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We propose an innovative mathematical model for studying the dynamics of a complex network of forest ecosystems, in which two forest entities interact which each other through water exchanges. Our model reproduces a recently analyzed principle of constant precipitation quantity over densely forested areas. We perform a stability and bifurcation analysis and show that the distance separating two forest ecosystems can attract a part of the network to an extinction state. We incorporate a randomly generated perturbation modeling deforestation and investigate the effect of the level of deforestation on the equilibrium states of the network. We also exhibit a type of synchronization in the case of densely distributed forest ecosystems.

§1. Introduction

In a context of international global warming, which is nowadays admitted at least by the scientific community, much emotion has been recently inspired by forest fires of unprecedented intensity, for instance in the Amazon forest, or very recently in south-east Australia [START_REF] Hope | Australia burning[END_REF]. Those forest fires are threatening the equilibrium of the climate, the diversity of wildlife and the lifeblood of our societies, thus it is an imperative to better understand the mechanisms which lead to the risk of forest fires, so as to fight and overcome this scourge. Anthropic cause of those catastrophic events are already observed [START_REF] Alencar | Landscape fragmentation, severe drought, and the new Amazon forest fire regime[END_REF] and analyzed as a tipping point [START_REF] Nepstad | Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point[END_REF]. Numerous studies of forest fires have been proposed (see for instance [START_REF] Méndez | Hyperbolic reaction-diffusion equations for a forest fire model[END_REF], [START_REF] Pastor | Mathematical models and calculation systems for the study of wildland fire behaviour[END_REF], [START_REF] Perminov | Mathematical modeling of crown forest fires initiation[END_REF]) and it is recognized that the dynamics of forest ecosystems enjoy the characteristics of complexity (see [START_REF] Kimmins | Complexity in modelling forest ecosystems: How much is enough?[END_REF] for a survey and references therein). As a key ingredient of that complexity, deforestation is studied in [START_REF] Mertens | Spatial modelling of deforestation in southern cameroon: spatial disaggregation of diverse deforestation processes[END_REF], and its impact on wildlife is analyzed in [START_REF] Qureshi | Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator[END_REF] for instance. Recently, much attention has been payed on the role of water evaporation over the forested areas in order to describe a drought process which can exacerbate the fire risk. The biotic pump mechanism has been studied in [START_REF] Makarieva | Biotic pump of atmospheric moisture as driver of the hydrological cycle on land[END_REF], where it is remarked that over extensive natural forests, precipitation does not depend on the distance from the ocean along several thousand kilometers. Furthermore, deforestation, whatever its cause may be, is suspected by the same authors to induce a cascade of climatic effects, including disruption of the biotic pump [START_REF] Gorshkov | Key ecological parameters of immotile versus locomotive life[END_REF].

Our aim in this article is to propose an innovative mathematical model for understanding the dynamics of complex forest ecosystems, by taking into account this biotic pump mechanism. Many works have certainly been devoted to modeling forest ecosystems. For instance, age or size structure mathematical models have been analyzed in [START_REF] Hett | Age structure models of balsam fir and eastern hemlock[END_REF]; multi-species models have been studied in [START_REF] Kohyama | Size-structured multi-species model of rain forest trees[END_REF]; partial differential equations models are proposed and studied in [START_REF] Kuznetsov | A cross-diffusion model of forest boundary dynamics[END_REF], [START_REF] Magal | Competition for light in forest population dynamics: from computer simulator to mathematical model[END_REF]; cellular automata models are also studied, for instance in [START_REF] Alexandridis | A cellular automata model for forest fire spread prediction: The case of the wildfire that swept through spetses island in 1990[END_REF], [START_REF] Karafyllidis | A model for predicting forest fire spreading using cellular automata[END_REF]. However, at our knowledge, none of those models incorporates the effect of water evaporation over forest areas, although this mechanism is well-known for several decennies [START_REF] Kelliher | Evaporation from a central siberian pine forest[END_REF], [START_REF] Stewart | Evaporation from the wet canopy of a pine forest[END_REF]. It is our purpose in this work to fill this void. We focus on forest areas of heterogeneous structure, and propose an original mathematical model which takes the form of a complex network of dynamical systems. Hence, the construction of this innovative mathematical model represents a novel contribution to the study of complex forest ecosystems. Complex networks of dynamical systems have proved their great interest in various research fields such as behavioral models, neural networks or epidemiological networks (see for instance [START_REF] Cantin | Non identical coupled networks with a geographical model for human behaviors during catastrophic events[END_REF], [START_REF] Cantin | Influence of the topology on the dynamics of a complex network of HIV/AIDS epidemic models[END_REF], [START_REF] Hizanidis | Chimera states in networks of nonlocally coupled Hindmarsh-Rose neuron models[END_REF]). Here, we use this complex network framework for studying forest ecosystems, by modeling the dynamics of each forest entity by an age structure model, proposed by Antonovsky & Korzukhin [START_REF] Antonovsky | Forest-pest interaction dynamics: the simplest mathematical models[END_REF], and by modeling the interactions between two forest entities with each other through water resource exchanges.

Our complex network model for analyzing the dynamics of forest ecosystems leads to the study of a complex dynamical system, which we study using techniques of stability analysis and bifurcation analysis (see for instance [START_REF] Kuznetsov | Elements of Applied Bifurcation Theory[END_REF] or [START_REF] Perko | Differential equations and dynamical systems[END_REF]). We first show that our model is able to reproduce the principle of uniform precipitation quantity over densely forested areas, by comparing our biotic pump modeling with real world data. Then we focus on the study of a two forests network and establish the list and the nature of equilibrium states. We prove an important pattern, which is recovered in the general case of a multiple forests network: if the distance separating two forests ecosystems increases and overcomes a threshold, then the one which is located far from the coastline is likely to converge to the trivial equilibrium, which corresponds to a vanishing state of the ecosystem. This pattern is in concordance with the precipitation exponential decreasing principle remarked in [START_REF] Makarieva | Biotic pump of atmospheric moisture as driver of the hydrological cycle on land[END_REF]. Furthermore, we improve our complex network model by incorporating a randomly generated perturbation which models deforestation. We perform a sensitivity analysis of the resulting system and show the impact of the level of deforestation of the equilibrium states of the complex network of forest ecosystems. We also analyze the effect of the locations of deforested areas in the network and prove that a low level of deforestation can lead the whole network to an extinction state. In parallel, we exhibit a type of synchronization in the case of densely distributed forest ecosystems networks.

Our paper is organized as follows. In the next section, we present the main ingredients of our complex network model, namely the Antonovsky & Korzukhin age structure model, and the biotic pump mechanism. We show that the resulting Cauchy problem is well-posed and admits relevant solutions, that is, positive and bounded solutions. In section 3, we present the stability and bifurcation analysis of a simple two forests network, in order to identify the main trends of the model. In the final section, we improve the initial complex network problem by incorporating a randomly generated perturbation and present numerical simulations of the complete model. §2.

Setting of the problem

In this section, we present the age structure mathematical model proposed in [START_REF] Antonovsky | Forest-pest interaction dynamics: the simplest mathematical models[END_REF] by Antonovsky & Korzukhin for studying the dynamics of a one-species forest ecosystem. Then we propose an original model of the biotic pump mechanism and we construct a novel mathematical model which takes the form of a complex network of dynamical systems.

Antonovsky & Korzukhin model

Let us consider a forest ecosystem and assume that it can be assimilated to a one-species ecosystem; we divide the population of trees of that forest ecosystem into two sub-populations, distinguishing the young trees and the old trees. We denote by x(t) and y(t) the densities of young trees and old trees respectively, at time t. Those densities are expressed by number per unit of surface (thousands per hectare for example), and time t is expressed in years. Antonovsky & Korzukhin [START_REF] Antonovsky | Forest-pest interaction dynamics: the simplest mathematical models[END_REF] have proposed a simplified mathematical model for studying the dynamics of such a forest ecosystem. Their model is given by the following system of two ordinary differential equations:

ẋ = ρy -γ(y)x -f x ẏ = f x -hy, ( 1 
)
where the parameters ρ, f and h are positive real coefficients. The parameter ρ in the first equation of system (1) models the fertility of the species; h and f are mortality rate of old trees and aging rate of young trees respectively; the function γ(y) corresponds to the mortality rate of young trees; it is usually defined by a quadratic expression of the form

γ(y) = a(y -b) 2 + c, ( 2 
)
where a, b and c are positive coefficients. The equation ( 2) takes into account the competition between young and old trees for life resources, including water and light; this quadratic expression guarantees convexity, thus a minimum for γ(y) which means that there exists an optimal value of old trees density under which the development of young trees goes on most successfully. The dynamics and bifurcation analysis of Antonovsky & Korzukhin model is presented in [START_REF] Antonovsky | Forest-pest interaction dynamics: the simplest mathematical models[END_REF]. It is shown that there exists three parameter regimes. The first parameter regime leads to the existence and uniqueness of the trivial equilibrium (0, 0), which models the extinction of the ecosystem. The second parameter regime guarantees the coexistence of three equilibrium states: the trivial equilibrium (0, 0), a saddle point (x, ȳ) and an attractive node (x * , y * ) which is locally asymptotically stable and models a stationary state with constant age class densities. The third parameter regime yields the existence and uniqueness of a non-trivial attractive node (x * , y * ). Figure 1 shows a phase portrait of system (1) corresponding to the second parameter regime; the trivial equilibrium attracts the orbits to an extinction state of the ecosystem, whereas the non-trivial stable node attracts the orbits to a good health state of the ecosystem. Their basins of attraction are separated by the stable manifold of the saddle-point. Antonovsky & Korzukhin model has been calibrated in order to fit with data of real forest ecosystems; it has also been considered as a basis for refined models of forest ecosystems, studying interaction with pests [START_REF] Antonovsky | Forest-pest interaction dynamics: the simplest mathematical models[END_REF], or diffusion of seeds [START_REF] Kuznetsov | A cross-diffusion model of forest boundary dynamics[END_REF] for instance.

Mathematical modeling of the biotic pump mechanism

We recall that our aim is to propose a novel mathematical model for studying the dynamics of a complex network of forest ecosystems, in which two forests interact with each other through exchanges of water resource. In this paragraph, we show how to model the biotic pump mechanism which describes the consumption and the production of water by a given forest ecosystem. To this end, we consider a simplified complex network of forest ecosystems, distributed along a line stemming from an ocean and directed towards a continental area. We assume that the region is occupied by a finite number of forest ecosystems, the first one being located nearby the coastline, as depicted in Figure 2. Furthermore, we assume that the dominant winds bring the water evaporated over the maritime zone towards the continental area.

We aim to reproduce two principles which are discussed in [START_REF] Makarieva | Biotic pump of atmospheric moisture as driver of the hydrological cycle on land[END_REF]: on the one hand, over non-forested areas, precipitation decreases exponentially with distance from the ocean; on the other hand, over extensive natural forests, precipitation does not depend on the distance from the ocean along several thousand kilometers. A qualitative comparison of our model with precipitation data of the Amazon basin will be presented below. Once again, we divide the population of trees into two sub-populations x and y corresponding to young and old trees respectively. In a complex network of n forest ecosystems, we denote by (x i , y i ) the sub-populations of young and old trees of i-th forest respectively, and we denote by S i the surface of i-th forest. For each i ∈ {1, . . . , n -1}, let w i+1 (x 1 , y 1 , . . . , x i , y i ) denote the average in time water quantity received by the (i + 1)-th forest ecosystem of the complex network. For the first forest which is located nearby the ocean, at d = 0, we set

w 1 = P 0 , ( 3 
)
where P 0 is a non-negative coefficient which models the average water quantity available for the first forest ecosystem, evaporated over the maritime zone. Furthermore, we assume that the first forest produces by evaporation a quantity of water B(x 1 , y 1 ), which increases with x 1 and y 1 . We propose to model this quantity by a linear function of the form

B(x 1 , y 1 ) = β 1 (S 1 )x 1 + β 2 (S 1 )y 1 , (4) 
where β 1 (S 1 ) and β 2 (S 1 ) are non-negative coefficients which may depend on the surface S 1 of the first forest.

Next, for the second forest ecosystem, which is located at a distance equal to d 1 from the first forest, we assume that the quantity of water P (0) + B(x 1 , y 1 ), which is available at d = 0, decreases exponentially with d 1 (see [START_REF] Makarieva | Biotic pump of atmospheric moisture as driver of the hydrological cycle on land[END_REF]), thus we set

w 2 (x 1 , y 1 ) = P 0 + B(x 1 , y 1 ) exp -d1 l , ( 5 
)
where l is a positive normalization coefficient which can be determined from the size of the forested area (see [START_REF] Makarieva | Biotic pump of atmospheric moisture as driver of the hydrological cycle on land[END_REF]). Now, let us denote by d i the distance separating the i-th forest from the (i + 1)-th forest. We assume that the water quantity received by the (i + 1)-th forest ecosystem corresponds to the sums of the water quantities produced by the previous forests, weighted by a decreasing exponential factor which models the distance browsed by those water quantities. Hence we set

w i+1 (x 1 , y 1 , . . . , x i , y i ) = P 0 + B(x 1 , y 1 ) exp -(d1+•••+di) l + B(x 2 , y 2 ) exp -(d2+•••+di) l + • • • + B(x i , y i ) exp -di l , ( 6 
)
for each 1 ≤ i ≤ n -1, where B(x i , y i ) corresponds to the quantity of water evaporated over i-th forest, given by

B(x i , y i ) = β 1 (S i )x i + β 2 (S i )y i , (7) 
with S i denoting the surface of i-th forest. In the rest of the paper, in order to simplify our model, we will assume that each forest ecosystem admits the same surface, that is, S i = S j for all i and j such that 1 ≤ i ≤ n and 1 ≤ j ≤ n. Consequently, the parameters β 1 and β 2 involved in equation ( 7) will admit the same value for each forest ecosystem. It is worth emphasizing that the quantity of water w i received by the i-th forest ecosystem depends on the densities of young and old trees x 1 , y 1 , x 2 , y 2 , . . . , x i-1 , y i-1 of the previous forest ecosystems. Those exchanges of water quantities can be modeled by an oriented graph, as depicted in Figure 3. In this figure, the blue vertex models the maritime zone, and the green vertices model the forest ecosystems. Each oriented edge models an exchange of water quantity. 

Penalty induced by the biotic pump mechanism

Finally, we suppose that the quantity of water which is received by each forest ecosystem determines a positive or a negative effect on this ecosystem. We assume that a low quantity of water w induces a penalty which in turn implies a decreasing effect on the densities of trees. At the opposite, we assume that if the quantity of water w overcomes a certain threshold w 0 , then the densities of trees are augmented by a positive effect. In order to model this mechanism, we introduce the penalty function α(w) defined by

α(w) = α 0 1 - w w 0 , ( 8 
)
where α 0 is a negative coefficient and w 0 a positive coefficient (see figure 4). We introduce the notations

α 1 = α(w 1 ), α i (x 1 , y 1 , . . . , x i-1 , y i-1 ) = α w i (x 1 , y 1 , . . . , x i-1 , y i-1 ) , (9) 
for 2 ≤ i ≤ n, where w i (x 1 , y 1 , . . . , x i-1 , y i-1 ) represents the quantity of water received by the i-th forest, given by equation [START_REF] Gorshkov | Key ecological parameters of immotile versus locomotive life[END_REF]. As for the quantity of water w i received by the i-th forest ecosystem, the coefficient α i depends on the densities of young and old trees x 1 , y 1 , x 2 , y 2 , . . . , x i-1 , y i-1 of the previous forest ecosystems.

Complex network of forest ecosystems

Now we are ready to present the construction of a mathematical model for studying the dynamics of a complex network of forest ecosystems. We consider as before a simplified distribution of n forest ecosystems along a directed line (n ≥ 2), as depicted in Figure 2 and represented in Figure 3. We denote again by x i and y i the densities of young and old trees respectively, in the i-th forest ecosystem (1 ≤ i ≤ n). We recall that x i and y i are expressed by numbers per unit of surface, time t is expressed in years, and we assume that each forest ecosystem has the same surface. Next, we model the state of each forest ecosystem by an instance of Antonovsky & Korzukhin model given by system (1) and we consider the water interactions between those forest ecosystems by incorporating the penalty functions α i , 1 ≤ i ≤ n, defined by ( 6), ( 7) and ( 9) into the state equations of x i and y i . Thus we consider the following complex network problem:

                             ẋ1 = ρy 1 -γ(y 1 )x 1 -f x 1 + a 1 α 1 x 1 ẏ1 = f x 1 -hy 1 + a 2 α 1 y 1 ẋ2 = ρy 2 -γ(y 2 )x 2 -f x 2 + a 1 α 2 (x 1 , y 1 )x 2 ẏ2 = f x 2 -hy 2 + a 2 α 2 (x 1 , y 1 )y 2 . . . ẋn = ρy n -γ(y n )x n -f x n + a 1 α n (x 1 , y 1 , . . . , x n-1 , y n-1 )x n ẏn = f x n -hy n + a 2 α n (x 1 , y 1 , . . . , x n-1 , y n-1 )y n , ( 10 
)
where ρ, f and h are positive real coefficients, γ is given by (2); a 1 , a 2 are non-negative weights of the biotic pump mechanism which model the sensitivities to the water resource of young and old trees respectively. We shall assume that young trees are more sensitive to a variation of the water resource, which means that a 2 < a 1 . The significances of the parameters are gathered in Table 1.

Table 1: Parameters involved in the biotic pump mechanism determined by equations ( 6), ( 7), [START_REF] Hope | Australia burning[END_REF] and in the complex network of forest ecosystems [START_REF] Karafyllidis | A model for predicting forest fire spreading using cellular automata[END_REF], with their significance and unit. 

Parameter Significance

d i distance separating forests i and i + 1 (1 ≤ i ≤ n -1) km α i penalty rate of i-th forest (1 ≤ i ≤ n) year -1 w i water quantity received by i-th forest (1 ≤ i ≤ n) mm × ha -1 ×year -1 S i surface of i-th forest (1 ≤ i ≤ n) ha β 1 water evaporation coefficient of young trees mm × year -1 β 2
water evaporation coefficient of old trees mm × year -1

The complex network [START_REF] Karafyllidis | A model for predicting forest fire spreading using cellular automata[END_REF] problem enjoys a master-slave structure, since (x 1 , y 1 ) can be determined independently of the rest of the system, whereas (x 2 , y 2 ) depends on (x 1 , y 1 ) and more generally, (x i , y i ) depends on (x 1 , y 1 , . . . , x i-1 , y i-1 ). This master-slave structure is related to the topology of the oriented graph which underlies the complex network problem (see Figure 3). Furthermore, the complex network problem [START_REF] Karafyllidis | A model for predicting forest fire spreading using cellular automata[END_REF] admits two non-linearities, which are firstly stored in the mortality terms -γ(y i )x i and secondly contained in the interaction terms a 1 α i (x 1 , y 1 , . . . , x i-1 , y i-1 )x i and a 2 α i (x 1 , y 1 , . . . , x i-1 , y i-1 )y i .

Remark 1. We emphasize that the interaction terms of the complex network model [START_REF] Karafyllidis | A model for predicting forest fire spreading using cellular automata[END_REF] model exchanges of water resource; those couplings, which are of quadratic type, obviously do not imply migrations of biological individuals from one forest ecosystem to another. This differentiates our model from numerous complex networks where the couplings, which are of linear type, correspond to displacements of individuals (see the models studied in [START_REF] Cantin | Non identical coupled networks with a geographical model for human behaviors during catastrophic events[END_REF] or in [START_REF] Cantin | Influence of the topology on the dynamics of a complex network of HIV/AIDS epidemic models[END_REF] for example).

Non-negativity and boundedness of solutions of the complex network model

The complex network model [START_REF] Karafyllidis | A model for predicting forest fire spreading using cellular automata[END_REF] can be rewritten in a short form Ẋ = F n (X), [START_REF] Kelliher | Evaporation from a central siberian pine forest[END_REF] where

X = (x 1 , y 1 , . . . , x n , y n ) T and F n (X) = f 1 (X), g 1 (X), . . . , f n (X), g n (X) T with f i (X) = ρy i -γ(y i )x i -f x i + a 1 α i (x 1 , y 1 , . . . , x i-1 , y i-1 )x i , g i (X) = f x i -hy i + a 2 α i (x 1 , y 1 , . . . , x i-1 , y i-1 )y i , ( 12 
)
for each i ∈ {1, . . . , n}. Note that f i and g i are polynomials of cubic order in X.

The two following theorems guarantee that the complex network problem (10) admits relevant solutions, that is, global solutions with non-negative components.

Theorem 1. For any initial condition X 0 in R + 2n , the Cauchy problem determined by [START_REF] Karafyllidis | A model for predicting forest fire spreading using cellular automata[END_REF] and X(0) = X 0 admits a unique local in time solution X(t, X 0 ) defined on a time interval [0, T ] with T > 0, whose components are non-negative on [0, T ].

Proof. Since the operators f i and g i defined by [START_REF] Kimmins | Complexity in modelling forest ecosystems: How much is enough?[END_REF] are polynomials, the existence and uniqueness of a local in time solution stemming from any initial condition X 0 in R 2n directly follows from general results of the theory of ordinary equations (see [START_REF] Perko | Differential equations and dynamical systems[END_REF] for instance).

Next, it is seen that the operator F n = (f 1 , g 1 , . . . , f n , g n ) T defined in R 2n by ( 11) is quasi-positive, which means that it satisfies the property f j (u 1 , . . . , u i-1 , 0, u i+1 , . . . , u 2n ) ≥ 0, g j (u 1 , . . . , u i-1 , 0, u i+1 , . . . , u 2n ) ≥ 0, for all u = (u 1 , . . . , u 2n ) ∈ (R + ) 2n , i ∈ {1, . . . , 2n} and j ∈ {1, . . . , n}. By virtue of Proposition A.17 in [START_REF] Smith | Dynamical systems and population persistence[END_REF], it follows that the components of any solution X(t, X 0 ) stemming from X 0 in R + 2n remain non-negative in future time.

Theorem 2. Assume that a 2 is sufficiently small. Then one can find positive constants

A 1 , B 1 , . . . , A n , B n such that the region R = n i=1 [0, A i ] × [0, B i ]
is positively invariant for the flow induced by the complex network problem [START_REF] Karafyllidis | A model for predicting forest fire spreading using cellular automata[END_REF], which means that

X 0 ∈ R implies X(t, X 0 ) ∈ R for all t ∈ [0, T ].
Proof. Let X(t, X 0 ) = x 1 (t), y 1 (t), . . . , x n (t), y n (t) denote the solution of system (10) stemming from X 0 in R. Using the master-slave structure of system [START_REF] Karafyllidis | A model for predicting forest fire spreading using cellular automata[END_REF], we first determine positive constants A 1 and B 1 so that the product set [0, A 1 ] × [0, B 1 ] is positively invariant for x 1 (t), y 1 (t) . A sufficient condition is that the vector field F n (X) points into the interior of the region when evaluated on its boundary (see [START_REF] Othmer | Case Studies in Mathematical Modeling-ecology[END_REF] for instance). This sufficient condition can be written

ρB 1 -γ(B 1 )A 1 -f A 1 + a 1 α 1 A 1 < 0, ( 13 
)
f A 1 -(h -a 2 α 1 )B 1 < 0. ( 14 
)
We fix A 1 > 0. Parameter a 2 can be chosen small enough so that h > a 2 α 1 , so one can find a positive constant B 1 such that condition ( 14) is fulfilled. Furthermore, the function γ(y) defined by ( 2) is polynomial of order 2; this guarantees that B 1 can be chosen large enough (increase B 1 if necessary) in order to guaranty that condition ( 13) is fulfilled simultaneously.

Next we determine positive constants A 2 , B 2 so that [0,

A 1 ] × [0, B 1 ] × [0, A 2 ] × [0, B 2
] is positively invariant for x 1 (t), y 1 (t), x 2 (t), y 2 (t) . Since A 1 and B 1 have already been chosen, a sufficient condition is

ρB 2 -γ(B 2 )A 2 -f A 2 + a 1 α 2 (A 1 , B 1 )A 2 < 0, f A 2 -h -a 2 α 2 (A 1 , B 1 ) B 2 < 0.
As before, we fix A 2 > 0 and we determine B 2 using the inequality h > a 2 α 2 (A 1 , B 1 ), which is fulfilled for a 2 sufficiently small, and the fact that γ(y) is polynomial of order 2.

Finally, we can repeat those arguments a finite number of times in order to determine positive constants A i and B i for 2 ≤ i ≤ n.

Remark 2. The requirement on parameter a 2 to be small enough is sufficient in order to guaranty that a 2 α i (A 1 , B 1 , . . . , A i-1 , B i-1 ) < h for each i ∈ {1, . . . , n}. This assumption corresponds to the situation when old trees y i are less sensitive than young trees x i to a variation of available resource in water, which is relevant from the biological point of view.

Theorems 1 and 2 imply that the complex network problem (10) admits non-negative and bounded solutions, thus global in time solutions, which is a first condition to be satisfied for the validation of the model.

Qualitative comparison of our model with precipitation data of the Amazon basin

Let us briefly show how our model can fit with real collected data. We compare in Figure 5 a plot of precipitation data of the Amazon basin (green squares), and the results of a numerical simulation of our model (red dots). The data (collected from LBA-HydroNet Collection, Climatological Dataset and provided by the Water Systems Analysis Group, University of New Hampshire) were interpolated as monthly time series data for 1960-1990 from Webber and Willmott's station-record archive [START_REF] Willmott | LBA regional climate data, 0.5-degree grid[END_REF]. The spatial resolution of this data is 0.5 degrees as the original. We show the average precipitation over the Amazon basin at fix longitude 9.75 South, with variable latitude from 62 West to 72 West, which roughly represents 1000 km. Those data fit with the second principle mentioned above, which claims that over extensive natural forests, precipitation does not depend on the distance from the ocean.

In parallel, we have performed a numerical simulation of our complex network model [START_REF] Karafyllidis | A model for predicting forest fire spreading using cellular automata[END_REF] with the following parameters values: n = 150, ρ = 4.2, a = 1, b = 1, c = 1, w 0 = 1.8, α 0 = -0.03, a 1 = 0.7, a 2 = 0.9, f = 1, h = 2, l = 800, P 0 = 0.65, D = 1000, d = D/(n -1), β 1 = 0.003, β 2 = 0.004. The large value of n reproduces a densely forested area.

This comparison highlights that our model is able to reproduce a situation where the quantity of water resource received by a forest ecosystem is almost constant with respect to the distance from the ocean. However, the precise numerical calibration of the parameters of our model is not discussed further in this article, and will be presented in a separate paper, using techniques of identifiability [START_REF] Zhu | Identifiability analysis and parameter estimation of a chikungunya model in a spatially continuous domain[END_REF].

§3. Stability analysis and bifurcation analysis of a two forests network

In this section, we present a qualitative analysis of a two forests network, in which two forest ecosystems are separated by a distance d 1 . We focus on the effect of a variation of d 1 on the dynamics and bifurcations of the complex network and prove that an increase of d 1 makes non-trivial equilibrium states vanish. Figure 5: Qualitative comparison of precipitation data of the Amazon basin (green squares) with results of a numerical simulation of our complex network model (red dots). Over extensive natural forests, precipitation does not depend on the distance from the ocean.

Equations of a two forests network

Let us consider two forest ecosystems separated by a distance d 1 and assume as previously that the first ecosystem is located nearby the coastline. Such a two forests network is modeled by the following system of ordinary differential equations:

           ẋ1 = ρy 1 -γ(y 1 )x 1 -f x 1 + a 1 α 1 x 1 ẏ1 = f x 1 -hy 1 + a 2 α 1 y 1 ẋ2 = ρy 2 -γ(y 2 )x 2 -f x 2 + a 1 α 2 (x 1 , y 1 )x 2 ẏ2 = f x 2 -hy 2 + a 2 α 2 (x 1 , y 1 )y 2 . ( 15 
)
This system can also be written in a short form Ẋ = F 2 (X), X = (x 1 , y 1 , x 2 , y 2 ) T .

Note that the parameter α 2 depends on (x 1 , y 1 ), as shown in equation (9).

Steady states and their stability

First, we present the research of the steady states and their stability of the two forests network problem given by [START_REF] Kuznetsov | A cross-diffusion model of forest boundary dynamics[END_REF]. In order to avoid unreadable expressions of the steady states, we simplify the system by setting a 2 = 0. This assumption is reasonable, since the coefficient a 2 weights the penalties α 1 y 1 and α 2 (x 1 , y 1 )y 2 on water resource for old trees, which is assumed to be negligible with respect to the penalties α 1 x 1 and α 2 (x 1 , y 1 )x 2 on water resource for young trees.

As mentioned previously, the two forests network problem (15) admits a master-slave structure. Thus we begin with the research of the equilibrium states of the first forest ecosystem. Let us introduce the notation

k = 1 a ρf h + a 1 α 1 -f -c .
Proposition 1. Assume that a 2 = 0. If k ≥ 0, then the equilibrium states of the sub-system given by the two first equations of problem [START_REF] Kuznetsov | A cross-diffusion model of forest boundary dynamics[END_REF] are given by

e 1 = (0, 0), e 2 = (x 1 , ȳ1 ) = h f (b - √ k), b - √ k , e 3 = (x * 1 , y * 1 ) = h f (b + √ k), b + √ k .
If k < 0, then the sub-system given by the two first equations of problem (15) admits the trivial equilibrium (0, 0) as a unique equilibrium state.

Proof. The research of the equilibrium states of the sub-system given by the two first equations of problem (15) leads to ρy 1 -γ(y 1 )x 1 -f x 1 + a 1 α 1 x 1 = 0, f x 1 = hy 1 .

Substituting x 1 = h f y 1 into the first equation yields

y 1 ρ -γ(y 1 ) h f -h -a 1 α 1 h f = 0, thus y 1 = 0 or γ(y 1 ) = ρf h -f + a 1 α 1 = 0, the latter equation being equivalent to (y 1 -b) 2 = 1 a ρf h -f + a 1 α 1 -c .
Next, we introduce the notations

δ 0 = -α 0 a 1 aw 0 P 0 e -d1/l -P 0 , k 0 = k + δ 0 , δ = -α 0 a 1 aw 0 P 0 + B(x 1 , ȳ1 ) e -d1/l -P 0 , k = k + δ, δ * = -α 0 a 1 aw 0 P 0 + B(x * 1 , y * 1 ) e -d1/l -P 0 , k * = k + δ * . ( 16 
)
It is easily seen that δ 0 ≤ δ ≤ δ * .

We recall that the coefficient α 0 is negative and we emphasize that the parameters δ 0 , δ and δ * can be negative, for instance if d 1 is large enough.

Theorem 3. Assume that a 2 = 0, k > 0 and b > √ k. Then the two-forests problem (15) admits at most 9 equilibrium points E i , 1 ≤ i ≤ 9, depending on the signs of k 0 , k and k * . The coordinates of those equilibrium points are given in Table 2. Furthermore, E 1 , E 2 and E 8 are attractive nodes and thus are locally asymptotically stable; E 3 , E 4 , E 5 and E 6 are saddle-points and thus are unstable; if k * < b 2 , then E 7 is an attractive node and E 9 is a saddle-point; if k * > b 2 , then E 9 is an attractive node and E 7 is a saddle-point.

Proof. The research of the equilibrium states leads to the equations

x 2 = h f y 2 , y 2 ρ - h f γ(y 2 ) -h + a 1 h f α 2 (x 1 , y 1 ) = 0.
For any value of (x 1 , y 1 ), (x 2 , y 2 ) = (0, 0) fulfills the latter equations, which leads to the equilibrium points E 1 , E 4 and E 7 .

If

y 2 = 0, we obtain (y 2 -b) 2 = k + a 1 a α 2 (x 1 , y 1 ) -α 1 .
If (x 1 , y 1 ) = (0, 0), then α 2 (x 1 , y 1 ) = α 2 (0, 0) thus a1 a α 2 (x 1 , y 1 ) -α 1 = δ 0 , where δ 0 is defined in [START_REF] Magal | Competition for light in forest population dynamics: from computer simulator to mathematical model[END_REF]. It follows that

y 2 = b ± k 0 , x 2 = h f y 2 ,
under the condition k 0 ≥ 0, which corresponds to the equilibrium points E 2 and E 3 . Similarly, the case (x 1 , y 1 ) = (x 1 , ȳ1 ) leads to the equilibrium points E 5 and E 6 which exist under the condition [START_REF] Kuznetsov | A cross-diffusion model of forest boundary dynamics[END_REF]. The numbers of positive and negative eigenvalues of the jacobian matrix evaluated at the equilibrium points are denoted by n + and n -respectively.

Equilibrium point

Nature n -n + E 1 = (0, 0, 0, 0) Attractive node 4 0

E 2 = 0, 0, h f (b + √ k 0 ), b + √ k 0 Attractive node 4 0 E 3 = 0, 0, h f (b - √ k 0 ), b - √ k 0 Saddle-point 3 1 E 4 = (x 1 , ȳ1 , 0, 0) Saddle-point ≤ 3 ≥ 1 E 5 = x1 , ȳ1 , h f (b + √ k), b + √ k Saddle-point ≤ 3 ≥ 1 E 6 = x1 , ȳ1 , h f (b - √ k), b - √ k Saddle-point ≤ 3 ≥ 1 E 7 = (x 1 , ȳ1 , 0, 0) If k * < b 2 : Attractive node 4 0 If k * > b 2 : Saddle-point 3 1 E 8 = x * 1 , y * 1 , h f (b + √ k * ), b + √ k * Attractive node 4 0 E 9 = x * 1 , y * 1 , h f (b - √ k * ), b - √ k * If k * < b 2 : Saddle-point 3 1 If k * > b 2 :
Attractive node 4 0 k ≥ 0, whereas the case (x 1 , y 1 ) = (x * 1 , y * 1 ) leads to to the equilibrium points E 8 and E 9 which exist under the condition k * ≥ 0.

Next, we determine the nature of the equilibrium points by examining the signs of the eigenvalues of the jacobian matrix evaluated at those equilibrium points. The jacobian matrix of system (15) reads:

DF 2 (X) =       -γ(y 1 ) -f + a 1 α 1 ρ -2a(y 1 -b)x 1 0 0 f -h 0 0 a 1 α 0 -β1e -d 1 /l w0 x 2 a 1 α 0 -β2e -d 1 /l w0 x 2 -γ(y 2 ) -f + a 1 α 2 ρ -2a(y 2 -b)x 2 0 0 f -h       .
Its block triangular shape is due to the master-slave structure of problem [START_REF] Kuznetsov | A cross-diffusion model of forest boundary dynamics[END_REF], thus it can bewritten

DF 2 (X) = J 1 (x 1 , y 1 ) 0 J * J 2 (X) , with J 1 (x 1 , y 1 ) = -γ(y 1 ) -f + a 1 α 1 ρ -2a(y 1 -b)x 1 f -h , J 2 (X) = -γ(y 2 ) -f + a 1 α 2 ρ -2a(y 2 -b)x 2 f -h ,
and J * has not to be specified, since the eigenvalues of DF 2 (X) are given by those of J 1 (x 1 , y 1 ) and of J 2 (X).

Let us first determine the eigenvalues of J 1 (x 1 , y 1 ). We have

J 1 (0, 0) = -ab 2 -c -f + a 1 α 1 ρ f -h .
Its determinant and trace are given by

det J 1 (0, 0) = ah(b 2 -k), trJ 1 (0, 0) = a(k -b 2 ) - ρf h -h.
Under the assumption b > √ k, we obtain det J 1 (0, 0) > 0 and trJ 1 (0, 0) < 0, which proves that J 1 (0, 0) admits two negative eigenvalues. Similarly, we compute J 1 (x 1 , ȳ1 ). Its determinant is given by det

J 1 (x 1 , ȳ1 ) = -2a √ k(b - √ k) < 0,
which proves that J 1 (x 1 , ȳ1 ) admits one positive eigenvalue and one negative eigenvalue. Finally, the determinant and the trace of

J 1 (x * 1 , y * 1 ) satisfy det J 1 (x * 1 , y * 1 ) = 2a √ k(b + √ k) > 0, trJ 1 (x * 1 , y * 1 ) = - ρf h -h < 0,
which proves that J 1 (x * 1 , y * 1 ) admits two negative eigenvalues. Following the same method, we determine the eigenvalues of J 2 (X). We first compute J 2 (0, 0, 0, 0), its determinant and its trace. We have

J 2 (0, 0, 0, 0) = -ab 2 -c -f + a 1 α 2 (0, 0) ρ f -h , det J 2 (0, 0, 0, 0) = ah(b 2 -k) -ahδ 0 ≥ ah(b 2 -k) > 0, trJ 2 (0, 0, 0, 0) = a(k -b 2 ) - ρf h -h + aδ 0 < 0,
since δ 0 ≤ 0. It follows that J 2 (0, 0, 0, 0) admits two negative eigenvalues. Combined with the fact that J 1 (0, 0) also admits two negative eigenvalues, it is seen that E 1 = (0, 0, 0, 0) is an attractive node and thus is locally asymptotically stable. We evaluate analogously the jacobian matrix at other equilibrium points.

Bifurcation diagrams and phase portraits

The research of the equilibrium points in the two forests complex network given by system (15) reveals bifurcations processes with respect to a variation of multiple parameters involved in the network problem. We present in Figure 6 three bifurcation diagrams which have been computed with the parameters values given in Table 3. As usual, we depict in continuous lines the stable equilibrium points and in dashed lines the unstable equilibrium points. [START_REF] Kuznetsov | A cross-diffusion model of forest boundary dynamics[END_REF]. Left: an increase of the parameter d1, which represents the distance between the two forest ecosystems, leads to two saddle-node and one trans-critical bifurcation. Center: an increase of the parameter β2 involved in the biotic pump mechanism (see equation ( 4)), with a small value of d1, implies that the system exhibits all the possible equilibrium states. Right: with a greater value of d1, the complex network is likely to admit only trivial equilibrium states; however, an increase of β2 allows to recover non-trivial equilibrium points.

In the first bifurcation diagram (Figure 6, left), we consider a variation of the parameter d 1 which models the distance between the two forest ecosystems and we represent the numerical value of y 2 , which corresponds to the fourth coordinate of the equilibrium points given in Table 2. If d 1 is small, then it is seen that the complex network admits 9 equilibrium points. Among those 9 equilibrium Table 3: Parameters values of the two forest complex network given by ( 15) chosen for the computation of the bifurcation diagrams presented in Figure 6 and the phase portraits depicted in Figure 7.

Parameter Value

ρ 4.2 f 1 h 2 a, b, c, w 0 1 α 0 -1 a 1 1
Parameter Value a 2 0 l 600

P 0 1 β 1 0 β 2 1 d 1 42
, 150, 700 points, the system admits two non-trivial locally stable nodes E 2 and E 8 which attract the orbits and guaranty that the second forest ecosystem reaches a good health equilibrium. In parallel, the equilibrium point E 7 is seen to be unstable (note that we do not represent E 1 nor E 4 in this bifurcation diagram, since they would be superposed with E 7 and hide its change of stability). If d 1 increases, then the complex network exhibits a first saddle-node bifurcation which implies that E 2 vanishes. If d 1 keeps increasing, then the system presents a trans-critical bifurcation since E 7 and E 9 cross and change their stability. This implies that the equilibrium point E 7 becomes attractive, which is likely to attract the orbits of the complex network to an extinction state of the second forest ecosystem. At this stage, E 7 appears to coexist with E 8 which is an attractive node and guarantees a good health equilibrium of the second forest ecosystem. Finally, if d 1 increases again, then the system exhibits a second saddle-node bifurcation which implies that the non-trivial attractive node E 8 vanishes. Thus E 7 and E 1 remain the only attractive equilibrium points, which means that the second forest ecosystem converges to an extinction state. Roughly speaking, if the distance between the two forest ecosystems increases, then the second forest ecosystem is likely to receive a lower quantity of water resource, which is due to the exponentially decrease of the water quantity with the distance; in that case, the good health of the second forest ecosystem may be compromised.

In the two other bifurcation diagrams (Figure 6, center and right), we experiment an increase of the parameter β 2 involved in the biotic pump mechanism (see equation ( 4)), for two distinct values of d 1 (d 1 = 42 in the center diagram, d 1 = 150 on the right diagram). An increase of the parameter β 2 means that the capacity of a given forest ecosystem to produce water also increases. With a small value of d 1 , it is seen that the system exhibits all the possible equilibrium states. With a greater value of d 1 , the complex network is likely to admit only trivial equilibrium states; however, an increase of β 2 allows to recover non-trivial equilibrium points. This might suggest the existence of a compensation phenomenon of the distance separating the two forest ecosystems by the efficiency of the biotic pump.

Several phase portraits of the two forest complex network given by ( 15) are shown in Figure 7 in order to complete the bifurcation diagrams. Those phase portraits have been computed with the same parameters values (see Table 3) and projected in the (x 1 , y 1 ) plane so as to visualize the dynamics of the first ecosystem or in the (x 2 , y 2 ) plane so as to visualize the dynamics of the second forest ecosystem. Initial data have been randomly chosen in [0, 4] 4 .

The first phase portrait (green orbits) shows the coexistence of three equilibrium points e 1 , e 2 and e 3 for the sub-system corresponding to the dynamics of the first forest ecosystem (given by the two first equations in system [START_REF] Kuznetsov | A cross-diffusion model of forest boundary dynamics[END_REF]). The stable equilibrium points e 1 and e 3 admit basins of attraction which are separated by the stable manifold of the saddle-point e 2 . The equilibrium point e 1 corresponds to the convergence of the orbits to an extinction state of the forest ecosystem, whereas the equilibrium point e 3 represents the convergence towards a good health state of the forest ecosystem. The three other phase portraits show the dynamics of the second forest ecosystem (red orbits) for three distinct values of the parameter d 1 which models the distance between the two forest ecosystems. For d 1 = 42, the phase portrait exhibits the coexistence of three stable equilibrium points. Among them, E 2 and E 8 attract the orbits to a good health state. For d 1 = 150, the attractive equilibrium point E 2 has vanished and E 8 remains the only non-trivial stable equilibrium point. Finally, for d 1 = 700, all the non-trivial stable equilibrium points have vanished, which implies that the orbits are attracted to the trivial equilibrium which means an extinction state of the second forest ecosystem. Once again, the distance d 1 separating the two forest ecosystems is seen to play a crucial role on the dynamics of the second forest ecosystem. §4. Sensitivity analysis of the multiple forest ecosystems network

In this section, our aim is to investigate the dynamics of the multiple forest ecosystems network given by system [START_REF] Karafyllidis | A model for predicting forest fire spreading using cellular automata[END_REF]. We experiment the impact of an increase of the number of forest ecosystems and discover the emergence of synchronization in the network, which corresponds to the convergence of each ecosystem to a good health state. Then we improve our complex network model by incorporating a randomly generated perturbation which models deforestation. Our numerical simulations have been performed with the python language, in a Debian/GNU-Linux environment. 

Numerical simulations of the complex network model

The research of the equilibrium states in a two forest ecosystems network has revealed the possible coexistence equilibrium points. Analogously, it is easy to show that n ecosystems network can admit up to 3 n equilibrium Furthermore, the distances separating each forest ecosystem are likely to make non-trivial attractive nodes vanish. Thus it is natural to ask if there exists a distance threshold under which a complex network of forest ecosystems converges to a global good health state. Let us consider a fix distance D > 0 and integer n ≥ 2. We set d D and we construct a n forest ecosystems network of the form [START_REF] Karafyllidis | A model for predicting forest fire spreading using cellular automata[END_REF], in which the distances between two forest ecosystems are uniformly equal to d. We already know from the previous section the behavior of the network for n = 2. In particular, it has been proved that the second forest ecosystem will converge to an extinction state equilibrium if D is sufficiently large. Now we wonder if an increase of n could contrary this process which leads to an extinction state of the ecosystem. In other words, we suppose that intermediate forest ecosystems are implanted between the first forest, which is located nearby the coastline, and the last forest ecosystem, which is located at a distance from the first one equal to D. We present in Figure 8 several time series t, y i (t) (1 ≤ i ≤ n) of the populations of old trees in each forest ecosystem, obtained for n ∈ {2, 3, . . . , 10}. The parameters values are once again those given in Table 3, except P 0 = 1.1, β 2 = 0.3. Furthermore, we have fixed D = 1000.

We observe a change of the dynamics of the network at n = 9. Indeed, for n < 9, it is seen that at least one forest ecosystem is attracted to an extinction state. For instance, for n = 4, we observe that 3 forest ecosystems are attracted to an extinction state and the first forest ecosystem, which is located when L = {4, 9}, since we have K = N = 2 in this case. However, the resilience is compromised when L = {1, 6, 8}, since the number of killed forests is now K = 5. The consequences of deforestation are drastic when L = {1, 2}, since each forest ecosystem is killed, that is K = 10. This series of random simulations already proves that the location of deforested ecosystems is a key factor of the resilience of the complex network. The values of the delays t 1 , . . . , t N seem to vary the transitional dynamics of the solutions, without changing its asymptotic phase. In other words, the behavior of the complex network seems to be robust to a variation of the times at which the deforestation acts.

Next, we experiment further the level of resilience of the network by computing the number K of killed forests with respect to the positions of the deforested ecosystems, in the cases N = and N = 2 (see Table 4). We observe an acceptable level of resilience of network in the case N = 1: indeed, the deforestation of a unique ecosystem causes the extinction of at most 3 forests in the network. We also note that the deforestation of the first ecosystem is the most severe. The case N = 2 reveals a high sensitivity of the complex network with respect to the locations of the deforested ecosystems, since the deforestation of the two first ecosystems, that is L = {1, 2}, causes the extinction of the whole network, whereas the deforestation of two ecosystems which are located near the end of the chain (e.g. L = {6, 8}) do not cause more killed forests, that is K = N = 2. Those results suggest that the most severe deforestation is obtained when selecting forests which are the coastline. We end our paper with the result of 2000 simulations of the randomly perturbed complex network [START_REF] Nepstad | Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point[END_REF]. For each simulation, we compute and compare the number N of deforested ecosystems and the number K of killed forests. Moreover, we enumerate the cases for which the values of N and K coincide. This approach leads to the chart depicted in Figure 10. The horizontal axis represents the number N of deforested ecosystems, whereas the vertical axis gives the number K of killed forests. For each position (N, K), the size of the disk located at (N, K) represents the number of simulations with output (N, K) among the 2000 simulations. This size can also be recovered with the colorbar. First, we observe that the number of killed forests is always greater than or equal to the number of deforested ecosystems, which follows directly from the construction of the complex network problem [START_REF] Nepstad | Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point[END_REF]. But we observe that the gap between N and K increases with N . In other words, if the intensity of deforestation increases, then its consequences are exacerbated. In particular, the whole network can be led to a global extinction state when N ≥ 2, and the frequency of global extinction states becomes major for N ≥ 6. [START_REF] Nepstad | Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point[END_REF]. The horizontal axis represents the number N of deforested ecosystems, whereas the vertical axis gives the number K of killed forests. For each position (N, K), the size of the disk located at (N, K) represents the number of simulations with output (N, K) among the 2000 simulations. §5.

Conclusion

In this article, we have proposed an original mathematical model for studying the dynamics of complex forest ecosystems, which takes into account the biotic pump mechanism and reproduces the principle of constant precipitation quantity over densely forested areas. We have proved the well-posedness of our model, by showing the existence of relevant solutions, and we have performed a stability and bifurcation analysis, from which a main trend emerges: if the distance separating to forest ecosystems increases, then at least one of those ecosystems is likely to converge to an extinction state. Various numerical simulations of our complex network model show the impacts of deforestation and reforestation. The fine calibration of our model will be presented in a separate paper.

In a future work, we aim to improve our model into two directions. First, we aim to consider a bi-dimensional forested area rather than a simplified distribution of forest ecosystems along a single line. The second direction of improvement would correspond to modeling a continuous forest area, using a reaction-advection-diffusion model.

Figure 1 :

 1 Figure 1: Phase portrait of Antonovsky & Korzukhin model (1) obtained for ρ = 4.2, f = 1, h = 2, a = 1, b = 1, c = 1, showing the coexistence of three equilibrium states: the trivial equilibrium (0, 0), a saddle point(x, ȳ) and an attractive node (x * , y * ) which is locally asymptotically stable and models a stationary state with constant age class densities.

Figure 2 :

 2 Figure 2: Schema of a simplified complex network of forest ecosystems, distributed along a line stemming from an ocean and directed towards a continental area. Two forests interact with each other through exchanges of water resource.

Figure 3 :

 3 Figure 3: Oriented graph corresponding to a simplified complex network of forest ecosystems. The blue vertex models the maritime zone, and the green vertices model the forest ecosystems. Each oriented edge models an exchange of water quantity.

Figure 4 :

 4 Figure 4: Penalty function α(w).A low quantity of water w induces a penalty which in turn implies a decreasing effect on the densities of trees. If the quantity of water w overcomes a certain threshold w0, then the densities of trees are augmented by a positive effect.

Figure 6 :

 6 Figure6: Bifurcation diagrams showing the equilibrium points of the two forest complex network given by[START_REF] Kuznetsov | A cross-diffusion model of forest boundary dynamics[END_REF]. Left: an increase of the parameter d1, which represents the distance between the two forest ecosystems, leads to two saddle-node and one trans-critical bifurcation. Center: an increase of the parameter β2 involved in the biotic pump mechanism (see equation (4)), with a small value of d1, implies that the system exhibits all the possible equilibrium states. Right: with a greater value of d1, the complex network is likely to admit only trivial equilibrium states; however, an increase of β2 allows to recover non-trivial equilibrium points.

2 Figure 7 :

 27 Figure7: Several phase portraits of the two forest complex network given by[START_REF] Kuznetsov | A cross-diffusion model of forest boundary dynamics[END_REF], projected in the (x1, y1) plane so as to visualize the dynamics of the first ecosystem (green orbits) or in the (x2, y2) plane so as to visualize the dynamics of the second forest ecosystem (red orbits). Initial data have been randomly chosen in [0, 4] 4 .
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 8 Figure 8: Time series t, yi(t) (1 ≤ ≤ n) of the populations of old trees in each ecosystem of a n forests network of the form (10), obtained for n ∈ {2, 3, . . . , 10}. A low number of forest ecosystems leads to the extinction of a part of the whereas a sufficiently large number of ecosystems guarantees the synchronization of each ecosystem to a good health state.
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 4 Impact of the positions in the network of the deforested ecosystems on the number K of killed forests. Positions of the deforested ecosystems Number K of killed forests 1

Figure 10 :

 10 Figure 10: Chart showing the results of 2000 simulations of the randomly perturbed complex network[START_REF] Nepstad | Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point[END_REF]. The horizontal axis represents the number N of deforested ecosystems, whereas the vertical axis gives the number K of killed forests. For each position (N, K), the size of the disk located at (N, K) represents the number of simulations with output (N, K) among the 2000 simulations.
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 2 Steady states of the two forests network problem
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nearby the coastline, is the only one to survive. Next, for n ≥ 5, it is remarked that at least a second forest ecosystem survives. Finally, for n ≥ 9, the network exhibits the convergence to a non-trivial equilibrium for each forest ecosystem. This common convergence can be seen as a synchronization of each ecosystem in the network to a good health state.

Random perturbation of the complex network problem

Here we aim to improve our complex network model [START_REF] Karafyllidis | A model for predicting forest fire spreading using cellular automata[END_REF] by incorporating a perturbation modeling deforestation. The causes of deforestation can have various origins. Anthropic cause of deforestation is admitted as an obvious fact and discussed in [START_REF] Alencar | Landscape fragmentation, severe drought, and the new Amazon forest fire regime[END_REF] for instance. However, the proliferation of big herbivores is also suspected to have caused deforestation in past periods, implying a cascade of climatic effects, including biotic pump disruption and generally continental climate destabilization (see [START_REF] Gorshkov | Key ecological parameters of immotile versus locomotive life[END_REF] for instance).

As previously, we fix a distance D > 0 and an integer n ≥ 2. We set d = D n-1 and consider a n forests complex network of the form [START_REF] Karafyllidis | A model for predicting forest fire spreading using cellular automata[END_REF] in which d i = d for each i ∈ {1, . . . , n}. We assume that this complex network problem admits a stable equilibrium X * = (x * 1 , y * 1 , . . . , x * n , y * n ) with positive components, corresponding to a good health state of each ecosystem of the network, and we consider the equilibrium solution X(t) ≡ X * . The existence of such an equilibrium has been verified in the for a particular value of n. Now we generate a random integer N such that 0 ≤ N ≤ n, and a random list of N 1 , . . . , i N such that 1 ≤ i k ≤ n for each k ∈ {1, , . . , N }. The random list L = {i 1 , . . . , i N } models the deforestation of N ecosystems among the n forests which compose the network study. In parallel, we generate N positive times t 1 , . . . , t N that we associate to the integers i 1 , . . . , i N respectively. The list {(i 1 , t 1 ), . . . , (i N , t N models the of ecosystems which are assumed to be deforested at times t 1 , . . , t N respectively. Furthermore, we introduce the function θ(t, t * ) defined by

order model the beginning of the deforestation process at time t * of a given ecosystem in the complex network. We also introduce the boolean integer ε k defined by

Finally we consider the randomly perturbed complex network problem defined by

and we denote X = x1 , ỹ1 , . . . , xn , ỹn T . Note that system (20) is non-linear and non-autonomous, whereas system ( 10) is only non-linear. The following theorem guarantees that the resulting Cauchy problem is well-posed. Its proof can be made by repeating the same arguments as for Theorems 1 and 2, so we skip it.

Theorem 4. Assume that X * = (x * 1 , y * 1 , . . . , x * n , y * n ) is a non trivial equilibrium point of the complex network [START_REF] Karafyllidis | A model for predicting forest fire spreading using cellular automata[END_REF]. Assume furthermore that a 2 is sufficiently small. Then for any randomly generated list {(i 1 , t 1 ), . . . , (i N , t N )} of type [START_REF] Makarieva | Biotic pump of atmospheric moisture as driver of the hydrological cycle on land[END_REF], the Cauchy problem defined by [START_REF] Nepstad | Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point[END_REF] and X(0) = X * admits a unique global solution X(t, X * ), defined on [0, ∞), admitting non-negative components.

Numerical simulations of the randomly perturbed complex network

Here, we present a selection of numerical simulations of the randomly perturbed complex network [START_REF] Nepstad | Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point[END_REF]. We experiment the impact of the level of deforestation on the global dynamics of the complex network. To this end, we distinguish the number N of deforested ecosystems, N being the cardinal of the {(i 1 , t 1 ), . . . , (i N , t N given by [START_REF] Makarieva | Biotic pump of atmospheric moisture as driver of the hydrological cycle on land[END_REF], and the number K of killed forests after the deforestation process. We can measure the number K of killed forests by enumerating the indices i ∈ {1, . . . , n} such that lim sup t→∞

In particular, we investigate the effect of the positions of the deforested ecosystems on the number K of killed forests. First, we show in Figure 9 the results of four numerical simulations of the randomly perturbed complex network [START_REF] Nepstad | Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point[END_REF]. We consider again the case n = 10 and D = 1000. The values of other parameters are the same as in Table 3. When L = {1, 3, 5}, thus N = 3, we observe that the number of killed forests is also K = 3, which means that the complex network exhibits a sort of resilience. This resilience is also observed