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Mathematical modeling of complex forest ecosystems: impacts of
deforestation

Guillaume Cantin1, Nathalie Verdière2

Abstract. We propose an innovative mathematical model for studying the dynamics
of a complex network of forest ecosystems, in which two forest entities interact which
each other through water exchanges. Our model reproduces a recently analyzed
principle of constant precipitation quantity over densely forested areas. We perform
a stability and bifurcation analysis and show that the distance separating two forest
ecosystems can attract a part of the network to an extinction state. We incorporate
a randomly generated perturbation modeling deforestation and investigate the effect
of the level of deforestation on the equilibrium states of the network. We also exhibit
a type of synchronization in the case of densely distributed forest ecosystems.

Keywords. Mathematical modeling, forest ecosystem, complex network, ecology, dy-
namical system.

§1. Introduction

In a context of international global warming, which is nowadays admitted at least by the scientific
community, much emotion has been recently inspired by forest fires of unprecedented intensity, for
instance in the Amazon forest, or very recently in south-east Australia [9]. Those forest fires are
threatening the equilibrium of the climate, the diversity of wildlife and the lifeblood of our societies,
thus it is an imperative to better understand the mechanisms which lead to the risk of forest fires,
so as to fight and overcome this scourge. Anthropic cause of those catastrophic events are already
observed [1] and analyzed as a tipping point [20]. Numerous studies of forest fires have been proposed
(see for instance [18], [22], [24]) and it is recognized that the dynamics of forest ecosystems enjoy the
characteristics of complexity (see [12] for a survey and references therein). As a key ingredient of that
complexity, deforestation is studied in [19], and its impact on wildlife is analyzed in [25] for instance.
Recently, much attention has been payed on the role of water evaporation over the forested areas in
order to describe a drought process which can exacerbate the fire risk. The biotic pump mechanism has
been studied in [17], where it is remarked that over extensive natural forests, precipitation does not
depend on the distance from the ocean along several thousand kilometers. Furthermore, deforestation,
whatever its cause may be, is suspected by the same authors to induce a cascade of climatic effects,
including disruption of the biotic pump [6].

Our aim in this article is to propose an innovative mathematical model for understanding the
dynamics of complex forest ecosystems, by taking into account this biotic pump mechanism. Many
works have certainly been devoted to modeling forest ecosystems. For instance, age or size structure
mathematical models have been analyzed in [7]; multi-species models have been studied in [13]; partial
differential equations models are proposed and studied in [15], [16]; cellular automata models are also
studied, for instance in [2], [10]. However, at our knowledge, none of those models incorporates the
effect of water evaporation over forest areas, although this mechanism is well-known for several decen-
nies [11], [27]. It is our purpose in this work to fill this void. We focus on forest areas of heterogeneous
structure, and propose an original mathematical model which takes the form of a complex network of
dynamical systems. Hence, the construction of this innovative mathematical model represents a novel
contribution to the study of complex forest ecosystems. Complex networks of dynamical systems have
proved their great interest in various research fields such as behavioral models, neural networks or
epidemiological networks (see for instance [4], [5], [8]). Here, we use this complex network framework
for studying forest ecosystems, by modeling the dynamics of each forest entity by an age structure
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model, proposed by Antonovsky & Korzukhin [3], and by modeling the interactions between two forest
entities with each other through water resource exchanges.

Our complex network model for analyzing the dynamics of forest ecosystems leads to the study
of a complex dynamical system, which we study using techniques of stability analysis and bifurcation
analysis (see for instance [14] or [23]). We first show that our model is able to reproduce the principle
of uniform precipitation quantity over densely forested areas, by comparing our biotic pump modeling
with real world data. Then we focus on the study of a two forests network and establish the list and
the nature of equilibrium states. We prove an important pattern, which is recovered in the general
case of a multiple forests network: if the distance separating two forests ecosystems increases and
overcomes a threshold, then the one which is located far from the coastline is likely to converge to
the trivial equilibrium, which corresponds to a vanishing state of the ecosystem. This pattern is in
concordance with the precipitation exponential decreasing principle remarked in [17]. Furthermore,
we improve our complex network model by incorporating a randomly generated perturbation which
models deforestation. We perform a sensitivity analysis of the resulting system and show the impact
of the level of deforestation of the equilibrium states of the complex network of forest ecosystems. We
also analyze the effect of the locations of deforested areas in the network and prove that a low level
of deforestation can lead the whole network to an extinction state. In parallel, we exhibit a type of
synchronization in the case of densely distributed forest ecosystems networks.

Our paper is organized as follows. In the next section, we present the main ingredients of our
complex network model, namely the Antonovsky & Korzukhin age structure model, and the biotic
pump mechanism. We show that the resulting Cauchy problem is well-posed and admits relevant
solutions, that is, positive and bounded solutions. In section 3, we present the stability and bifurcation
analysis of a simple two forests network, in order to identify the main trends of the model. In the
final section, we improve the initial complex network problem by incorporating a randomly generated
perturbation and present numerical simulations of the complete model.

§2. Setting of the problem

In this section, we present the age structure mathematical model proposed in [3] by Antonovsky &
Korzukhin for studying the dynamics of a one-species forest ecosystem. Then we propose an original
model of the biotic pump mechanism and we construct a novel mathematical model which takes the
form of a complex network of dynamical systems.

2.1. Antonovsky & Korzukhin model

Let us consider a forest ecosystem and assume that it can be assimilated to a one-species ecosystem;
we divide the population of trees of that forest ecosystem into two sub-populations, distinguishing the
young trees and the old trees. We denote by x(t) and y(t) the densities of young trees and old trees
respectively, at time t. Those densities are expressed by number per unit of surface (thousands per
hectare for example), and time t is expressed in years. Antonovsky & Korzukhin [3] have proposed a
simplified mathematical model for studying the dynamics of such a forest ecosystem. Their model is
given by the following system of two ordinary differential equations:{

ẋ = ρy − γ(y)x− fx
ẏ = fx− hy,

(1)

where the parameters ρ, f and h are positive real coefficients. The parameter ρ in the first equation
of system (1) models the fertility of the species; h and f are mortality rate of old trees and aging rate
of young trees respectively; the function γ(y) corresponds to the mortality rate of young trees; it is
usually defined by a quadratic expression of the form

γ(y) = a(y − b)2 + c, (2)

where a, b and c are positive coefficients. The equation (2) takes into account the competition between
young and old trees for life resources, including water and light; this quadratic expression guarantees
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convexity, thus a minimum for γ(y) which means that there exists an optimal value of old trees density
under which the development of young trees goes on most successfully.

The dynamics and bifurcation analysis of Antonovsky & Korzukhin model is presented in [3]. It
is shown that there exists three parameter regimes. The first parameter regime leads to the existence
and uniqueness of the trivial equilibrium (0, 0), which models the extinction of the ecosystem. The
second parameter regime guarantees the coexistence of three equilibrium states: the trivial equilibrium
(0, 0), a saddle point (x̄, ȳ) and an attractive node (x∗, y∗) which is locally asymptotically stable and
models a stationary state with constant age class densities. The third parameter regime yields the
existence and uniqueness of a non-trivial attractive node (x∗, y∗). Figure 1 shows a phase portrait of
system (1) corresponding to the second parameter regime; the trivial equilibrium attracts the orbits
to an extinction state of the ecosystem, whereas the non-trivial stable node attracts the orbits to a
good health state of the ecosystem. Their basins of attraction are separated by the stable manifold of
the saddle-point.
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Figure 1: Phase portrait of Antonovsky & Korzukhin model (1) obtained for ρ = 4.2, f = 1, h = 2, a = 1,
b = 1, c = 1, showing the coexistence of three equilibrium states: the trivial equilibrium (0, 0), a saddle point
(x̄, ȳ) and an attractive node (x∗, y∗) which is locally asymptotically stable and models a stationary state with
constant age class densities.

Antonovsky & Korzukhin model has been calibrated in order to fit with data of real forest ecosys-
tems; it has also been considered as a basis for refined models of forest ecosystems, studying interaction
with pests [3], or diffusion of seeds [15] for instance.

2.2. Mathematical modeling of the biotic pump mechanism

We recall that our aim is to propose a novel mathematical model for studying the dynamics of a complex
network of forest ecosystems, in which two forests interact with each other through exchanges of water
resource. In this paragraph, we show how to model the biotic pump mechanism which describes the
consumption and the production of water by a given forest ecosystem. To this end, we consider a
simplified complex network of forest ecosystems, distributed along a line stemming from an ocean and
directed towards a continental area. We assume that the region is occupied by a finite number of forest
ecosystems, the first one being located nearby the coastline, as depicted in Figure 2. Furthermore,
we assume that the dominant winds bring the water evaporated over the maritime zone towards the
continental area.

We aim to reproduce two principles which are discussed in [17]: on the one hand, over non-forested
areas, precipitation decreases exponentially with distance from the ocean; on the other hand, over
extensive natural forests, precipitation does not depend on the distance from the ocean along several
thousand kilometers. A qualitative comparison of our model with precipitation data of the Amazon
basin will be presented below.
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Figure 2: Schema of a simplified complex network of forest ecosystems, distributed along a line stemming
from an ocean and directed towards a continental area. Two forests interact with each other through exchanges
of water resource.

Once again, we divide the population of trees into two sub-populations x and y corresponding to
young and old trees respectively. In a complex network of n forest ecosystems, we denote by (xi, yi)
the sub-populations of young and old trees of i-th forest respectively, and we denote by Si the surface
of i-th forest. For each i ∈ {1, . . . , n−1}, let wi+1(x1, y1, . . . , xi, yi) denote the average in time water
quantity received by the (i+ 1)-th forest ecosystem of the complex network. For the first forest which
is located nearby the ocean, at d = 0, we set

w1 = P0, (3)

where P0 is a non-negative coefficient which models the average water quantity available for the first
forest ecosystem, evaporated over the maritime zone. Furthermore, we assume that the first forest
produces by evaporation a quantity of water B(x1, y1), which increases with x1 and y1. We propose
to model this quantity by a linear function of the form

B(x1, y1) = β1(S1)x1 + β2(S1)y1, (4)

where β1(S1) and β2(S1) are non-negative coefficients which may depend on the surface S1 of the first
forest.

Next, for the second forest ecosystem, which is located at a distance equal to d1 from the first
forest, we assume that the quantity of water P (0) + B(x1, y1), which is available at d = 0, decreases
exponentially with d1 (see [17]), thus we set

w2(x1, y1) =
[
P0 +B(x1, y1)

]
exp

{−d1
l

}
, (5)

where l is a positive normalization coefficient which can be determined from the size of the forested
area (see [17]).

Now, let us denote by di the distance separating the i-th forest from the (i + 1)-th forest. We
assume that the water quantity received by the (i + 1)-th forest ecosystem corresponds to the sums
of the water quantities produced by the previous forests, weighted by a decreasing exponential factor
which models the distance browsed by those water quantities. Hence we set

wi+1(x1, y1, . . . , xi, yi) =
[
P0 +B(x1, y1)

]
exp

{
−(d1+···+di)

l

}
+B(x2, y2) exp

{
−(d2+···+di)

l

}
+ · · ·+B(xi, yi) exp

{−di

l

}
,

(6)

for each 1 ≤ i ≤ n − 1, where B(xi, yi) corresponds to the quantity of water evaporated over i-th
forest, given by

B(xi, yi) = β1(Si)xi + β2(Si)yi, (7)
with Si denoting the surface of i-th forest. In the rest of the paper, in order to simplify our model, we
will assume that each forest ecosystem admits the same surface, that is, Si = Sj for all i and j such
that 1 ≤ i ≤ n and 1 ≤ j ≤ n. Consequently, the parameters β1 and β2 involved in equation (7) will
admit the same value for each forest ecosystem. It is worth emphasizing that the quantity of water wi
received by the i-th forest ecosystem depends on the densities of young and old trees x1, y1, x2, y2,
. . . , xi−1, yi−1 of the previous forest ecosystems. Those exchanges of water quantities can be modeled
by an oriented graph, as depicted in Figure 3. In this figure, the blue vertex models the maritime zone,
and the green vertices model the forest ecosystems. Each oriented edge models an exchange of water
quantity.
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Figure 3: Oriented graph corresponding to a simplified complex network of forest ecosystems. The blue vertex
models the maritime zone, and the green vertices model the forest ecosystems. Each oriented edge models an
exchange of water quantity.

2.3. Penalty induced by the biotic pump mechanism

Finally, we suppose that the quantity of water which is received by each forest ecosystem determines
a positive or a negative effect on this ecosystem. We assume that a low quantity of water w induces
a penalty which in turn implies a decreasing effect on the densities of trees. At the opposite, we
assume that if the quantity of water w overcomes a certain threshold w0, then the densities of trees are
augmented by a positive effect. In order to model this mechanism, we introduce the penalty function
α(w) defined by

α(w) = α0

(
1− w

w0

)
, (8)

where α0 is a negative coefficient and w0 a positive coefficient (see figure 4).

w0

Positive effect

0

Negative effect

w

α(w)

α0

Low water resource

Sufficient water resource

Figure 4: Penalty function α(w). A low quantity of water w induces a penalty which in turn implies a
decreasing effect on the densities of trees. If the quantity of water w overcomes a certain threshold w0, then
the densities of trees are augmented by a positive effect.

We introduce the notations

α1 = α(w1), αi(x1, y1, . . . , xi−1, yi−1) = α
(
wi(x1, y1, . . . , xi−1, yi−1)

)
, (9)

for 2 ≤ i ≤ n, where wi(x1, y1, . . . , xi−1, yi−1) represents the quantity of water received by the i-th
forest, given by equation (6). As for the quantity of water wi received by the i-th forest ecosystem,
the coefficient αi depends on the densities of young and old trees x1, y1, x2, y2, . . . , xi−1, yi−1 of the
previous forest ecosystems.
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2.4. Complex network of forest ecosystems

Now we are ready to present the construction of a mathematical model for studying the dynamics of
a complex network of forest ecosystems. We consider as before a simplified distribution of n forest
ecosystems along a directed line (n ≥ 2), as depicted in Figure 2 and represented in Figure 3. We
denote again by xi and yi the densities of young and old trees respectively, in the i-th forest ecosystem
(1 ≤ i ≤ n). We recall that xi and yi are expressed by numbers per unit of surface, time t is expressed
in years, and we assume that each forest ecosystem has the same surface. Next, we model the state of
each forest ecosystem by an instance of Antonovsky & Korzukhin model given by system (1) and we
consider the water interactions between those forest ecosystems by incorporating the penalty functions
αi, 1 ≤ i ≤ n, defined by (6), (7) and (9) into the state equations of xi and yi. Thus we consider the
following complex network problem:

ẋ1 = ρy1 − γ(y1)x1 − fx1 + a1α1x1

ẏ1 = fx1 − hy1 + a2α1y1

ẋ2 = ρy2 − γ(y2)x2 − fx2 + a1α2(x1, y1)x2

ẏ2 = fx2 − hy2 + a2α2(x1, y1)y2

...
ẋn = ρyn − γ(yn)xn − fxn + a1αn(x1, y1, . . . , xn−1, yn−1)xn
ẏn = fxn − hyn + a2αn(x1, y1, . . . , xn−1, yn−1)yn,

(10)

where ρ, f and h are positive real coefficients, γ is given by (2); a1, a2 are non-negative weights of
the biotic pump mechanism which model the sensitivities to the water resource of young and old trees
respectively. We shall assume that young trees are more sensitive to a variation of the water resource,
which means that a2 < a1. The significances of the parameters are gathered in Table 1.

Table 1: Parameters involved in the biotic pump mechanism determined by equations (6), (7), (9) and in the
complex network of forest ecosystems (10), with their significance and unit.

Parameter Significance Unit
ρ fertility of the species year−1

γ(y) mortality rate of young trees year−1

f aging rate year−1

h mortality rate of old trees year−1

a1 biotic pump weight of young trees dimensionless
a2 biotic pump weight of old trees dimensionless
di distance separating forests i and i+ 1 (1 ≤ i ≤ n− 1) km
αi penalty rate of i-th forest (1 ≤ i ≤ n) year−1

wi water quantity received by i-th forest (1 ≤ i ≤ n) mm × ha−1×year−1

Si surface of i-th forest (1 ≤ i ≤ n) ha
β1 water evaporation coefficient of young trees mm × year−1

β2 water evaporation coefficient of old trees mm × year−1

The complex network (10) problem enjoys a master-slave structure, since (x1, y1) can be determined
independently of the rest of the system, whereas (x2, y2) depends on (x1, y1) and more generally,
(xi, yi) depends on (x1, y1, . . . , xi−1, yi−1). This master-slave structure is related to the topology of
the oriented graph which underlies the complex network problem (see Figure 3). Furthermore, the
complex network problem (10) admits two non-linearities, which are firstly stored in the mortality
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terms −γ(yi)xi and secondly contained in the interaction terms a1αi(x1, y1, . . . , xi−1, yi−1)xi and
a2αi(x1, y1, . . . , xi−1, yi−1)yi.

Remark 1. We emphasize that the interaction terms of the complex network model (10) model ex-
changes of water resource; those couplings, which are of quadratic type, obviously do not imply migra-
tions of biological individuals from one forest ecosystem to another. This differentiates our model from
numerous complex networks where the couplings, which are of linear type, correspond to displacements
of individuals (see the models studied in [4] or in [5] for example).

2.5. Non-negativity and boundedness of solutions of the complex network model

The complex network model (10) can be rewritten in a short form

Ẋ = Fn(X), (11)

where X = (x1, y1, . . . , xn, yn)T and Fn(X) =
(
f1(X), g1(X), . . . , fn(X), gn(X)

)T with

fi(X) = ρyi − γ(yi)xi − fxi + a1αi(x1, y1, . . . , xi−1, yi−1)xi,
gi(X) = fxi − hyi + a2αi(x1, y1, . . . , xi−1, yi−1)yi,

(12)

for each i ∈ {1, . . . , n}. Note that fi and gi are polynomials of cubic order in X.
The two following theorems guarantee that the complex network problem (10) admits relevant

solutions, that is, global solutions with non-negative components.

Theorem 1. For any initial condition X0 in
(
R+)2n, the Cauchy problem determined by (10) and

X(0) = X0 admits a unique local in time solution X(t, X0) defined on a time interval [0, T ] with
T > 0, whose components are non-negative on [0, T ].

Proof. Since the operators fi and gi defined by (12) are polynomials, the existence and uniqueness of
a local in time solution stemming from any initial condition X0 in R2n directly follows from general
results of the theory of ordinary equations (see [23] for instance).

Next, it is seen that the operator Fn = (f1, g1, . . . , fn, gn)T defined in R2n by (11) is quasi-positive,
which means that it satisfies the property

fj(u1, . . . , ui−1, 0, ui+1, . . . , u2n) ≥ 0, gj(u1, . . . , ui−1, 0, ui+1, . . . , u2n) ≥ 0,

for all u = (u1, . . . , u2n) ∈ (R+)2n, i ∈ {1, . . . , 2n} and j ∈ {1, . . . , n}. By virtue of Proposition A.17
in [26], it follows that the components of any solution X(t, X0) stemming from X0 in

(
R+)2n remain

non-negative in future time.

Theorem 2. Assume that a2 is sufficiently small. Then one can find positive constants A1, B1, . . . ,
An, Bn such that the region

R =
n∏
i=1

[0, Ai]× [0, Bi]

is positively invariant for the flow induced by the complex network problem (10), which means that
X0 ∈ R implies X(t, X0) ∈ R for all t ∈ [0, T ].

Proof. Let X(t, X0) =
(
x1(t), y1(t), . . . , xn(t), yn(t)

)
denote the solution of system (10) stemming

from X0 in R. Using the master-slave structure of system (10), we first determine positive constants
A1 and B1 so that the product set [0, A1]× [0, B1] is positively invariant for

(
x1(t), y1(t)

)
. A sufficient

condition is that the vector field Fn(X) points into the interior of the region when evaluated on its
boundary (see [21] for instance). This sufficient condition can be written

ρB1 − γ(B1)A1 − fA1 + a1α1A1 < 0, (13)
fA1 − (h− a2α1)B1 < 0. (14)
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We fix A1 > 0. Parameter a2 can be chosen small enough so that h > a2α1, so one can find a positive
constant B1 such that condition (14) is fulfilled. Furthermore, the function γ(y) defined by (2) is
polynomial of order 2; this guarantees that B1 can be chosen large enough (increase B1 if necessary)
in order to guaranty that condition (13) is fulfilled simultaneously.

Next we determine positive constants A2, B2 so that [0, A1] × [0, B1] × [0, A2] × [0, B2] is posi-
tively invariant for

(
x1(t), y1(t), x2(t), y2(t)

)
. Since A1 and B1 have already been chosen, a sufficient

condition is

ρB2 − γ(B2)A2 − fA2 + a1α2(A1, B1)A2 < 0, fA2 −
(
h− a2α2(A1, B1)

)
B2 < 0.

As before, we fix A2 > 0 and we determine B2 using the inequality h > a2α2(A1, B1), which is fulfilled
for a2 sufficiently small, and the fact that γ(y) is polynomial of order 2.

Finally, we can repeat those arguments a finite number of times in order to determine positive
constants Ai and Bi for 2 ≤ i ≤ n.

Remark 2. The requirement on parameter a2 to be small enough is sufficient in order to guaranty
that a2αi(A1, B1, . . . , Ai−1, Bi−1) < h for each i ∈ {1, . . . , n}. This assumption corresponds to the
situation when old trees yi are less sensitive than young trees xi to a variation of available resource in
water, which is relevant from the biological point of view.

Theorems 1 and 2 imply that the complex network problem (10) admits non-negative and bounded
solutions, thus global in time solutions, which is a first condition to be satisfied for the validation of
the model.

2.6. Qualitative comparison of our model with precipitation data of the Amazon basin

Let us briefly show how our model can fit with real collected data. We compare in Figure 5 a plot of
precipitation data of the Amazon basin (green squares), and the results of a numerical simulation of
our model (red dots). The data (collected from LBA-HydroNet Collection, Climatological Dataset and
provided by the Water Systems Analysis Group, University of New Hampshire) were interpolated as
monthly time series data for 1960-1990 from Webber and Willmott’s station-record archive [28]. The
spatial resolution of this data is 0.5 degrees as the original. We show the average precipitation over
the Amazon basin at fix longitude 9.75 South, with variable latitude from 62 West to 72 West, which
roughly represents 1000 km. Those data fit with the second principle mentioned above, which claims
that over extensive natural forests, precipitation does not depend on the distance from the ocean.

In parallel, we have performed a numerical simulation of our complex network model (10) with the
following parameters values: n = 150, ρ = 4.2, a = 1, b = 1, c = 1, w0 = 1.8, α0 = −0.03, a1 = 0.7,
a2 = 0.9, f = 1, h = 2, l = 800, P0 = 0.65, D = 1000, d = D/(n − 1), β1 = 0.003, β2 = 0.004. The
large value of n reproduces a densely forested area.

This comparison highlights that our model is able to reproduce a situation where the quantity of
water resource received by a forest ecosystem is almost constant with respect to the distance from
the ocean. However, the precise numerical calibration of the parameters of our model is not discussed
further in this article, and will be presented in a separate paper, using techniques of identifiability [29].

§3. Stability analysis and bifurcation analysis of a two forests network

In this section, we present a qualitative analysis of a two forests network, in which two forest ecosystems
are separated by a distance d1. We focus on the effect of a variation of d1 on the dynamics and
bifurcations of the complex network and prove that an increase of d1 makes non-trivial equilibrium
states vanish.
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Figure 5: Qualitative comparison of precipitation data of the Amazon basin (green squares) with results of
a numerical simulation of our complex network model (red dots). Over extensive natural forests, precipitation
does not depend on the distance from the ocean.

3.1. Equations of a two forests network

Let us consider two forest ecosystems separated by a distance d1 and assume as previously that the
first ecosystem is located nearby the coastline. Such a two forests network is modeled by the following
system of ordinary differential equations:

ẋ1 = ρy1 − γ(y1)x1 − fx1 + a1α1x1

ẏ1 = fx1 − hy1 + a2α1y1

ẋ2 = ρy2 − γ(y2)x2 − fx2 + a1α2(x1, y1)x2

ẏ2 = fx2 − hy2 + a2α2(x1, y1)y2.

(15)

This system can also be written in a short form

Ẋ = F2(X), X = (x1, y1, x2, y2)T .

Note that the parameter α2 depends on (x1, y1), as shown in equation (9).

3.2. Steady states and their stability

First, we present the research of the steady states and their stability of the two forests network problem
given by (15). In order to avoid unreadable expressions of the steady states, we simplify the system
by setting a2 = 0. This assumption is reasonable, since the coefficient a2 weights the penalties α1y1
and α2(x1, y1)y2 on water resource for old trees, which is assumed to be negligible with respect to the
penalties α1x1 and α2(x1, y1)x2 on water resource for young trees.

As mentioned previously, the two forests network problem (15) admits a master-slave structure.
Thus we begin with the research of the equilibrium states of the first forest ecosystem. Let us introduce
the notation

k = 1
a

(
ρf

h
+ a1α1 − f − c

)
.

Proposition 1. Assume that a2 = 0. If k ≥ 0, then the equilibrium states of the sub-system given by
the two first equations of problem (15) are given by

e1 = (0, 0), e2 = (x̄1, ȳ1) =
(
h

f
(b−

√
k), b−

√
k

)
, e3 = (x∗1, y∗1) =

(
h

f
(b+

√
k), b+

√
k

)
.

9



If k < 0, then the sub-system given by the two first equations of problem (15) admits the trivial
equilibrium (0, 0) as a unique equilibrium state.

Proof. The research of the equilibrium states of the sub-system given by the two first equations of
problem (15) leads to

ρy1 − γ(y1)x1 − fx1 + a1α1x1 = 0, fx1 = hy1.

Substituting x1 = h
f y1 into the first equation yields

y1

(
ρ− γ(y1)h

f
− h− a1α1

h

f

)
= 0,

thus y1 = 0 or γ(y1) = ρf
h − f + a1α1 = 0, the latter equation being equivalent to

(y1 − b)2 = 1
a

(
ρf

h
− f + a1α1 − c

)
.

Next, we introduce the notations

δ0 = −α0a1

aw0

(
P0e
−d1/l − P0

)
, k0 = k + δ0,

δ̄ = −α0a1

aw0

[(
P0 +B(x̄1, ȳ1)

)
e−d1/l − P0

]
, k̄ = k + δ̄,

δ∗ = −α0a1

aw0

[(
P0 +B(x∗1, y∗1)

)
e−d1/l − P0

]
, k∗ = k + δ∗.

(16)

It is easily seen that
δ0 ≤ δ̄ ≤ δ∗.

We recall that the coefficient α0 is negative and we emphasize that the parameters δ0, δ̄ and δ∗ can
be negative, for instance if d1 is large enough.

Theorem 3. Assume that a2 = 0, k > 0 and b >
√
k. Then the two-forests problem (15) admits at

most 9 equilibrium points Ei, 1 ≤ i ≤ 9, depending on the signs of k0, k̄ and k∗. The coordinates of
those equilibrium points are given in Table 2. Furthermore, E1, E2 and E8 are attractive nodes and
thus are locally asymptotically stable; E3, E4, E5 and E6 are saddle-points and thus are unstable; if
k∗ < b2, then E7 is an attractive node and E9 is a saddle-point; if k∗ > b2, then E9 is an attractive
node and E7 is a saddle-point.

Proof. The research of the equilibrium states leads to the equations

x2 = h

f
y2, y2

(
ρ− h

f
γ(y2)− h+ a1

h

f
α2(x1, y1)

)
= 0.

For any value of (x1, y1), (x2, y2) = (0, 0) fulfills the latter equations, which leads to the equilibrium
points E1, E4 and E7.

If y2 6= 0, we obtain
(y2 − b)2 = k + a1

a

(
α2(x1, y1)− α1

)
.

If (x1, y1) = (0, 0), then α2(x1, y1) = α2(0, 0) thus a1
a

(
α2(x1, y1) − α1

)
= δ0, where δ0 is defined in

(16). It follows that
y2 = b±

√
k0, x2 = h

f
y2,

under the condition k0 ≥ 0, which corresponds to the equilibrium points E2 and E3. Similarly, the
case (x1, y1) = (x̄1, ȳ1) leads to the equilibrium points E5 and E6 which exist under the condition

10



Table 2: Steady states of the two forests network problem (15). The numbers of positive and negative
eigenvalues of the jacobian matrix evaluated at the equilibrium points are denoted by n+ and n− respectively.

Equilibrium point Nature n− n+

E1 = (0, 0, 0, 0) Attractive node 4 0
E2 =

(
0, 0, hf (b+

√
k0), b+

√
k0

)
Attractive node 4 0

E3 =
(

0, 0, hf (b−
√
k0), b−

√
k0

)
Saddle-point 3 1

E4 = (x̄1, ȳ1, 0, 0) Saddle-point ≤ 3 ≥ 1
E5 =

(
x̄1, ȳ1,

h
f (b+

√
k̄), b+

√
k̄
)

Saddle-point ≤ 3 ≥ 1

E6 =
(
x̄1, ȳ1,

h
f (b−

√
k̄), b−

√
k̄
)

Saddle-point ≤ 3 ≥ 1

E7 = (x̄1, ȳ1, 0, 0)
If k∗ < b2: Attractive node 4 0
If k∗ > b2: Saddle-point 3 1
E8 =

(
x∗1, y

∗
1 ,

h
f (b+

√
k∗), b+

√
k∗
)

Attractive node 4 0

E9 =
(
x∗1, y

∗
1 ,

h
f (b−

√
k∗), b−

√
k∗
)

If k∗ < b2: Saddle-point 3 1
If k∗ > b2: Attractive node 4 0

k̄ ≥ 0, whereas the case (x1, y1) = (x∗1, y∗1) leads to to the equilibrium points E8 and E9 which exist
under the condition k∗ ≥ 0.

Next, we determine the nature of the equilibrium points by examining the signs of the eigenvalues
of the jacobian matrix evaluated at those equilibrium points. The jacobian matrix of system (15)
reads:

DF2(X) =


−γ(y1)− f + a1α1 ρ− 2a(y1 − b)x1 0 0

f −h 0 0

a1α0
−β1e

−d1/l

w0
x2 a1α0

−β2e
−d1/l

w0
x2 −γ(y2)− f + a1α2 ρ− 2a(y2 − b)x2

0 0 f −h

 .
Its block triangular shape is due to the master-slave structure of problem (15), thus it can bewritten

DF2(X) =
[
J1(x1, y1) 0

J∗ J2(X)

]
,

with

J1(x1, y1) =
[
−γ(y1)− f + a1α1 ρ− 2a(y1 − b)x1

f −h

]
,

J2(X) =
[
−γ(y2)− f + a1α2 ρ− 2a(y2 − b)x2

f −h

]
,

and J∗ has not to be specified, since the eigenvalues of DF2(X) are given by those of J1(x1, y1) and
of J2(X).

Let us first determine the eigenvalues of J1(x1, y1). We have

J1(0, 0) =
[
−ab2 − c− f + a1α1 ρ

f −h

]
.

Its determinant and trace are given by

det J1(0, 0) = ah(b2 − k), trJ1(0, 0) = a(k − b2)− ρf

h
− h.

11



Under the assumption b >
√
k, we obtain det J1(0, 0) > 0 and trJ1(0, 0) < 0, which proves that

J1(0, 0) admits two negative eigenvalues. Similarly, we compute J1(x̄1, ȳ1). Its determinant is given
by

det J1(x̄1, ȳ1) = −2a
√
k(b−

√
k) < 0,

which proves that J1(x̄1, ȳ1) admits one positive eigenvalue and one negative eigenvalue. Finally, the
determinant and the trace of J1(x∗1, y∗1) satisfy

det J1(x∗1, y∗1) = 2a
√
k(b+

√
k) > 0, trJ1(x∗1, y∗1) = −ρf

h
− h < 0,

which proves that J1(x∗1, y∗1) admits two negative eigenvalues.
Following the same method, we determine the eigenvalues of J2(X). We first compute J2(0, 0, 0, 0),

its determinant and its trace. We have

J2(0, 0, 0, 0) =
[
−ab2 − c− f + a1α2(0, 0) ρ

f −h

]
,

det J2(0, 0, 0, 0) = ah(b2 − k)− ahδ0 ≥ ah(b2 − k) > 0,

trJ2(0, 0, 0, 0) = a(k − b2)− ρf

h
− h+ aδ0 < 0,

since δ0 ≤ 0. It follows that J2(0, 0, 0, 0) admits two negative eigenvalues. Combined with the fact
that J1(0, 0) also admits two negative eigenvalues, it is seen that E1 = (0, 0, 0, 0) is an attractive
node and thus is locally asymptotically stable. We evaluate analogously the jacobian matrix at other
equilibrium points.

3.3. Bifurcation diagrams and phase portraits

The research of the equilibrium points in the two forests complex network given by system (15) reveals
bifurcations processes with respect to a variation of multiple parameters involved in the network
problem. We present in Figure 6 three bifurcation diagrams which have been computed with the
parameters values given in Table 3. As usual, we depict in continuous lines the stable equilibrium
points and in dashed lines the unstable equilibrium points.
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Figure 6: Bifurcation diagrams showing the equilibrium points of the two forest complex network given by
(15). Left: an increase of the parameter d1, which represents the distance between the two forest ecosystems,
leads to two saddle-node bifurcations and one trans-critical bifurcation. Center: an increase of the parameter
β2 involved in the biotic pump mechanism (see equation (4)), with a small value of d1, implies that the system
exhibits all the possible equilibrium states. Right: with a greater value of d1, the complex network is likely
to admit only trivial equilibrium states; however, an increase of β2 allows to recover non-trivial equilibrium
points.

In the first bifurcation diagram (Figure 6, left), we consider a variation of the parameter d1 which
models the distance between the two forest ecosystems and we represent the numerical value of y2,
which corresponds to the fourth coordinate of the equilibrium points given in Table 2. If d1 is small,
then it is seen that the complex network admits 9 equilibrium points. Among those 9 equilibrium
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Table 3: Parameters values of the two forest complex network given by (15) chosen for the computation of
the bifurcation diagrams presented in Figure 6 and the phase portraits depicted in Figure 7.

Parameter Value

ρ 4.2
f 1
h 2
a, b, c, w0 1
α0 −1
a1 1

Parameter Value

a2 0
l 600
P0 1
β1 0
β2 1
d1 42, 150, 700

points, the system admits two non-trivial locally stable nodes E2 and E8 which attract the orbits
and guaranty that the second forest ecosystem reaches a good health equilibrium. In parallel, the
equilibrium point E7 is seen to be unstable (note that we do not represent E1 nor E4 in this bifurcation
diagram, since they would be superposed with E7 and hide its change of stability). If d1 increases,
then the complex network exhibits a first saddle-node bifurcation which implies that E2 vanishes. If
d1 keeps increasing, then the system presents a trans-critical bifurcation since E7 and E9 cross and
change their stability. This implies that the equilibrium point E7 becomes attractive, which is likely
to attract the orbits of the complex network to an extinction state of the second forest ecosystem. At
this stage, E7 appears to coexist with E8 which is an attractive node and guarantees a good health
equilibrium of the second forest ecosystem. Finally, if d1 increases again, then the system exhibits a
second saddle-node bifurcation which implies that the non-trivial attractive node E8 vanishes. Thus
E7 and E1 remain the only attractive equilibrium points, which means that the second forest ecosystem
converges to an extinction state. Roughly speaking, if the distance between the two forest ecosystems
increases, then the second forest ecosystem is likely to receive a lower quantity of water resource, which
is due to the exponentially decrease of the water quantity with the distance; in that case, the good
health of the second forest ecosystem may be compromised.

In the two other bifurcation diagrams (Figure 6, center and right), we experiment an increase of
the parameter β2 involved in the biotic pump mechanism (see equation (4)), for two distinct values
of d1 (d1 = 42 in the center diagram, d1 = 150 on the right diagram). An increase of the parameter
β2 means that the capacity of a given forest ecosystem to produce water also increases. With a small
value of d1, it is seen that the system exhibits all the possible equilibrium states. With a greater value
of d1, the complex network is likely to admit only trivial equilibrium states; however, an increase of β2
allows to recover non-trivial equilibrium points. This might suggest the existence of a compensation
phenomenon of the distance separating the two forest ecosystems by the efficiency of the biotic pump.

Several phase portraits of the two forest complex network given by (15) are shown in Figure 7 in
order to complete the bifurcation diagrams. Those phase portraits have been computed with the same
parameters values (see Table 3) and projected in the (x1, y1) plane so as to visualize the dynamics
of the first ecosystem or in the (x2, y2) plane so as to visualize the dynamics of the second forest
ecosystem. Initial data have been randomly chosen in [0, 4]4.

The first phase portrait (green orbits) shows the coexistence of three equilibrium points e1, e2 and
e3 for the sub-system corresponding to the dynamics of the first forest ecosystem (given by the two first
equations in system (15)). The stable equilibrium points e1 and e3 admit basins of attraction which
are separated by the stable manifold of the saddle-point e2. The equilibrium point e1 corresponds to
the convergence of the orbits to an extinction state of the forest ecosystem, whereas the equilibrium
point e3 represents the convergence towards a good health state of the forest ecosystem. The three
other phase portraits show the dynamics of the second forest ecosystem (red orbits) for three distinct
values of the parameter d1 which models the distance between the two forest ecosystems. For d1 = 42,
the phase portrait exhibits the coexistence of three stable equilibrium points. Among them, E2 and
E8 attract the orbits to a good health state. For d1 = 150, the attractive equilibrium point E2 has
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Figure 7: Several phase portraits of the two forest complex network given by (15), projected in the (x1, y1)
plane so as to visualize the dynamics of the first ecosystem (green orbits) or in the (x2, y2) plane so as to
visualize the dynamics of the second forest ecosystem (red orbits). Initial data have been randomly chosen in
[0, 4]4.

vanished and E8 remains the only non-trivial stable equilibrium point. Finally, for d1 = 700, all the
non-trivial stable equilibrium points have vanished, which implies that the orbits are attracted to the
trivial equilibrium which means an extinction state of the second forest ecosystem. Once again, the
distance d1 separating the two forest ecosystems is seen to play a crucial role on the dynamics of the
second forest ecosystem.

§4. Sensitivity analysis of the multiple forest ecosystems network

In this section, our aim is to investigate the dynamics of the multiple forest ecosystems network given
by system (10). We experiment the impact of an increase of the number of forest ecosystems and
discover the emergence of synchronization in the network, which corresponds to the convergence of
each ecosystem to a good health state. Then we improve our complex network model by incorporating
a randomly generated perturbation which models deforestation. Our numerical simulations have been
performed with the python language, in a Debian/GNU-Linux environment.
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Figure 8: Time series
(
t, yi(t)

)
(1 ≤ i ≤ n) of the populations of old trees in each ecosystem of a n

forests network of the form (10), obtained for n ∈ {2, 3, . . . , 10}. A low number of forest ecosystems leads
to the extinction of a part of the network, whereas a sufficiently large number of ecosystems guarantees the
synchronization of each ecosystem to a good health state.

4.1. Numerical simulations of the complex network model

The research of the equilibrium states in a two forest ecosystems network has revealed the possible
coexistence of 9 equilibrium points. Analogously, it is easy to show that a n forest ecosystems network
can admit up to 3n equilibrium points. Furthermore, the distances separating each forest ecosystem
are likely to make non-trivial attractive nodes vanish. Thus it is natural to ask if there exists a distance
threshold under which a complex network of forest ecosystems converges to a global good health state.

Let us consider a fix distance D > 0 and an integer n ≥ 2. We set d = D
n−1 and we construct a n

forest ecosystems network of the form (10), in which the distances between two forest ecosystems are
uniformly equal to d. We already know from the previous section the behavior of the network for n = 2.
In particular, it has been proved that the second forest ecosystem will converge to an extinction state
equilibrium if D is sufficiently large. Now we wonder if an increase of n could contrary this process
which leads to an extinction state of the ecosystem. In other words, we suppose that intermediate
forest ecosystems are implanted between the first forest, which is located nearby the coastline, and the
last forest ecosystem, which is located at a distance from the first one equal to D. We present in Figure
8 several time series

(
t, yi(t)

)
(1 ≤ i ≤ n) of the populations of old trees in each forest ecosystem,

obtained for n ∈ {2, 3, . . . , 10}. The parameters values are once again those given in Table 3, except
P0 = 1.1, β2 = 0.3. Furthermore, we have fixed D = 1000.

We observe a change of the dynamics of the network at n = 9. Indeed, for n < 9, it is seen that at
least one forest ecosystem is attracted to an extinction state. For instance, for n = 4, we observe that
3 forest ecosystems are attracted to an extinction state and the first forest ecosystem, which is located
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nearby the coastline, is the only one to survive. Next, for n ≥ 5, it is remarked that at least a second
forest ecosystem survives. Finally, for n ≥ 9, the network exhibits the convergence to a non-trivial
equilibrium for each forest ecosystem. This common convergence can be seen as a synchronization of
each ecosystem in the network to a good health state.

4.2. Random perturbation of the complex network problem

Here we aim to improve our complex network model (10) by incorporating a perturbation modeling
deforestation. The causes of deforestation can have various origins. Anthropic cause of deforestation
is admitted as an obvious fact and discussed in [1] for instance. However, the proliferation of big
herbivores is also suspected to have caused deforestation in past periods, implying a cascade of climatic
effects, including biotic pump disruption and generally continental climate destabilization (see [6] for
instance).

As previously, we fix a distance D > 0 and an integer n ≥ 2. We set d = D
n−1 and consider a n

forests complex network of the form (10) in which di = d for each i ∈ {1, . . . , n}. We assume that
this complex network problem admits a stable equilibrium X∗ = (x∗1, y∗1 , . . . , x∗n, y∗n) with positive
components, corresponding to a good health state of each ecosystem of the network, and we consider
the equilibrium solution X(t) ≡ X∗. The existence of such an equilibrium has been verified in the
previous section for a particular value of n.

Now we generate a random integer N such that 0 ≤ N ≤ n, and a random list of N distinct
integers i1, . . . , iN such that 1 ≤ ik ≤ n for each k ∈ {1, , . . . , N}. The random list L = {i1, . . . , iN}
models the deforestation of N ecosystems among the n forests which compose the network under
study. In parallel, we generate N positive times t1, . . . , tN that we associate to the integers i1, . . . ,
iN respectively. The list

{(i1, t1), . . . , (iN , tN )} (17)

models the choice of N ecosystems which are assumed to be deforested at times t1, . . . , tN respectively.
Furthermore, we introduce the function θ(t, t∗) defined by

θ(t, t∗) =


0 if t ≤ t∗,
1
2 −

1
2 cos

(
π(t− t∗)

)
if t∗ < t < t∗ + 1,

1 else,
(18)

in order to model the beginning of the deforestation process at time t∗ of a given ecosystem in the
complex network. We also introduce the boolean integer εk defined by

εk =
{

1 if k ∈ {i1, . . . , iN},
0 if k /∈ {i1, . . . , iN}.

(19)

Finally we consider the randomly perturbed complex network problem defined by

˙̃x1 = ρỹ1 − γ(ỹ1)x̃1 − fx̃1 + a1α1x̃1 − ε1θ(t, t1)x̃1
˙̃y1 = fx̃1 − hỹ1 + a2α1ỹ1 − ε1θ(t, t1)ỹ1,

˙̃x2 = ρỹ2 − γ(ỹ2)x̃2 − fx̃2 + a1α2(x̃1, ỹ1)x̃2 − ε2θ(t, t2)x̃2
˙̃y2 = fx̃2 − hỹ2 + a2α2(x̃1, ỹ1)ỹ2 − ε2θ(t, t2)ỹ2,
...
˙̃xn = ρỹn − γ(ỹn)x̃n − fx̃n + a1αn(x̃1, ỹ1, . . . , x̃n−1, ỹn−1)x̃n − εnθ(t, tn)x̃n
˙̃yn = fx̃n − hỹn + a2αn(x̃1, ỹ1, . . . , x̃n−1, ỹn−1)ỹn − εnθ(t, tn)ỹn,

(20)

and we denote X̃ =
(
x̃1, ỹ1, . . . , x̃n, ỹn

)T . Note that system (20) is non-linear and non-autonomous,
whereas system (10) is only non-linear. The following theorem guarantees that the resulting Cauchy
problem is well-posed. Its proof can be made by repeating the same arguments as for Theorems 1 and
2, so we skip it.
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Theorem 4. Assume that X∗ = (x∗1, y∗1 , . . . , x∗n, y∗n) is a non trivial equilibrium point of the complex
network (10). Assume furthermore that a2 is sufficiently small. Then for any randomly generated list
{(i1, t1), . . . , (iN , tN )} of type (17), the Cauchy problem defined by (20) and X̃(0) = X∗ admits a
unique global solution X̃(t, X∗), defined on [0, ∞), admitting non-negative components.

4.3. Numerical simulations of the randomly perturbed complex network

Here, we present a selection of numerical simulations of the randomly perturbed complex network
(20). We experiment the impact of the level of deforestation on the global dynamics of the complex
network. To this end, we distinguish the number N of deforested ecosystems, N being the cardinal of
the list {(i1, t1), . . . , (iN , tN )} given by (17), and the number K of killed forests after the deforestation
process. We can measure the number K of killed forests by enumerating the indices i ∈ {1, . . . , n}
such that

lim sup
t→∞

(
x2
i (t) + y2

i (t)
)

= 0.

In particular, we investigate the effect of the positions of the deforested ecosystems on the number K
of killed forests.

First, we show in Figure 9 the results of four numerical simulations of the randomly perturbed
complex network (20).
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Figure 9: Numerical simulations of the randomly perturbed complex network (20). The positions of the N
deforested ecosystems affects the number K of resulting killed forests and tests the level of resilience of the
network.

We consider again the case n = 10 and D = 1000. The values of other parameters are the same as
in Table 3. When L = {1, 3, 5}, thus N = 3, we observe that the number of killed forests is also K = 3,
which means that the complex network exhibits a sort of resilience. This resilience is also observed
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when L = {4, 9}, since we have K = N = 2 in this case. However, the resilience is compromised when
L = {1, 6, 8}, since the number of killed forests is now K = 5. The consequences of deforestation are
drastic when L = {1, 2}, since each forest ecosystem is killed, that is K = 10. This series of random
simulations already proves that the location of deforested ecosystems is a key factor of the resilience
of the complex network. The values of the delays t1, . . . , tN seem to vary the transitional dynamics
of the solutions, without changing its asymptotic phase. In other words, the behavior of the complex
network seems to be robust to a variation of the times at which the deforestation acts.

Next, we experiment further the level of resilience of the network by computing the number K of
killed forests with respect to the positions of the deforested ecosystems, in the cases N = 1 and N = 2
(see Table 4). We observe an acceptable level of resilience of the network in the case N = 1: indeed,
the deforestation of a unique ecosystem causes the extinction of at most 3 forests in the network. We
also note that the deforestation of the first ecosystem is the most severe. The case N = 2 reveals a high
sensitivity of the complex network with respect to the locations of the deforested ecosystems, since
the deforestation of the two first ecosystems, that is L = {1, 2}, causes the extinction of the whole
network, whereas the deforestation of two ecosystems which are located near the end of the chain (e.g.
L = {6, 8}) do not cause more killed forests, that is K = N = 2. Those results suggest that the most
severe deforestation is obtained when selecting forests which are located nearby the coastline.

Table 4: Impact of the positions in the network of the deforested ecosystems on the number K of killed
forests.

N Positions of the deforested ecosystems Number K of killed forests

1 L = {1} 3
1 L = {i} with 2 ≤ i ≤ 10 1
2 L = {1, 2} 10
2 L = {1, 4} 9
2 L = {2, 3} 8
2 L = {1, 6} 4
2 L = {1, 7} 4
2 L = {1, 8} 4
2 L = {1, 9} 4
2 L = {1, 10} 4
2 L = {1, 3} 3
2 L = {1, 5} 3
2 Other positions 2

We end our paper with the result of 2000 simulations of the randomly perturbed complex network
(20). For each simulation, we compute and compare the number N of deforested ecosystems and
the number K of killed forests. Moreover, we enumerate the cases for which the values of N and K
coincide. This approach leads to the chart depicted in Figure 10. The horizontal axis represents the
number N of deforested ecosystems, whereas the vertical axis gives the number K of killed forests.
For each position (N, K), the size of the disk located at (N, K) represents the number of simulations
with output (N, K) among the 2000 simulations. This size can also be recovered with the colorbar.
First, we observe that the number of killed forests is always greater than or equal to the number of
deforested ecosystems, which follows directly from the construction of the complex network problem
(20). But we observe that the gap between N and K increases with N . In other words, if the intensity
of deforestation increases, then its consequences are exacerbated. In particular, the whole network can
be led to a global extinction state when N ≥ 2, and the frequency of global extinction states becomes
major for N ≥ 6.
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Figure 10: Chart showing the results of 2000 simulations of the randomly perturbed complex network (20).
The horizontal axis represents the number N of deforested ecosystems, whereas the vertical axis gives the
number K of killed forests. For each position (N, K), the size of the disk located at (N, K) represents the
number of simulations with output (N, K) among the 2000 simulations.

§5. Conclusion

In this article, we have proposed an original mathematical model for studying the dynamics of complex
forest ecosystems, which takes into account the biotic pump mechanism and reproduces the principle of
constant precipitation quantity over densely forested areas. We have proved the well-posedness of our
model, by showing the existence of relevant solutions, and we have performed a stability and bifurcation
analysis, from which a main trend emerges: if the distance separating to forest ecosystems increases,
then at least one of those ecosystems is likely to converge to an extinction state. Various numerical
simulations of our complex network model show the impacts of deforestation and reforestation. The
fine calibration of our model will be presented in a separate paper.

In a future work, we aim to improve our model into two directions. First, we aim to consider a
bi-dimensional forested area rather than a simplified distribution of forest ecosystems along a single
line. The second direction of improvement would correspond to modeling a continuous forest area,
using a reaction-advection-diffusion model.
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