ− (K − S) then
set test = 1, Z ← Y and T ← T + S;

else
go to initialization;

end
else if K = min(K,E, S) then

generate Yc = CondBm(Z, [l, u],K);
if β+U ≤ β(Yc) then

set test = 1, Z ← Y and T ← T +K;
else

go to initialization;
end

else
generate Yc = CondBm(Z, [l, u], E);
if γ0V > γ(Yc)− γ− then

Z ← Yc, T ← T + E and K ← K − E;
else

go to initialization;
end

end
end

Algorithm 1: BoxExit(x, [l, u], T )
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Remark 1.2. Under the assumption γ− = 0 that is infx∈[l,u] γ(x) ≥ 0, it is
allowed to choose T = ∞ in the algorithm BoxExit(x, [l, u], T ). It sould be
noted that BoxExit with T <∞ corresponds to the so-called κ-DET algorithm
in [6] whereas BoxExit with T =∞ corresponds to the DET algorithm. Here
we decided to unify the presentation for pedagogical reasons.

Remark 1.3. The Lamperti transform permits to generalize the study to equa-
tions with non-unitary diffusion coefficients as (0.1). We simply present this
well-known transformation. Let (Xt)t≥0 be the unique solution to the SDE (0.1)
and let us introduce

S(x) =

∫ x

0

du

σ(u)
, ∀x ∈ R, (1.2)

then Itô’s lemma implies that X̂t := S(Xt) satisfies (1.1) with initial condition
X̂0 = S(X0) and drift term

µ0(x) :=
µ(S−1(x))

σ(S−1(x))
− 1

2
σ′(S−1(x)), x ∈ R.

The procedure to simulate the exit time and location of a diffusion path (Xt)t≥0
defined by (0.1) from the rectangle [0, T ]× [l, u] is therefore the following:

1. Simulate (T , Z) the exit time and location of the diffusion (X̂t)t≥0 using
the algorithm BoxExit(S(x), [S(l),S(u)], T )

2. Compute S−1(Z). Then (T ,S−1(Z)) corresponds to the exit time and
location of the diffusion (Xt)t≥0 from the interval [l, u].

2 A random walk on rectangles
Using the exit problem of rectangles as the basic component, we can build a
general algorithm that enables us to simulate exactly the exit time of the diffu-
sion process (0.1) from the interval [a, b]. Applying the Lamperti transformation
already described in Remark 1.3, there is a one-to-one correspondence between
the process (Xt) solution of (0.1) starting in X0 = x and (X̂t) the solution of
(1.1) starting in X̂0 = S(x) = x̂ where S is defined by (1.2). Moreover, the
interval [a, b] is transformed into [â, b̂] = [S(a),S(b)].

Let us now describe how to deal with the exit problem for (X̂t) associated
to the interval [â, b̂]. Let us first fix a parameter T > 0 and a number N ≥ 2
(we shall comment on these choices later on). These parameters define the size
of the typical boxes used in the algorithm illustrated by Figure 1: rectangles of
area 2(b̂− â)T/N . The main idea is quite simple: the interval [â, b̂] is split into
N intervals of identical length δ, associated to the following space grid: a0 = â
and aj+1 = aj + δ for 0 ≤ j ≤ N − 1. Here δ = (b̂− â)/N . We define the index
function:

ı(x) = j if (x− â) ∈
[
δ

2
+ (j − 1)δ,

δ

2
+ j δ

[
, (2.1)

otherwise either ı(x) = 1 for x ≤ â+ δ/2 or ı(x) = N − 1 for x ≥ b̂− δ/2.
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â â+ δ â+ 2δ â+ 3δ . . . . . . b̂− δ b̂

ı = 1 ı = 2 ı = 3 ı = N − 2 ı = N − 1

Each index value ı ∈ {1, 2, . . . , N − 1} is associate to an interval of length 2δ:

Iı =]â+ (ı− 1)δ, â+ (ı+ 1)δ[. (2.2)

We notice that the family of intervals (Iı)1≤ı≤N−1 is a covering of the initial
interval ]â, b̂[. Moreover, for any x ∈]â, b̂[, x ∈ Iı(x).

A random walk corresponding to a skeleton of the diffusion path can be thus
constructed (see Figure 1): (T0, Y0) = (0, x̂) is the starting time and position of
the diffusion process (X̂t), solution of (1.1). The random sequence (Tn+1, Yn+1)
is defined recursively as follows: Tn+1 − Tn stands for the exit time of the
diffusion starting in Yn from the rectangle [0, T ]× Iı(Yn) and Yn+1 corresponds
to the associated exit location. Let us define

N := inf{n ≥ 0 : Yn /∈]â, b̂[}

then the combination of the Markov property and the Lamperti transform im-
plies the following statement.

Proposition 2.1. The diffusion exit time and location (τa,b(X), Xτa,b(X)) has
the same distribution as the stopped random walk (TN ,S−1(YN )) and conse-
quently the same distribution as (T , Z) the outcome of the algorithm DiffExit.

The algorithm DiffExit induced by this random walk is the following.

Data: x (starting position of the diffusion), T , N (box size), γ(·)
and β(·) (input functions), S(·) (Lamperti transform).

Result: the random time T and the random location Z.

initialization: T = 0, Z = S(x), â = S(a), b̂ = S(b);
while Z ∈]â, b̂[ do

(S,Z)← BoxExit(Z, Iı(Z), T );
T ← T + S;

end
Z ← S−1(Z);

Algorithm 2: Diffusion Exit Problem DiffExit(T,N)

Of course, the efficiency of this exact simulation algorithm heavily depends
on the parameters T and N which characterize the size of the typical boxes. If
the box is large, then the algorithm BoxExit becomes time consuming since
it is based on a rejection sampling. On the contrary, small boxes imply that
the random walk on rectangles requires a lot of iterations in order to hit the
boundaries of the interval [a, b]. There is therefore an intermediate box size
which permits to observe simulations that take a reasonable computation time.

In order to illustrate this feature, let us introduce two particular examples:
Example 1: the diffusion process with unitary diffusion coefficient and with the
following drift term: µ0(x) = 2 + sin(x). We consider the exit problem from the
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interval [a, b] = [0, 7], the diffusion starting in x = 3. Figure 3 represents on one
hand the average number of boxes needed in order to observe the exit depending
on the box size (we let N vary). On the other hand we also point out the com-
putation time (in sec) needed to generate a sample of 10 000 diffusion exit times.
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Figure 3: Average number of boxes used in the exit algorithm and total computation
time (for the simulation of the whole sample) versus the box size parameter N for the
diffusion process of Example 1. Exit problem from the interval [a, b] = [0, 7] with the
starting position x = 3. Each value is obtained with a sample of size 10 000 and T = 1.

Example 2: the Ornstein-Uhlenbeck process with unitary diffusion coefficient
and drift term : µ0(x) = −λx with λ > 0. First we focus our attention to the
exit problem from the interval [a, b] = [0, 7] with the initial condition x = 3 and
the parameter λ = 1, see Figure 4 (left).

0 2010 302 4 6 8 12 14 16 18 22 24 26 28 32 34

0

2

4

6

1

3

5

7

0.5

1.5

2.5

3.5

4.5

5.5

6.5

N

T
im

e
 (

in
 s

e
c
)

0

20

40

10

30

50

5

15

25

35

45

A
v
e

ra
g

e
 n

u
m

b
e

r 
o

f 
b

o
x
e

s

Time Nb of boxes

0 2010 302 4 6 8 12 14 16 18 22 24 26 28 32 34

0

20

40

60

10

30

50

70

5

15

25

35

45

55

65

N

T
im

e
 (

in
 s

e
c
)

0

1 000

200

400

600

800

1 200

1 400

1 600

1 800

A
v
e

ra
g

e
 n

u
m

b
e

r 
o

f 
b

o
x
e

s

Time Nb of boxes

Figure 4: Average number of boxes and total computation time versus the box size
parameter N for the Ornstein-Uhlenbeck process with parameter λ = 1. Exit problem
from the interval [a, b] = [0, 7] with the starting position x = 3 (left) and [a, b] = [−2, 2]
and x = 0.5 (right). Each value is obtained with a sample of size 10 000 and T = 1.

We notice that the optimal box size corresponds to N = 14 when T = 1 is
fixed. Such an optimal choice strongly depends on the interval [a, b]. Since the
diffusion is mean-reverting, let us observe what happens when the interval [a, b]
contains 0. Figure 4 (right) illustrates that N = 5 is optimal for [a, b] = [−2, 2]
and x = 0.5. We also notice that the number of boxes used in such a particular
situation is much larger than in the previous situation. It is therefore difficult
to obtain a theoretical optimal value for the parameter N . That is why we aim
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to find an acceleration method for the simulation of exit times (Algorithm 3:
DiffExit) using an algorithmic approach based on a multi-armed bandit.

3 Algorithm acceleration: a multi-armed bandit
approach

Let us now suggest an acceleration method for the algorithm DiffExit pre-
sented in the previous section and depending on both parameters N and T (size
of the typical boxes). The procedure is the following: we first fix T > 0 and
N0 ≥ 2. Then we introduce an algorithm used for the multi-armed bandit prob-
lem in order to choose an interesting value of N satisfying N ≤ N0 and reducing
the time consumption of the algorithm DiffExit.

The multi-armed bandit corresponds to a famous problem where reinforce-
ment learning plays a crucial role, theoretical and practical studies aim to find
trade-offs between exploration and exploitation. The historical problem is quite
simple and related to a slot machine with a finite number of levers. One is
faced repeatedly to a choice between these actions and after each choice one
receive a random numerical reward depending on the selected lever. The ob-
jective is to maximize the average cumulative reward of a series of actions (for
instance, 10 000 successive selections) using a strategy based on an exploration-
exploitation algorithm. The exploration consists in selecting several times any
arm of the bandit in order to estimate the different mean rewards while the ex-
ploitation focuses on the choice of the arm whose estimated reward is maximal.
We refer to the interesting textbooks [10] and [11] for practical and theoretical
results associated with this reinforcement learning framework. Several bandit
algorithms permit to obtain theoretical bounds of the total expected regret
which represents a simple performance measure in such a framework: ε-greedy,
Boltzmann exploration, UCB (Upper Confidence Bounds), etc. Here we focus
our attention on the ε-greedy algorithm which is rather intuitive, simple to im-
plement and outperforms theoretically sound algorithms on most settings [12].

In our particular situation, the multi-armed bandit corresponds to the algo-
rithm DiffExit(T,N): each arm represents a value of N ∈ {2, 3, . . . , N0} which
characterizes the space splitting used in the algorithm. The reward associated
with each arm is the numerical time consumption of each exit time generation.
It is of course random since the basic components of the algorithm use rejection
sampling. Let us mention that the objective is here opposite: the aim is to
minimize the cumulative reward... That means that each use of the algorithm
DiffExit leads to an evaluation of the time spent. We shall therefore use a
clock for determining the current time denoted by CurrentTime.

Let us present the application of ε-greedy algorithm in such a context. After
the n-th use of the algorithm DiffExit(T,N), the empirical mean of the time
consumption is denoted by µ̄n(N), for 2 ≤ N ≤ N0, and the number of times we
already used the arm N until n is mn(N). In the ε-greedy algorithm, the choice
of the parameter N evolves randomly as the number of simulations increases
and depends on a fixed parameter ε. The probability to choose the arm N for

9



the n-th simulation is defined by:

πn+1(N) = (1− ε)1{N = arg min
2≤j≤N0

µ̄n(j)} +
ε

N0 − 1
, (3.1)

with the starting values π1(N) = ε/(N0 − 1) for all N ∈ {2, 3, . . . , N0}. Such
strategy for the random choice of the parameters permits to globally reduce the
consumption time for a sequential use of the algorithm DiffExit. Of course
the parameter ε characterizing the competition between exploration and ex-
ploitation has an influence on the acceleration strength and should depend on
the sample size. Different studies even suggest to let ε depend on the number
of actions ε := ε(n) of the order ε(n) = n−1/3((N0 − 1) log(n))1/3 (see, for in-
stance, Theorem 1.4 in [10]). Nevertheless experimental results emphasize that
making the ε decrease does not significantly improve the performance of the
multi-armed bandit strategy [12]. In the following we shall therefore only use
ε-greedy algorithm with fixed value for ε.

The modification of the DiffExit leads to the following algorithm.

Data: x (starting position), T , N0, γ(·) and β(·) (input functions),
M (size of the sample: number of simulations).

Result: Sample of M simulations for the couple random time T and
random location Z.

initialization:
π(N)← 1/(N0 − 1), µ̄(N)← 0 and m(N) = 0 for all 2 ≤ N ≤ N0;
for j ← 1 to M do

choose randomly N w.r.t. the distribution π(·);
t← CurrentTime;
(Tj , Zj)← DiffExit(T,N);
t← CurrentTime− t;
µ̄(N)← (m(N)µ̄(N) + t)/(m(N) + 1);
m(N)← m(N) + 1;
for i← 2 to N0 do

π(i)← ε/(N0 − 1);
end
π(arg min µ̄)← π(arg min µ̄) + (1− ε);

end
Algorithm 3: BanditDiffExit(T,N0)

This new algorithm called BanditDiffExit outperforms the exact algo-
rithms introduced for the simulation of diffusion exit times in [6] as it appears
obvious in the numerical illustrations presented in Section 4.

4 Numerical illustration

4.1 First example
First we consider the exit time from the interval [a, b] for the diffusion:

dXt = (2 + sin(Xt)) dt+ dBt, t ≥ 0, X0 = x. (4.1)
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In [6], the DET-algorithm permits to generate the exit time due to an accep-
tance rejection procedure (this algorithm corresponds to the already presented
BoxExit(x, [a, b], T ) for the particular value T = ∞, we can observe that the
condition described in Remark 1.2 is satisfied). Using a sample of exit time
generations we can estimate the average computation time. Here the data cor-
respond to the exit time from the interval [0, 7] when starting in x = 3.

sample size average time (ms) confidence interval (95%)
10 000 7.832 7.676 7.989

It is of prime interest to compare the computation time using BoxExit-
algorithm with the computation time using the bandit algorithm presented in
Section 3. Here we deal with a sample of 1 000 actions in the bandit algo-
rithm, each run corresponds to the simulation of an exit time from the interval
[a, b] = [0, 7]. Let us note that inbetween two consecutive runs, the bandit al-
gorithm proceed to an optimisation computation corresponding to the choice
of the box size. Therefore the sequence of the consumption times τ (1), . . . , τ (n)
do not represent i.i.d random variables (the confidence interval is therefore not
available). We point out the performance of such an algorithm in Figure 5:
the averaged computation time is strongly reduced. The figure represents the
sequence : ( 1

n

∑n
i=1 τ

(i))n for 10 ≤ n ≤ 1 000.
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Figure 5: Empirical mean of the computation times (in ms) versus the number of
simulations (10 to 1 000). Each computation time concerns the simulation of an exit
from the interval [a, b] = [0, 7] with starting value x = 3. We use the ε-greedy ban-
dit algorithm with different values ε (ε = 1 corresponds to a uniform choice of the
parameter N in {2, . . . , 21}). The elementary box size is 2(b− a)T/N with T = 1.
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Figure 6: Choice of the box size (parameter N) versus the number of iterations (left)
when the box size is chosen uniformly inbetween 2 and 21 accordingly to the ε-greedy
algorithm with ε = 1 (top), ε = 0.5 (middle) or ε = 0.1 (bottom) and histogram of the
box size N for a sample of size 10 000. Here we consider the exit time of the interval
[a, b] = [0, 7] and starting point x = 3 and T = 1.
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The multi-armed bandit approach permits to possibly change the box size
used for the exit time simulation by selecting the parameter N inbetween a
set of given values (here {2, . . . , 21}, the arms of the bandit). The sequence of
successive choices is randomized since the parameter ε which represents in some
sense the level of noise (the proportion of exploration in the whole sequence of
successive runs), belongs to ]0, 1]. In other words, the particular choice ε = 1
corresponds to a sequence of independent uniformly distributed choices whereas
ε close to 0 corresponds to a sequence of mainly deterministic choices linked
to the argmin of the previous rewards (here the rewards are the consumption
times).

In Figure 6, we illustrate the behavior of the algorithm for three different
values of ε. In each case, the selections of the parameter N throughout the
sequence of iterations are represented by crosses in the figures (left). Once
all exit times have been simulated, the assessment is represented by both the
frequencies of each value of N (histogram - right) and the corresponding average
consumption time (with possibly its confidence interval). We can immediately
observe the following.

• In the case ε = 1, the choice of the parameter N at each step of the
algorithm does not depend on the previously observed consumption times,
N = 14 corresponding to its argmin is not privileged.

• In the second case studied (ε = 0.5, middle), the particular choice N = 14
is rapidly privileged even if the relatively important level of noise implies
a frequent visit of each proposed choice: 2, 3, . . . , 21. The exploration is
quite important in that case.

• Finally in the third case (ε = 0.1), the experiment leads to the following
observation: the bandit algorithm makes N = 16 its first choice but after a
while (about 4 000 iterations) the noise permits to leave this local minimum
and to choose the global one.

So in order to reach a global minimum, it seems to be important not to choose
the noise level ε too small. However we notice that the consumption times ob-
served for both N = 14 and N = 16 are very close together, so the investigation
of the argmin is not a crucial challenge.

Of course the box size of the basic components is the essential lever for the
efficiency of the exit time simulation but it does not only depend on N . The
area of the box is 2T × (b − a)/N so that both T and N have to be correctly
chosen. In Figure 6, the parameter T is fixed (T = 1) whereas N varies. Once
the optimal choice of N is emphasized, it is possible to observe how it depends
on T . Figure 7 illustrates that the consumption time of the algorithm does
actually not precisely depend on T , provided that T is not too small (T = 1 is
a reasonable choice).

4.2 Ornstein-Uhlenbeck processes
Let us now consider a diffusion process which does not verify the particular
condition presented in Remark 1.2. We aim to illustrate the efficiency of the
bandit algorithm with the Ornstein-Uhlenbeck processes. So we consider the
stochastic process with unitary diffusion coefficient and drift term µ(x) = −λx.
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Figure 7: Optimal choice of the parameter N and average time consumption versus
T . We recall that the box size is T × (b−a)/N . Here N is chosen in the set {2, . . . , 21}
accordingly to the ε-greedy algorithm with ε = 0.1, and the average is computed using
a sample of size 10 000. We consider the exit time from the interval [a, b] = [0, 7] and
with starting value x = 3.

The aim is to simulate in some efficient way the first exit time of the interval
[a, b]. Since the process is mean reverting, its behavior will depend on the
location of 0, either in the interval ]a, b[ either on the boundary or outside that
interval. In order to present a complete illustration, we focus our attention on
two different examples:

• Ex.1: interval [a, b] = [0, 7], drift λ = 1 and starting position x = 3.

• Ex.2: interval [a, b] = [−2, 2], drift λ = 2 and starting position x = 0.5.

In oder to simulate the first exit time from [a, b] we aim to compare DiffExit
with the multi-armed bandit approach BanditDiffExit. Let us just recall
that DiffExit(x, [a, b], T ) is based on a sequential observation of the paths on
the intervals [nT, (n+ 1)T ], n ≥ 0, till the exit happens. Here T is a parameter
which influences the efficiency of the numerical procedure. For both cases under
consideration, we observe that T = 0.5 is a reasonable choice as suggested by
the following table. It presents the estimated computation times in ms for one
exit time generation (estimation with a sample of 10 000 exit times).

computation time in ms (Ex.1) computation time in ms (Ex.2)
T average confidence (95%) average confidence (95%)

0.1 4.720 4.602 4.837 68.636 67.304 69.969

0.2 4.292 4.194 4.389 52.355 51.346 53.363

0.5 4.195 4.123 4.267 46.471 45.542 47.401

1 5.022 4.929 5.115 55.076 53.973 56.178

2 8.001 7.852 8.151 98.056 96.121 99.990

3 13.135 12.876 13.394 186.576 182.906 190.246

The consumption times associated with T = 0.5 become therefore our refer-
ence values which need to be compared to the times issued from the multi-armed
bandit. Figure 8 illustrates the efficiency of our approach for both examples
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(Ex.1 and Ex.2) since these consumption times have been reduced especially for
small noise intensity ε (we suggest to choose ε smaller than 0.5). This acceler-
ation is less impressive when the origin 0 belongs to the interval [a, b] (Figure
8, right). Let us also note that the curves of the average computation time
associated with the parameters ε = 0.1 and ε = 0.2 intersect each other: if one
needs a huge number of simulations, then one prefer ε = 0.1 which permits to
find the global minimum and to avoid to often visit the other values of N . If
one needs rather an intermediate value of simulations (for instance, 1 000 exit
times), then it is better to increase a little the noise in the multi-armed bandit
(ε = 0.2) in order to find quickly the optimal value N even if the algorithm
frequently visits all the other values of N .

0 10 0002 000 4 000 6 000 8 000

0.2

0.4

0.6

0.3

0.5

0.15

0.25

0.35

0.45

0.55

number of simulations

a
v
e
ra

g
e
 c

o
m

p
u
ta

ti
o
n
 t
im

e
 (

m
s
)

0 10 0002 000 4 000 6 000 8 000

20

30

18

22

24

26

28

number of simulations

a
v
e
ra

g
e
 c

o
m

p
u
ta

ti
o
n
 t
im

e
 (

m
s
)

Figure 8: Empirical mean of the computation time (in ms) versus the number of
simulations of exit times from the interval [a, b] for both examples (Ex.1 left and Ex.2
right). We use different ε-greedy algorithms with T = 0.5 and N is chosen in the set
{2, . . . , 21}.

The parameter T was fixed so far in the study of the Ornstein-Uhlenbeck
process and the attention was focused on the best choice of N . As already
explained in Section 4.1, the BoxExit algorithm depend both on N and T .
Figure 9 represents the dependence of the optimal choice of N and the average
time consumption with respect to the parameter T . This illustration emphasizes
that the efficiency is not strongly dependent with respect to T provided that
T is neither too small nor too large. Even if the box size depends on both
parameters T and N , it is therefore more clever to look after the best choice for
N rather than the best choice for T . Moreover we prefer to avoid an application
of the ε-greedy algorithm to the couple (T,N) (T would be discretized) trying
to keep things simple.

4.3 Cox-Ingersoll-Ross Processes
In all the previous examples, the diffusions under observation have a unitary
diffusion coefficient. In such situations, both DiffExit and BanditDiffExit
can be applied directly without using Lamperti’s transform (see Remark 1.3).
In order to complete the numerical illustration, we introduce a third example
linked to the so-called CIR model (Cox-Ingersoll-Ross) which is of prime impor-
tance in the mathematical finance framework, in particular for the modelization
of interest rates. The CIR model is characterized by the following stochastic
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Figure 9: Optimal choice of the parameter N and average time consumption versus
T for Ex.1 (left) and Ex.2 (right) . Here N is chosen in the set {2, . . . , 21} accordingly
to the ε-greedy algorithm with ε = 0.1, and the average is computed using a sample
of size 10 000.

differential equation:

dXt = k(θ −Xt) dt+ σ
√
Xt dBt, t ≥ 0, X0 = x > 0. (4.2)

Here k and θ are two parameters. Since the diffusion coefficient is not constant,
we have to use the Lamperti transformation introduced in (1.2). So we define
S(x) = 2

σ

√
x. Then X̂t := S(Xt) is a diffusion process with unitary diffusion

coefficient and drift term:

µ0(x) =
ρ

x
− kx

2
where ρ :=

(4kθ − σ2)

2σ2
.

Let us assume that the parameters appearing in (4.2) satisfy the condition:
ρ > 0. Consequently the CIR process starting from a positive initial point stays
strictly positive (see, for instance, [8] in Section 6.3.1) and the function γ and
β used in the algorithms have an explicit expression easy to handle with:

γ(x) =
1

2

((
ρ

x
− kx

2

)2

− ρ

x2
− k

2

)
, β(x) = xρe−kx

2/4. (4.3)

For numerical illustration, we deal with the exit problem from [a, b] = [1, 6] for
the CIR model starting in x = 3 with coefficients k = 3, θ = 7 and σ = 1. As in
the Ornstein-Uhlenbeck context, we can here use the BoxExit(x,[S(a),S(b)],T)
algorithm in order to simulate both the exit time and the exit location. This
algorithm depends on a parameter T . We obtain the following average compu-
tation times for one exit time generation:

T average in ms confidence (95%)

0.1 12.206 11.981 12.431

0.2 11.939 11.718 12.161

0.5 11.901 11.671 12.130

1 12.272 12.036 12.509

We can observe that the parameter T has only a weak influence on the
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BoxExit efficiency provided T belongs to an interval of reasonable values (here
inbetween 0.1 and 1). Let us now compare these computation times of the order
of 12 ms per simulation to the BanditDiffExit algorithm one. In Figure 10
(left), we observe a significant time reduction as soon as ε (the parameter of
the ε-greedy procedure) is sufficiently small, we reach a computation time near
to 0.2 ms per simulation (for a sample size 10 000). Since the box size used
in BanditDiffExit depends on both parameters N and T , we wonder if the
optimal value of N strongly depends on T . As we can see in Figure 10 (right),
it is not the case: there is neither large swings in the optimal choice of the value
of N nor in the average consumption time associated with this optimal N .
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Figure 10: Empirical mean of the computation time (in ms) versus the number of
simulations of exit times from the interval [1, 6] with different ε-greedy algorithms
and T = 0.5 (left). Optimal choice of the parameter N and average time consumption
versus T for the CIR model (right). Here N is chosen in the set {2, . . . , 21} accordingly
to the ε-greedy algorithm with ε = 0.1, and the average is computed using a sample
of size 10 000.

Conclusion
The exact simulation procedure BoxExit(x, [a, b], T ) proposed in [6] permits
to generate the exit time and exit location from an interval [a, b] in the diffusion
context. In this study, we emphasize a reinforcement learning method based on a
multi-armed bandit which permits to accelerate the BoxExit algorithm in any
case. As presented in Section 4, sometimes the consumption time reduction is
very strong and sometimes sensible. The tremendous advantage of the algorithm
BanditDiffExit is its universality: it does not depend on the the particular
family of diffusion under consideration.

Let us also note that the authors have chosen the ε-greedy algorithm for the
acceleration procedure since it is simple to explain and particularly efficient. Of
course any other algorithm used in the classical multi-armed bandit problem
can be tested for the acceleration of BoxExit.

All the numerical tests have been done on the same computer:
Intel Core i5, 1.6 GHz
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