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Introduction

Population imaging has been bringing in terabytes of high-resolution functional brain images, uncovering the neural basis of individual differences [START_REF] Elliott | The UK biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine[END_REF]. While these great volumes of data enable fitting richer statistical models, they also entail massive data storage [START_REF] Poldrack | Toward open sharing of task-based fMRI data: the OpenfMRI project[END_REF][START_REF] Gorgolewski | Openneuro -a free online platform for sharing and analysis of neuroimaging data[END_REF] and challenging high-dimensional data analysis. A popular approach to facilitate data handling is to work with image-derived phenotypes (IDPs), i.e. low-dimensional signals that summarize the information in the images while keeping meaningful representations of the brain [START_REF] Miller | Multimodal population brain imaging in the UK biobank prospective epidemiological study[END_REF].

While brain atlases originated in characterizing the brain's microstructure [START_REF] Brodmann | Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues[END_REF], today they are widely used to study functional connectomes [START_REF] Sporns | The human connectome: a structural description of the human brain[END_REF][START_REF] Varoquaux | Learning and comparing functional connectomes across subjects[END_REF] and for data reduction in functional imaging [START_REF] Thirion | Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets[END_REF][START_REF] Craddock | A whole brain fMRI atlas generated via spatially constrained spectral clustering[END_REF]. For these applications, the choice of brain regions conditions the signal captured in the data analysis. To define regions well suited to brain-imaging endeavors, there is great progress in building atlases from the neuroimaging data itself [START_REF] Eickhoff | Imaging-based parcellations of the human brain[END_REF]). Yet, most functional atlases describe the brain as parcellations, locally-uniform functional units, and thus do not represent well functional gradients [START_REF] Huntenburg | Large-scale gradients in human cortical organization[END_REF].

For functional imaging, brain structures delineated by an atlas should capture the main features of the functional signal, e.g. the functional networks [START_REF] Smith | Network modelling methods for fMRI[END_REF]. In a nutshell, there are two approaches to define well-suited structures. These can strive to select homogenous neural populations, typically via clustering approaches [START_REF] Goutte | On clustering fMRI time series[END_REF][START_REF] Bellec | Multi-level bootstrap analysis of stable clusters in resting-state fMRI[END_REF][START_REF] Craddock | A whole brain fMRI atlas generated via spatially constrained spectral clustering[END_REF][START_REF] Thirion | Which fMRI clustering gives good brain parcellations[END_REF][START_REF] Schaefer | Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI[END_REF]. They can also be defined via continuous modes that map intrinsic brain functional networks [START_REF] Damoiseaux | Consistent resting-state networks across healthy subjects[END_REF][START_REF] Varoquaux | Multi-subject dictionary learning to segment an atlas of brain spontaneous activity[END_REF][START_REF] Harrison | Large-scale probabilistic functional modes from resting state fmri[END_REF]. These functional modes have been shown to capture well functional connectivity, with techniques such as Independent Component Analysis [START_REF] Kiviniemi | Functional segmentation of the brain cortex using high model order group PICA[END_REF][START_REF] Pervaiz | Optimising network modelling methods for fmri[END_REF] or sparse dictionary learning (Mensch et al., 2016b;[START_REF] Dadi | Benchmarking functional connectome-based predictive models for resting-state fMRI[END_REF].

High-resolution atlases can give a fine-grained division of the brain and capture more functionally-specific regions and rich descriptions of brain activity [START_REF] Schaefer | Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI[END_REF]. Yet, there is to date no highly-resolved set of "soft" functional modes available, presumably because increasing the dimensionality raises significant computa-tional and statistical challenges (Mensch et al., 2016a;[START_REF] Pervaiz | Optimising network modelling methods for fmri[END_REF]. In this paper, we address this need with high-order dictionaries of functional modes (DiFuMo) extracted at a large scale both in terms of data size (3 million volumes of total data size 2.4TB) and resolution (up to 1024 modes). For this, we leverage the wealth of openlyavailable functional images [START_REF] Poldrack | Toward open sharing of task-based fMRI data: the OpenfMRI project[END_REF] and efficient dictionary-learning algorithms to fit on large data. This is unlike ICA which is hard to use for a high number of modes [START_REF] Pervaiz | Optimising network modelling methods for fmri[END_REF].

Contributions. We provide Dictionaries of Functional Modes 1 "DiFuMo" that can serve as atlases to extract functional signals, e.g. provide IDPs, with different dimensionalities (64, 128, 256, 512, and 1024). These modes are optimized to represent BOLD data well, over a wide range of experimental conditions. They are more finelyresolved than existing brain decompositions with continuous networks. By providing validated fine functional atlases, our goal is to streamline fMRI analysis with reduced representations, to facilitate large-cohort and inter-studies work. Through thorough benchmarking over classic data analysis tasks, we show that these modes gives IDPs that ground better analysis of functional images. Finally, we provide a meaningful label to each mode, summarizing its anatomical location, to facilitate reporting of results.

Methods: data-driven fine-grain functional modes

We describe in this section the models and methods underlying our definition of brain structures to extract IDPs.

Context: Image Derived Phenotypes

While analysis of brain images has been pioneered at the voxel level [START_REF] Friston | Statistical parametric maps in functional imaging: A general linear approach[END_REF], image-derived phenotypes (IDP) are increasingly used in the context of population imaging. Trading voxel-level signals for IDPs has several motivations. First and foremost, it greatly facilitates the analysis on large cohorts: the data are smaller, easier to share, requiring less disk storage, computer memory, and computing power to analyze. It can also come with statistical benefits. For instance, in standard analysis of task responses, e.g. in mass-univariate brain mapping, the statistical power of hypothesis test at the voxel level is limited by multiple comparisons [START_REF] Friston | Statistical parametric maps in functional imaging: A general linear approach[END_REF], while working at the level of IDPs mitigates this problem [START_REF] Thirion | Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets[END_REF]. For predictive modeling, e.g. in multi-variate decoding [START_REF] Mourão-Miranda | Classifying brain states and determining the discriminating activation patterns: Support vector machine on functional MRI data[END_REF], the high-dimensionality of the signals is a challenge to learning models that generalize well-a phenomenon known as the curse of dimensionality in machine learning [START_REF] Hastie | The elements of statistical learning[END_REF]. Finally, for functional connectomes, working at voxel-level is computationally and statistically intractable 1 https://parietal-inria.github.io/DiFuMo as it entails modeling billions of connections. The standard approach is therefore to average signals on regions or networks [START_REF] Varoquaux | Learning and comparing functional connectomes across subjects[END_REF].

Functional neuroimaging is currently largely dependent on neuroanatomy for mapping function to structure [START_REF] Destrieux | Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature[END_REF][START_REF] Devlin | In praise of tedious anatomy[END_REF]. Some anatomical structures support well a direct mapping to specific functions [START_REF] Brett | The problem of functional localization in the human brain[END_REF][START_REF] Rademacher | Topographical Variation of the Human Primary Cortices: Implications for Neuroimaging, Brain Mapping, and Neurobiology[END_REF], e.g. the primary visual areas. Yet other functional units are not simply defined from anatomical features, for instance in high-level regions such as the default mode, which is defined from functional data [START_REF] Leech | Fractionating the default mode network: Distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control[END_REF][START_REF] Greicius | Functional connectivity in the resting brain: a network analysis of the default mode hypothesis[END_REF].

Methods for data-driven functional atlases

Compared to anatomical atlases, defining regions from the functional signal can lead to a better explanation of behavioral outcomes [START_REF] Dadi | Benchmarking functional connectome-based predictive models for resting-state fMRI[END_REF], as they capture the functional structure of the brain. Clustering of fMRI timeseries has been heavily used to define brain parcellations [START_REF] Goutte | On clustering fMRI time series[END_REF], or for data reduction in predictive models [START_REF] Michel | A supervised clustering approach for fMRIbased inference of brain states[END_REF]. Reference functional brain parcellations have been defined with various clustering algorithms on resting-state fMRI [START_REF] Bellec | Multi-level bootstrap analysis of stable clusters in resting-state fMRI[END_REF][START_REF] Yeo | The organization of the human cerebral cortex estimated by intrinsic functional connectivity[END_REF][START_REF] Craddock | A whole brain fMRI atlas generated via spatially constrained spectral clustering[END_REF]. Another class of approaches seeks modes of brain activity, decomposing the signal as a product of spatial maps and corresponding time-series (Figure 1). The most popular model in neuroimaging is independent component analysis (ICA, [START_REF] Hyvärinen | Independent component analysis: algorithms and applications[END_REF], which optimizes spatial independence between extracted maps. It has been extensively used to define resting-state networks [START_REF] Kiviniemi | Independent component analysis of nondeterministic fmri signal sources[END_REF][START_REF] Beckmann | Investigations into resting-state connectivity using independent component analysis[END_REF][START_REF] Calhoun | A method for making group inferences from fMRI data using independent component analysis[END_REF] and implicitly outlines soft parcellations of the brain at high order [START_REF] Kiviniemi | Functional segmentation of the brain cortex using high model order group PICA[END_REF]Varoquaux et al., 2010b). ICA-defined networks are used to extract the official IDPs of UK BioBank, the largest brain-imaging cohort to date; these have been shown to relate to behavior [START_REF] Miller | Multimodal population brain imaging in the UK biobank prospective epidemiological study[END_REF].

We rely on another decomposition model, dictionary learning [START_REF] Olshausen | Sparse coding with an overcomplete basis set: A strategy employed by V1?[END_REF] spatial maps. While less popular than ICA in neuroimaging, sparsity brings the benefit of segmenting well functional regions on a zeroed-out background [START_REF] Lee | A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion[END_REF][START_REF] Varoquaux | Multi-subject dictionary learning to segment an atlas of brain spontaneous activity[END_REF]. For our purposes, an important aspect of sparse models is that they have computationallyscalable formulations even with high model order and on large datasets (Mensch et al., 2016a[START_REF] Mensch | Stochastic Subsampling for Factorizing Huge Matrices[END_REF]. Functional modes defined from sparse dictionary learning have been used to predict Autism Spectrum Disorder [START_REF] Abraham | Deriving reproducible biomarkers from multi-site resting-state data: An autism-based example[END_REF], or mental processes [START_REF] Mensch | Learning Neural Representations of Human Cognition across Many fMRI Studies[END_REF].

Rest and task fMRI. Most functional brain atlases have been extracted from rest fMRI [START_REF] Bellec | Multi-level bootstrap analysis of stable clusters in resting-state fMRI[END_REF][START_REF] Power | Functional network organization of the human brain[END_REF][START_REF] Craddock | A whole brain fMRI atlas generated via spatially constrained spectral clustering[END_REF][START_REF] Yeo | The organization of the human cerebral cortex estimated by intrinsic functional connectivity[END_REF][START_REF] Miller | Multimodal population brain imaging in the UK biobank prospective epidemiological study[END_REF][START_REF] Schaefer | Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI[END_REF]. Brain networks can also be extracted from task fMRI data [START_REF] Calhoun | Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks[END_REF][START_REF] Lee | A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion[END_REF], and segment a similar intrinsic largescale structure [START_REF] Smith | Correspondence of the brain's functional architecture during activation and rest[END_REF]. In our work, we build functional modes from datasets with different experimental conditions, including task and rest. Our goal is to be as general as possible and capture information from different protocols. Indeed, defining networks on task fMRI can help representing these brain images and predicting the corresponding psychological conditions [START_REF] Duff | Task-driven ica feature generation for accurate and interpretable prediction using fmri[END_REF].

DiFuMo extraction: model and data

We consider BOLD time-series from fMRI volumes, resampled and registered to the MNI template. After temporal concatenation, those form a large matrix X ∈ R p×n , where p is the number of voxels of the images (around 2 • 10 5 ), and n is the number of brain images, of the order of 10 6 in the following. To extract DiFuMos, each brain volume is modeled as the linear combination of k spatial functional networks, assembled in a dictionary matrix D ∈ R p×k . We thus assume that X approximately factorizes as DA, where the matrix A ∈ R k×n holds in every column the loadings α i necessary to reconstruct the brain image x i from the networks D. The dictionary D is to be learned from data. For this, we rely on Stochastic Online Matrix Factorization2 (Mensch et al., 2018, SOMF), that is computationally tractable for matrices large in both directions, as with high-resolution large-scale fMRI data. SOMF solves the constrained 2 reconstruction problem min

D∈R p×k ,A∈R k×n D 0,∀ j∈[k], dj 1 1 X -DA 2 F + λ A 2 F ,
where λ is a regularization parameter that controls the sparsity of the dictionary D, via the 1 and positivity constraints. Encouraging sparsity in spatial maps is key to obtaining well-localized maps that outline few brain regions. The parameter λ is chosen so that the union of all maps approximately covers the whole brain.

Input fMRI data. We build the input data matrix X with BOLD time-series from 25 different task-based fMRI studies and 2 resting state studies, adding up to 2 192 functional MRI recording sessions. We gather data from OpenNeuro [START_REF] Gorgolewski | Openneuro -a free online platform for sharing and analysis of neuroimaging data[END_REF] -Table A4 lists the corresponding studies while Table A5 gives their dataacquisition parameters. We use fMRIprep [START_REF] Esteban | fMRIPrep: a robust preprocessing pipeline for functional MRI[END_REF] for minimal preprocessing: brain extraction giving as a reference to correct for head-motion [START_REF] Jenkinson | Improved optimization for the robust and accurate linear registration and motion correction of brain images[END_REF], and coregistration to anatomy [START_REF] Greve | Accurate and robust brain image alignment using boundary-based registration[END_REF]. All the fMRI images are transformed to MNI template space. We then use MRIQC [START_REF] Esteban | MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites[END_REF] for quality control.

Multi-dimensional DiFuMo atlases. We estimate dictionaries of dimensionality k ∈ {64, 128, 256, 512, 1024}. This is useful as the optimal dimensionality for extracting IDPs often depends on the downstream data analysis task. The obtained functional modes segment well-localized regions, as illustrated in Figure 2.

Extracting signal on functional modes

The functional modes take continuous values (we refer to them as soft) and can have some overlap -though in practice this overlap is small. As a consequence, signal extraction calls for more than averaging on regions. The natural formulation is that the extracted signals (the IDPs) should best approximate the brain image x ∈ R p as a linear combination α ∈ R k of the set of modes in the dictionary D ∈ R p×k . This is solved by linear regression:

α = argmin α∈R k x -Dα 2 2 , i.e. α = D † x, (1) 
where

D † = (D T D) -1 D T ∈ R k×p is the pseudo-inverse of D.
For atlases composed of non-overlapping regions, such as classic brain parcellations-e.g. BASC [START_REF] Bellec | Multi-level bootstrap analysis of stable clusters in resting-state fMRI[END_REF] or normalized cuts [START_REF] Craddock | A whole brain fMRI atlas generated via spatially constrained spectral clustering[END_REF]linear regression simply amounts to averaging the images values in every cluster of D. For overlapping modes as the ones of DiFuMo or the ICA maps used in UKBB [START_REF] Miller | Multimodal population brain imaging in the UK biobank prospective epidemiological study[END_REF], the linear regression formulation caters for the overlap and softness of the regions.

Region names: relation to anatomical structures

Relating IDPs to known brain structures facilitates interpretation and discussion of results. Though the Di-FuMo atlases are defined from functional signal, we choose to reference their regions by their anatomical location, as it is a common and well-accepted terminology in neuroscience. For each resolution, we match the modes with regions in references of brain structure: the Harvard-Oxford atlas [START_REF] Desikan | An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest[END_REF], Destrieux atlas [START_REF] Destrieux | Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature[END_REF], the MIST atlas [START_REF] Urchs | MIST: A multi-resolution parcellation of functional brain networks[END_REF], Johns Hopkins University (JHU) atlas [START_REF] Hua | Tract probability maps in stereotaxic spaces: Analyses of white matter anatomy and tract-specific quantification[END_REF], and the Dierdrichsen cerebellum atlas [START_REF] Diedrichsen | A probabilistic mr atlas of the human cerebellum[END_REF] it most overlaps with. When the overlap was weak, a trained neuroanatomist (AMS) looked up the structure in standard classic anatomy references [START_REF] Henri | The Human Brain: Surface, Three-dimensional Sectional Anatomy with MRI, and Blood Supply[END_REF][START_REF] Schmahmann | Three-dimensional mri atlas of the human cerebellum in proportional stereotaxic space[END_REF][START_REF] Rademacher | Human cerebral cortex: Localization, parcellation, and morphometry with magnetic resonance imaging[END_REF][START_REF] Ono | Atlas of the cerebral sulci[END_REF][START_REF] Catani | Atlas of Human Brain Connections[END_REF]. AppendixF gives more details on the naming of the brain areas.

Brain-image analysis on functional modes

We use the reduced representations (IDPs) introduced above for various functional-imaging analytic tasks: standard mass-univariate analysis of brain responses ( §3.2); decoding of mental processes from brain activity ( §3.3); prediction of phenotypes from functional connectomes ( §3.4); finally, we measure the quality of signal reconstruction after the dimension reduction, with an illustration on metaanalyses ( §3.5).

Benchmarking several functional atlases

To gauge the usefulness of the extracted IDPs, we compare each analysis pipeline across several functional at-lases: DiFuMo and reference atlases are used to compute functional IDPs. We use the same signal-extraction function (1), but vary the spatial components D. As a baseline, we also perform the voxel-level analyses, though it entail significantly larger computational costs.

We consider other functional atlases that are multiresolutions, accessible to download, and volumetric (Table 1): ICA maps with k ∈ {21, 55} components, extracted on large-scale rs-fMRI from UKBB [START_REF] Miller | Multimodal population brain imaging in the UK biobank prospective epidemiological study[END_REF]; bootstrap analysis of stable clusters (BASC) built with hierarchical clustering on rs-fMRI, with various number of clusters [START_REF] Bellec | Multi-level bootstrap analysis of stable clusters in resting-state fMRI[END_REF]; spatiallyconstrained clustering on rs-fMRI, with k ∈ {200, 400} clusters [START_REF] Craddock | A whole brain fMRI atlas generated via spatially constrained spectral clustering[END_REF]; k = 333 cortical areas derived from rs-fMRI using a local gradient approach [START_REF] Gordon | Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations[END_REF]; k ∈ {90, 499} functional regions covering cortical and subcortical gray matter with ICA and Ward clustering [START_REF] Shirer | Decoding subject-driven cognitive states with whole-brain connectivity patterns[END_REF], [START_REF] Altmann | Regional brain hypometabolism is unrelated to regional amyloid plaque burden[END_REF]); and brain parcellations derived with gradient-weighted Markov Random Field, with resolutions similar to ours (Schaefer et al., 2017, k 

Mapping brain response: standard task-fMRI analysis

Standard analysis in task fMRI relates psychological manipulations to brain activity separately for each voxel or region. It models the BOLD signal as a linear combination of experimental conditions-the General Linear Model (GLM, [START_REF] Friston | Statistical parametric maps in functional imaging: A general linear approach[END_REF]. The BOLD signal forms a matrix Y ∈ R n×p , where p is the number of voxels. With data reduction, we use as input the reduced signal 1). The GLM models Y or Y red as Y = Xβ + ε where X ∈ R n×q is the design matrix formed by q temporal regressors of interest or nuisance and ε is noise [START_REF] Friston | Event-related fmri: Characterizing differential responses[END_REF]. In our experiments, we use the Nistats library 3 .

Y red = Y voxel (D † ) ∈ R n×k (Equation
With reduced input Y red , we obtain one signal per region, as β ∈ R q×k . The full β-maps can then be reconstructed by setting β rec = βD ∈ R q×p . We transform the reconstructed β-maps into z-maps z ∈ R q×p using base contrasts, before thresholding them with [START_REF] Benjamini | Controlling the false discovery rate: A practical and powerful approach to multiple testing[END_REF] FDR correction for multiple comparisons. We then compare the z-maps obtained using voxels as input, and z-maps using reduced input and reconstructed βmaps, using the [START_REF] Dice | Measures of the amount of ecologic association between species[END_REF] similarity coefficient. We also perform an intra-subject analysis detailed in AppendixD.

Data. We consider the Rapid-Serial-Visual-Presentation (RSVP) language task of Individual Brain Charting (IBC) (see Pinho et al., 2018, for experimental protocol and preprocessing). We model six experimental conditions: complex meaningful sentences, simple meaningful sentences, jabberwocky, list of words, lists of pseudowords, consonant strings. β-maps are estimated for each subject using a fixed-effect model over 3 out of the 6 subject's sessions. We randomly select 3 sessions 10 times to estimate the variance of the Dice index across sessions. As a baseline, we evaluate the mean and variance of the Dice index across z-maps when varying the sessions used in voxel-level GLM.

Decoding experimental stimuli from brain responses

Decoding predicts psychological conditions from taskrelated z-maps [START_REF] Haynes | Decoding mental states from brain activity in humans[END_REF]. The validity of a decoding model is evaluated on left-out data (following 3 https://nistats.github.io/ [START_REF] Varoquaux | Assessing and tuning brain decoders: cross-validation, caveats, and guidelines[END_REF], e.g. left-out subjects for intersubject decoding [START_REF] Poldrack | Decoding the large-scale structure of brain function by classifying mental states across individuals[END_REF]. We use linear decoding models: ridge regression for continuous target and Support Vector Machine (SVC, [START_REF] Hastie | The elements of statistical learning[END_REF] for classification. For each study, we separate sessions (for intra-subject decoding) or subjects (for inter-subject decoding) into randomly-chosen train and test folds (20 folds with 30% test size), and measure the test accuracy. We compare the performance of predictive models using the voxel-level z-maps or using the data reduced with functional atlases.

Data.

We use 6 open-access task fMRI studies. We perform inter-subject decoding in the emotional and sensitivity to pain experiences from [START_REF] Chang | A sensitive and specific neural signature for pictureinduced negative affect[END_REF], and in three studies from HCP900 [START_REF] Van Essen | The human connectome project: A data acquisition perspective[END_REF]: working memory, gambling [START_REF] Delgado | Tracking the hemodynamic responses to reward and punishment in the striatum[END_REF], and relational processing [START_REF] Smith | Localizing the rostrolateral prefrontal cortex at the individual level[END_REF]. We perform intra-subject decoding using the several sessions of left and right button press responses in IBC (ARCHI protocol, [START_REF] Pinel | Fast reproducible identification and large-scale databasing of individual functional cognitive networks[END_REF]. The unthresholded z-maps used in the decoding pipeline are either obtained from Neurovault [START_REF] Gorgolewski | Neurovault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain[END_REF], or computed with the GLM following §3.2. Details are reported in AppendixB.1.

Predicting phenotype from functional connectomes

Resting-state fMRI can be used to predict phenotypic traits [START_REF] Richiardi | Decoding brain states from fMRI connectivity graphs[END_REF]. For this, each subject is represented by a functional connectivity matrix that captures the correlation between brain signals at various locations. Our functional-connectome prediction pipeline comprises three steps: 1) we extract a reduced representation of the BOLD signal, projecting voxel-level data onto a functional atlas as in §3.2; 2) we compute a functional connectome from the reduced BOLD signals; 3) we use it as input to a linear model. We compute a connectome from activations with the [START_REF] Ledoit | A well-conditioned estimator for largedimensional covariance matrices[END_REF] covariance estimator as [START_REF] Varoquaux | Learning and comparing functional connectomes across subjects[END_REF]; [START_REF] Brier | Partial covariance based functional connectivity computation using ledoit-wolf covariance regularization[END_REF]. We then derive single-subject features from covariance matrices using their tangent space parametrization (Varoquaux et al., 2010a;[START_REF] Barachant | Classification of covariance matrices using a riemannian-based kernel for bci applications[END_REF][START_REF] Pervaiz | Optimising network modelling methods for fmri[END_REF]. Those are used to fit an 2 -penalized logistic regression for classification and a ridge regression for continuous targets.

We assess predictive performance with 20 folds, random splits of subjects in train and test sets, with 25% test size.

Data. We use 7 openly-accessible datasets with diverse phenotypic targets, as summarized in Table A3. We predict diagnostic status for Alzheimer's disease on ADNI [START_REF] Mueller | The alzheimer's disease neuroimaging initiative[END_REF] 

Quality of image reconstruction

The signals extracted on a brain atlas can be seen as a compression, or simplification, of the original signal. Indeed, a full image can be reconstructed from these signals.

We quantify the signal loss incurred by this reduction. For this, we project a brain map x onto an atlas (solving Eq. ( 1)), and compute the best reconstruction of x from the loadings α, namely x = Dα ∈ R p . We compare original and reconstructed images through the R 2 coefficient,

R 2 (x, x) = 1 - x -x 2 2 x -x 2 2 , (2) 
where x ∈ R is the spatial mean of map x. The R 2 coefficient is averaged across all images. Higher R 2 coefficients means that the reduced signals (IDPs) explain more variance of the original images, where R 2 = 1 corresponds to no signal loss. The larger the number of signals used, the easier it is to explain variance; it is therefore interesting to compare this measure across atlases with similar number of components.

Data. We use NeuroVault [START_REF] Gorgolewski | Neurovault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain[END_REF], the largest public database of statistical maps. To avoid circularity, we exclude maps derived from the studies used to extract the DiFuMo atlases, along with maps that fail semiautomated quality inspection (filtering out thresholded or non-statistical maps), resulting in 15,542 maps.

Meta-analysis of contrasts maps. Ideally, the extracted IDPs should allow to compute meta-analytical summaries of brain activity maps. In this setting, a single map, corresponding to a certain cognitive concept, is computed from many z-maps across different studies, associated to conditions that involve this cognitive concept. We compare the summaries obtained at voxel-level, i.e. averaging the maps {x}, with the ones obtained using reconstructed images, i.e. averaging the maps { x} used in Eq. ( 2). We use maps from our curated subset of NeuroVault annotated with terms motor, language and face recognition.

Results: comparing atlases for analyses

We report benchmarking results on the analytic tasks listed in the previous section. 

Brain mapping: standard task-fMRI analysis

Figure 3 reports the results of standard analysis of task fMRI (GLM), comparing analysis at the voxel-level with analyses on signals extracted from functional atlases. Best correspondence is obtained at highest dimensionality, as the regions are finer. Notably, analysis with DiFuMo of dimensionality 1024 is markedly closer to voxel-level analysis than using the largest alternative, the 1000-dimensional Schaefer parcellation. In addition, the Dice index relative to the voxel-level gold standard is comparable to the Dice index between runs of voxel-level GLM estimated across folds. We note that using soft functional modes from only 55 ICA components shows excellent results, comparable to those obtained using the 1000 components Schaefer atlas. This stresses the benefit of continuous functional modes for the analysis of task responses. level gold standard (Figure 3 shows that the maps are also qualitatively similar). Figure A6 shows similar trends while comparing intra-subject explained-variance maps, both qualitatively and quantitatively. Dimension reduction have the additional benefit of alleviating the burden of correcting for multiple comparisons.

Decoding mental state from brain responses

Figure 4 shows the impact on decoding performance of reducing signals with various functional atlases. It reports the performance relative to the median across methods for each of the 6 tasks. These results clearly show the importance of high-dimensional functional modes for decoding. Indeed, the higher the atlas resolution, the better the predictions. Predicting traits from functional connectomes gives the best performance. In addition, as these functional atlases segment sufficiently-fine regions, prediction from the corresponding signals tends to outperform voxellevel prediction. Indeed, applying multivariate models to a larger number of signals with a limited amount of data is more prone to overfitting-data reduction acts here as a welcome regularization. Qualitatively, brain maps containing decoding weights can be reconstructed. With highdimensional atlases, they are interpretable and capture information similar to voxel-level analysis (Figure 5).

Predicting traits from functional connectomes

Figure 6 shows the impact of the choice of functional atlas when predicting phenotypes from functional connectomes. It reports the relative prediction accuracy for 7 different prediction problems (each composed of a dataset and a target phenotype); the lines give the median across the prediction problems. Here, we do not report a voxellevel baseline, as it requires to compute covariance matrices of dimensions around 100, 000 × 100, 000 and is therefore computationally and statistically intractable. Unlike with the previous results, high-resolution atlases do not provide the best performance, likely because the complexity of the statistical models increases with the square of the number of nodes. The best prediction overall is achieved using DiFuMo k = 256, followed by Craddock k = 400 and BASC k = 444 atlases. Different outcomes have different optimal dimensionality, consistently across atlases (Figure A5): k ∼ 150 for age prediction; k ∼ 300 for Autism Spectrum Disorder, PTSD, or IQ prediction; and k ∼ 50 for Alzheimer's Disease and drug use prediction. Reduced with BASC 4.4. Fraction of the original signal captured Figure 7 (left) displays the R 2 scores summarizing the loss of information when data are reduced on an atlas and reconstructed back to full images. Unsurprising, reducing the images with lower-order dimensions (atlases with fewer regions) yields a high loss of information across all methods. DiFuMo k = 1024 captures 70% of the original voxel-level signal. Qualitatively, the benefits of functional modes can be seen by comparing the meta-analytic maps related to motor tasks (Figure 7 right)-Figure A7 shows additional meta-analysis on other topics. The DiFuMo have clear visual benefits over brain discrete parcellations, such as BASC, as they better capture gradients.

Discussion

This paper introduces brain-wide soft functional modes, named DiFuMos and made of a few hundreds to a thousand of brain sub-divisions. They are derived from BOLD time-series across many studies to capture well functional images with a small number of signals. In the context of population imaging, these signals are known as image-derived phenotypes (IDP, Miller et al., 2016) and are crucial to easily scale statistical analysis, building a science of inter-individual differences by relating brain signals to behavioral traits [START_REF] Dubois | Building a science of individual differences from fmri[END_REF]. Reducing the dimensionality of the signals not only come with a 1000× gain in storage, but also with 100× computational speed-up for the analysis (Table A1). Even small-scale studies may need functional nodes, e.g. for computing functional connectomes [START_REF] Zalesky | Whole-brain anatomical networks: Does the choice of nodes matter?[END_REF][START_REF] Varoquaux | Learning and comparing functional connectomes across subjects[END_REF]. There already exist many functional brain atlases; yet DiFuMos have the unique advantage of being both soft and highly resolved. These features are important to capture gradients of functional information.

Grounding better image-derived phenotypes. Signals extracted from a functional atlas should enable good statistical analysis of brain function. We considered quantitative measures for typical neuroimaging analytic scenarii and compared the fitness of extracting signal on Di-FuMo with using existing functional brain atlases. The biggest gains in analysis come from increasing the dimensionality of brain sub-divisions, aside for functional connectome studies where an optimal is found around 200 nodes. Choosing the number of nodes then becomes a tradeoff between complexity of the representation and analytic performance. Importantly, the gains in analytic performance continue way beyond the dimensionality typically used for IDPs (e.g. 55 components from Miller et al., 2016). These results extend prior literature emphasizing the importance of high-dimensional parcellations for fMRI [START_REF] Abou Elseoud | Group-ica model order highlights patterns of functional brain connectivity[END_REF][START_REF] Thirion | Which fMRI clustering gives good brain parcellations[END_REF][START_REF] Arslan | Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex[END_REF][START_REF] Sala-Llonch | Spatial parcellations, spectral filtering, and connectivity measures in fmri: Optimizing for discrimination[END_REF]. To foster good analysis, the second most important aspect of a parcellation appears that it be soft, i.e. continuously-valued. For a given dimensionality, soft modes tend to outperform hard parcellations, whether they are derived with ICA or dictionary learning.

Modes well-adapted to the EPI signal. The functional modes are optimized to fit well a large number of EPI images: 2,192 sessions across 27 studies. As a result, they form a division of the brain well adapted to the signal. For instance, they define regions larger in the white matter and in the CSF than in the grey matter (Figure A1). A large dataset is needed to capture such implicit regularities of the signal with high-dimensional spatial decompositions. Indeed, running the same model on less data extracts modes with less spatial regularity (Figure A2). The combination of high dimensionality and large dataset leads to significant computational demands. The extraction of DiFuMos was possible thanks to fast algorithms for huge matrix factorization [START_REF] Mensch | Stochastic Subsampling for Factorizing Huge Matrices[END_REF], and gathering data representative of a wide variety of scanning protocols via openfMRI [START_REF] Poldrack | Toward open sharing of task-based fMRI data: the OpenfMRI project[END_REF].

We did not limit the DiFuMo modes to gray matter, as measures outside gray matter can be useful in subsequent analysis, for instance to remove the global signal [START_REF] Murphy | Towards a consensus regarding global signal regression for resting state functional connectivity MRI[END_REF]. In addition, distributed modes extracted from full-brain EPI can separate out noise -such as movement artifacts-and help rejecting it in a later analysis [START_REF] Perlbarg | CORSICA: correction of structured noise in fMRI by automatic identification of ICA components[END_REF][START_REF] Griffanti | ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging[END_REF][START_REF] Pruim | Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI[END_REF]. Some DiFuMo modes indeed segment ventricles or The functional modes are sharp and anatomically relevant.

To extract structures defined by brain anatomy or microstructure, atlasing efforts have used anatomical or multimodal imaging [START_REF] Mori | MRI atlas of human white matter[END_REF][START_REF] Desikan | An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest[END_REF][START_REF] Eickhoff | Assignment of functional activations to probabilistic cytoarchitectonic areas revisited[END_REF][START_REF] Glasser | A multi-modal parcellation of human cerebral cortex[END_REF]. The DiFuMo atlases capture a different signal: brain activity. Yet, thanks to the sparsity and non-negativity constraint, they are made of localized modes which often have a natural anatomical interpretation. Consequently, we have labeled the modes with a unique name based on the most relevant anatomical structure, following [START_REF] Urchs | MIST: A multi-resolution parcellation of functional brain networks[END_REF] who also give anatomical labels to functional regions. Indeed, using a common vocabulary of brain structures is important for communication across the neuroimaging community. As visible on Figure 8, the modes are well anchored on anatomical structures such as the putamen. They are however not constrained to contain only one connected region. Smaller dimension DiFuMos indeed capture distributed networks, often comprising bilateral regions. As the dimensionality increases, the networks progressively separate in smaller networks which eventually form single regions. For instance, the left and right putamen appear in the same mode at dimension 64, and are first sub-divided along the anterio-posterior direction, and later the left and right putamen are separated (Figure 8). Dimension choice is data driven: it should best explain the functional signal.

Conclusion

We provide multidimensional atlases of functional modes that can be used to extract functional signals: parietal-inria.github.io/DiFuMo. They give excellent performance for a wide variety of analytic tasks: GLMbased analysis, mental-process decoding or functionalconnectivity analysis. Their availability reduces computational burdens: practitioners can readily perform analyses on a reduced signal, without a costly ROI-definition step. In addition, working on common functional modes across studies facilitates comparison and interpretations of results. To help communication, we have labeled every functional mode to reflect the neuroanatomical structures that it contains. To date, these are the only highdimensional soft functional modes available. As they have been extracted from a variety of data (more than 2,000 sessions across 27 studies, 2.4TB in size) and improve many analytic tasks, the rich descriptions of neural activity that they capture is well suited for a broad set of fMRI studies. A1 reports the computational speed-ups obtained using DiFuMos IDPs instead of voxel in the decoding experiment. Similar speed-ups are observed in the other validation pipelines.
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AppendixB. Details on stimulus decoding

We provide additional details for the decoding pipeline, to complete the description in §3.3. Table A2: Dataset, prediction tasks and dataset size for each of the 6 decoding tasks we consider in §3.3. z-maps from HCP and IBC were computed using the GLM, while NeuroVault directly provided the β-maps for Emotion and Pain. NV: NeuroVault.

AppendixB.1. Input data and pre-processing pipelines

The decoding pipeline classifies input unthresholded statistical maps. Table A2 summarizes the task-based studies used to obtain these statistical maps.

Pre-encoded maps downloaded from Neurovault.org. We download maps related to emotion and pain [START_REF] Chang | A sensitive and specific neural signature for pictureinduced negative affect[END_REF] using Neurovault, querying the collections 503 and 504. We use the "Rating" & "PainLevel" labels as predictive targets. We predict emotion using ridge regression, and pain-level over 3 classes using Linear SVC. The supervised learning pipeline, that includes cross-validation and linear models is implemented with Python based scikitlearn [START_REF] Pedregosa | Scikitlearn: Machine learning in Python[END_REF]. We use nilearn [START_REF] Abraham | Machine learning for neuroimaging with scikit-learn[END_REF] to download maps from Neurovault.org interface [START_REF] Gorgolewski | Neurovault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain[END_REF]. The data acquisition parameters, preprocessing details and estimation of statistical maps are described in [START_REF] Chang | A sensitive and specific neural signature for pictureinduced negative affect[END_REF].

Statistical maps encoded using the GLM. We compute zmaps from HCP900 [START_REF] Van Essen | The human connectome project: A data acquisition perspective[END_REF] and IBC [START_REF] Pinho | Individual Brain Charting, a high-resolution fMRI dataset for cognitive mapping[END_REF] HCP. We download fMRI data from the HCP900 release; those are already preprocessed using HCP pipelines [START_REF] Glasser | The minimal preprocessing pipelines for the human connectome project[END_REF]. We use MNINonLinear-based registered data as input for the GLM, that outputs one zmap per condition per subject. We consider three taskbased studies, namely: for Working Memory, we con-sider z-maps based on condition: "0-back faces", "2-back faces", "0-back places", "2-back places". Similarly, for Gambling [START_REF] Delgado | Tracking the hemodynamic responses to reward and punishment in the striatum[END_REF], we consider z-maps for the conditions "loss" and "reward"; finally, on Relational processing, we consider z-maps for the conditions "relational processing" and "matching". For each study, we use Linear SVC on encoded z-maps to predict psychological conditions. The predictive model therefore perform a 2-class or 4-class classification. The experimental protocol and data acquisition parameters are detailed in [START_REF] Van Essen | The human connectome project: A data acquisition perspective[END_REF].

IBC. We consider the Archi Standard [START_REF] Pinel | Fast reproducible identification and large-scale databasing of individual functional cognitive networks[END_REF] motor task, where subjects are asked to press "left" and "right" button press based on audio and visual instructions. We perform within-subject classification between left and right button press, using z-maps corresponding to each repetition of the instruction. For each of the 13 available subjects, a linear model is trained on the z-maps from all but one session and prediction is performed on the left-out session. Each subject provides 80 encoded z-maps across 4 sessions. We use data preprocessed following the pipelines of [START_REF] Pinho | Individual Brain Charting, a high-resolution fMRI dataset for cognitive mapping[END_REF].

GLM specification. For both datasets, the input zmaps are estimated from the raw fMRI data by fitting a GLM. We use Nistats 4 , a Python package for the statistical analysis of fMRI data. The temporal regressors of the model are specified according to the timing of stimulus presentations convolved with hemodynamic models (spm + derivative). We use polynomial model to capture the low-frequency drifts in the data.

AppendixB.2. Detailed results

To complete the summarizing Figure 4, we report the raw prediction scores separately for each decoding tasks in Figure A3. Prediction accuracy increases with the size of functional atlases. Using 1024 atlases allows to match or pass the performance of voxel-based prediction. In terms of interpretation, the weights are much smoother and blobs are clearly visible in the weight classification maps obtained using DiFuMo. This is illustrated on Figure A4 for face-versus-place decoding in the working-memory HCP study.

AppendixC. Details on biomarker prediction

We consider multiple datasets to account for the diversity of prediction targets in biomarker prediction problem. We report datasets, prediction groups and prediction targets in Table A3.

AppendixC.1. Input data and prediction settings

The connectivity features built from functional atlases predict various clinical outcomes (neuro-degenerative and neuro-psychiatric disorders, drug abuse impact) and psychological traits. Group classification. We use the Alzheimer's Disease Neuroimaging Initiative5 (ADNI) and (ADNIDOD) [START_REF] Mueller | The alzheimer's disease neuroimaging initiative[END_REF] Cognitive Impairment (MCI) group on ADNI. We discriminate between post-traumatic stress disorder (PTSD) and healthy individuals on ADNIDOD. We use data from the Center for Biomedical Research Excellence 6 (COBRE [START_REF] Calhoun | Exploring the psychosis functional connectome: Aberrant intrinsic networks in schizophrenia and bipolar disorder[END_REF] to predict schizophrenia diagnosis of individuals. We classify autism and healthy individuals on Autism Brain Imaging Data Exchange database (ABIDE, Di [START_REF] Martino | The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism[END_REF], Finally, we consider data from Addiction Connectome Preprocessed Initiative 7 (ACPI), where we discriminate Marijuana consumers versus control subjects.

Psychological traits. We first stratify individuals from HCP900 release [START_REF] Van Essen | The wu-minn human connectome project: an overview[END_REF] into groups of high and low IQ, and perform binary classification on these. The details about the stratification into these groups are described in [START_REF] Dadi | Benchmarking functional connectome-based predictive models for resting-state fMRI[END_REF].

Age regression. We use Cambridge Center for Ageing and Neuroscience (CamCAN) dataset [START_REF] Taylor | The cambridge centre for ageing and neuroscience (cam-CAN) data repository: Structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample[END_REF] to study brain ageing. This study comprises wide range of age groups spanning from 24 -86. We use ridge regression to predict age on this dataset.

AppendixC.2. Data acquisition parameters and preprocessing pipelines

The data acquisition details for ADNI, ADNIDOD, COBRE, ABIDE, ACPI and HCP are described in [START_REF] Dadi | Benchmarking functional connectome-based predictive models for resting-state fMRI[END_REF]; those for CamCAN in [START_REF] Taylor | The cambridge centre for ageing and neuroscience (cam-CAN) data repository: Structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample[END_REF]. We pre-process individuals from CamCAN, ADNI, AD-NIDOD and COBRE. All rs-fMRI acquistions are preprocessed with standard steps, described in Dadi et al. (2019). The other considered datasets provide preprocessed data. We report the total number of subjects included in the analysis in Table A3, after excluding for severe scanning artifacts, head movements with amplitude larger than 2 mm and individuals who have more than one clinical diagnosis,

Confound removal and temporal signal pre-processing.

The strategy we use for cleaning temporal signals is the same as in [START_REF] Dadi | Benchmarking functional connectome-based predictive models for resting-state fMRI[END_REF]. We brieftly outline these steps here. We regress out 10 CompCor [START_REF] Behzadi | A component based noise correction method (compcor) for BOLD and perfusion based fMRI[END_REF] components on the whole brain and six motion related signals which are provided in the ADNI, ADNIDOD, COBRE, CamCAN datasets. We do not perform any additionnal preprocessing steps on ABIDE, ACPI and HCP. For all datasets, the signal of each region is normalized, detrended and bandpass-filtered between 0.01 and 0.1Hz. All these steps are done with nilearn [START_REF] Abraham | Machine learning for neuroimaging with scikit-learn[END_REF].

AppendixC.3. Detailed results

Figure 6 summarizes the impact of the brain atlases and ROIs in predicting diverse targets on rs-fMRI images. Figure A5 shows the absolute prediction scores for each target separately. DiFuMo-based predictions are on par with those using UKBB ICA components, [START_REF] Craddock | A whole brain fMRI atlas generated via spatially constrained spectral clustering[END_REF] and BASC atlases.

AppendixD. Intra-subject encoding

In §3.2, we compare group-level z-maps computed at the voxel-level and on reduced data using the DICE similarity coefficient. We also performed an intra-subject, across sessions, standard analysis. We consider the Rapid-Serial-Visual-Presentation (RSVP) language task of Individual Brain Charting (IBC) (see [START_REF] Pinho | Individual Brain Charting, a high-resolution fMRI dataset for cognitive mapping[END_REF] for details on experimental protocol and data pre-processing).

Encoding model. In this setting, we fit a GLM on the several acquisition sessions of each subject considered separately. That is, we compute a single β-map per session and condition, forming a set of maps β ∈ R q×p . β is either computed directly at the voxel-level or using functional atlases, in which case we set β = β red D , with β ∈ R q×k .

We then use a leave-one-session-out cross-validation scheme to compare the observed, single-session, time series Y ∈ R n×p to the reconstructed time-series Ŷ = X β, where β are the average β-maps across the 5 training sessions. We obtain R 2 -maps, where each voxel holds the proportion of variance explained by the model

r i = 1 - y i -ŷi 2 2 y i -ȳi 2 2 ,
where y i is the univariate time-series in R n associated to voxel i and ȳi is its temporal mean. We finally average We compare R 2 -maps obtained using voxel based and functionalatlas based encoding models. Encoding models based on high-order atlases better explain the variance of an unseen session. The comparison is made for a single subject; results are similar across subjets.

R 2 scores across leave-one-session-out folds, and threshold non-positive values. The resulting R 2 -maps provides information on how much encoded β-maps are able to predict univariate voxel activation on new sessions. A value close to 1 means that the voxel activation is well predicted by the encoding model, while a 0 value means that the voxel activation cannot be predicted. We compare the R 2 -maps across the various data-reduction methods for estimating β.

Validation. To measure the difference between R 2 maps R computed from voxels and R 2 maps R computed from DiFuMos, we report correlation coefficients ρ between R and R, and the slope s predicting the activations R from the activations R. This slope indicates a form of signal loss due to using functional atlases. We expect it to be smaller than 1, in part because projection on functional atlases have a noise reduction effect.

Results. Figure A6, using higher order DiFumo atlases leads to a loss of explained variance R 2 of only 6% compared to working directly with voxels, which may imputed to a denoising effect. Qualitatively, the R 2 maps are much comparable. DiFuMo (k = 1024) is therefore suitable for intra-subject encoding tasks; they make these much less costly. Using lower-order atlases yield stronger signal loss.

AppendixE. Extra meta-analysis maps

Figure A7 shows the meta-analysis summary images for two additional cognitive topics: language and face. We compare non-reduced images with reduced images using DiFuMo (k = 1024) and BASC (k = 444). The images reduced with DiFuMos are easier to interpret than the ones reduced with BASC for both topics. Quantitatively, we recall that Figure 7 shows the better performance of Di-FuMos for image compression.

AppendixF. DiFuMos naming details

A measure of overlap with a reference anatomical atlas allows to match each DiFuMo component with a specific anatomical region, e.g. "postcentral gyrus". Where there are more than one component for each anatomical region, the functional atlas region are further characterized by an anatomical spatial descriptions, e.g. "postcentral gyrus inferior". Finally, we append the localisation of the region in the left or right hemisphere, e.g. "postcentral gyrus inferior RH". Some of the nodes from DiFuMo atlases overlaps a fraction of several regions in the anatomical atlas-those are named by a trained neuroanatomist. 

Figure 1 :

 1 Figure 1: Linear decomposition model of fMRI time-series for estimating brain networks: The fMRI time series X are factorized into a product of two matrices, D wich contain spatial modes and A temporal loadings of each mode. p -number of features, nnumber of volumes in fMRI image, k -number of dictionaries.

Figure 2 :

 2 Figure 2: Schema of DiFuMo atlases and their usage in typical fMRI analyses. DiFuMo atlases are extracted from a massive concatenation of BOLD time-series across fMRI studies, using a sparsity inducing matrix factorization algorithm. We compute the DiFuMo atlases at different resolutions, up to 1024 components. We assess our atlases in 4 benchmarks that measure suitability to classic fMRI analyses. Those are performed on reduced and non-reduced data, with different atlas sizes and a comparison between atlases. The easiest way to view and download DiFuMo atlases is via the online interactive visualizations: parietal-inria.github.io/DiFuMo.

  , PTSD on ADNIDOD; Autism Spetrum Disorder on ABIDE (Di Martino et al., 2014) and schizophrenia on COBRE (Calhoun et al., 2012); drug consumption on ACPI; IQ measures on HCP (Van Essen et al., 2013); and age (with a regression model) in normal aging with CamCAN (Taylor et al., 2017).

Figure 3 :

 3 Figure 3: Overlap between GLM maps obtained with functional atlases and voxel-level analysis. Top: The overlap is measured with the Dice similarity coefficient. The black line gives a baseline the mean overlap between voxel-level contrast maps over several random selections of sessions per subject. The figure gives Dice similarity scores between the GLM maps computed with signals extracted on functional atlases and at the voxel-level, after reconstruction of full z-maps and voxel-level thresholding with FDR control. The best similarity is achieved for highest dimensionality, though 1024-dimensional DiFuMo atlas largely dominates 1000dimensional Schaefer parcellation. Each point is the mean and the error bar denotes the standard deviation over contrast maps. Bottom: The activity maps encoded on 1024-dimensional space capture the same information and much smoother to voxel-level.

Figure 4 :Figure 5 :

 45 Figure 4: Impact of the choice of atlas on decoding performance. Each point gives the relative prediction score, over 6 different task-fMRI experiments. The thick lines give the median relative score per atlas. The baseline (black) is the relative score. Highorder resolutions increase prediction accuracy. Using high-order Di-FuMo (k = 1024) and Schaefer parcellations (k = 1000) gives the best performance and, on average, outperforms voxel-level prediction. AppendixB.2 reports absolute prediction scores for each task separately.Voxel-level DiFuMo=1024 Schaefer=1000 L R

Figure 6 :

 6 Figure6: Impact of the choice of atlas for predictions based on functional connectomes. Each data point gives the prediction accuracy relative to the median for one of the 7 phenotypic prediction targets, i.e. each point a dataset. The thick line shows the median over the datasets. While the results are noisy, the optimal dimensionality seems to lie around 300 nodes, and the best-performing atlas is DiFuMo k = 256, followed by Craddock k = 400 and BASC k = 444. FigureA5report absolute results for each prediction problem.

Figure 7 :

 7 Figure 7: Image reconstruction quality. Left: Quantitative comparison on 15542 statistical images. The R 2 loss between the true and recovered images after compression with brain atlases of multiple resolutions. In general, higher-order atlases capture more signal. Right: Metaanalysis summaries for the motor task. High R 2 score (left) correspond to better capturing fine structures of images, as visible on the qualitative images. DiFuMo atlases better capture the gradients and smooth aspects of the original images than hard parcellations, as BASC. 32 64 128 256 512 1024 Dimension 0.1 0.2 0.3 0.4 0.5 0.6

Figure 8 :

 8 Figure 8: Modes around the putamen, for DiFuMo dimensionality 64, 256, and 512. As dimensionality increases: sub-divisions are more refined, modes are split into right and left hemisphere and anterio-posterior direction. Each color represents a single mode. Figure A8 details more this breakdown.
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  DiFuMo atlases capture well the EPI signal

Figure A1 :

 A1 FigureA1: Region volume (cm 3 ) of modes on the brain with 1024 dictionary of DiFuMo. The volume of the modes tends to be larger corresponding to white matter when compared with the cortical gray matter. This justifies the adaptation of DiFuMo atlas to the fMRI signal.

Figure A2 :

 A2 Figure A2: 1024 components trained on two different sizes of the input set of fMRI images. The components trained on the full data have more spatial regularity, while the components trained on 100 volumes have more overlap in some regions of the brain. The additional spatial regularity shows the benefit of large-scale training size in learning a data-driven based functional atlas.

Figure A3 :

 A3 FigureA3: Decoding prediction scores for each brain atlas and target: Each marker denotes the mean performance of using a certain brain atlas; error bars are the standard deviation of the prediction scores for this atlas. Decoding from high-order dictionaries, and especially from DiFuMos, perform similarly or better than decoding from voxels.

4Figure A4 :

 A4 Figure A4: Decoding classification weight maps for the HCP working memory task (0BK face), obtained with voxel-level decoding and decoding over various functional atlases. Using DiFu-Mos yield highly interpretable weight maps; it clearly delineates the fusiform gyrus and lateral occipital cortex.

Figure A5 :

 A5 Figure A5: Connectome prediction scores for each brain atlases and target: Each marker denotes the mean performance of using a certain brain atlas; error bars are the standard deviation of the prediction scores for this atlas. BASC and DiFuMo-based atlases give good prediction scores up to k = 256 ROIs.

Figure A6 :

 A6 Figure A6: Intra-subject univariate prediction of brain response in the language task protocol of the IBC dataset.We compare R 2 -maps obtained using voxel based and functionalatlas based encoding models. Encoding models based on high-order atlases better explain the variance of an unseen session. The comparison is made for a single subject; results are similar across subjets.

Figure A7 :

 A7 FigureA7: Meta-analysis on cognitive topics -language (a.) and face (b.) -from statistical images: We compare images reconstructed with DiFuMo (k = 1024) and BASC (k = 444) with voxel-level averages (right). The topic-related activations are better visualized using DiFuMo (middle) than using BASC (left). DiFuMo results are closer to voxel-level averages, as the signal loss is minimal when projecting on this atlas.

Figure A8 :

 A8 Figure A8: Interpretation of higher-dimensional modes of DiFuMo: The putamen segmentation is refined as dimension of DiFuMos increases. A single mode contain the left and right putamen in lower dimension (a), when higher order atlases holds separate components for them. Larger atlases model the detailed organization within the sub-structures, which may be crucial in discriminative tasks.

structure that Public datasets Reduced representations Standard fMRI data analysis

  . We name each mode from the anatomical

	Time series 7 resting-state studies	Components projection	GLM FACE HOUSE PUNISH REWARD	Encoding brain activity given experimental design Decoding experimental design given brain activity
	Contrast maps 7 task fMRI studies			Predictive modeling from functional connectomes

2. Validation benchmarks Map reconstruction and meta-analysis Dictionary learning on 2192 OpenfMRI records 1a. SOMF atlases: new multi-scale functional atlases

  

				1b. Prior atlases	
		64 components	128 components	BASC 444 ROIs	
				UKBB ICA 55 components
	256 components	512 components	1024 components	Craddock et al. 400 ROIs	etc.

Table 1 :

 1 up to 1000). 4 Functional atlases that we benchmark; they define IDPs for brain-images. analysis

	Name	Dimensionality	# subj. Soft Extraction method		Reference
	BASC	64, 122, 197, 325, 444	43	No Hierarchical clustering		Bellec et al. (2010)
	Craddock	200, 400	41	No Spectral clustering		Craddock et al. (2012)
	FIND a	90, 499	15	Yes ICA; Ward clustering	Shirer et al. (2012); Altmann et al. (2015)
	Gordon	333	120	No Local-gradient approach	Gordon et al. (2014)
	UKBB ICA 21, 55	4100	Yes Selected ICA components b	Miller et al. (2016)
	Schaefer	100, 200, 300, 400, 500,	1489	No Gradient-weighted	Markov	Schaefer et al. (2017)
		600, 800, 1000		Random Field (gwMRF)	
	DiFuMo c	64, 128, 256, 512, 1024 2192 Yes Sparse dictionary learning	This paper

a https://findlab.stanford.edu/functional_ROIs.html b https://www.fmrib.ox.ac.uk/ukbiobank/ c https://parietal-inria.github.io/DiFuMo

  Overall, standard task-fMRI analysis on signals derived from 512 or 1024-dimensional DiFuMo gives results close to the voxel-

	Decoding mental processes from statistical maps
	-8% -6% -4% -2% 0% +2% +4% to median atlas performance Accuracy gain relative	
	-10% Dimension UKBB ICA DiFuMo	32 64 128 256 512 1024 BASC Craddock FIND Gordon Schaefer Voxel-level

  Using DiFuMo k = 1024 or Schaefer k = 1000

	+10%	
	-5% 0% +5% to median atlas performance Accuracy gain relative	
	-10% Dimension UKBB ICA DiFuMo	32 64 128 256 512 1024 BASC Craddock FIND Gordon Schaefer

Table A1 :

 A1 The comparison in computational times while predicting mental state on two set of brain features space: voxel-level ≈ 200, 000 and reduced voxels to DiFuMo 1024. We report the averaged time over 20 cross-validation folds for several task-fMRI conditions. Clearly, there are benefits trading for reduced representations in terms of computation time. On high-resolution brain images like HCP, these are decreased by a factor 200.

	T a s k	# s a m p l e s	R e p r e s e n t a t i o n	T i m e ( s e c )	S p e e d u p
	Emotion	4924	Voxel-level Reduced	77.7 1.7	46×
	Pain	84	Voxel-level Reduced	1.5 0.006	250×
	Working memory	3140	Voxel-level Reduced	874.7 3.7	240×
	Gambling	1574	Voxel-level Reduced	298.7 1.12	270×
	Relational 1572	Voxel-level Reduced	263.1 0.65	405×
	Task-fMRI	Prediction task	# maps
	NV503: Emotion	Rating:1, 2, 3, 4, 5	4924
	NV504: Pain	Sensitivity: 1, 2, 3	84
	HCP: Working mem.	face vs place	3140
	HCP: Gambling	loss vs reward	1574
	HCP: Relational	relational vs matching	1572
	IBC: Archi standard	left vs right hand	1040

  studies, that comprise high-qualiy task-fMRI experiments.

	-20% 0% 20% 40% Predicting mental state: Task-fMRI R 2 score emotion
	Accuracy	40% 45% 50% 55% 60% 65%	pain
	Accuracy	80% 85% 90%	face vs place
	Accuracy	70% 75% 80% 85% 90%	punish vs reward
	Accuracy Accuracy	75% 80% 85% 90% 50% 60% 70% 80% 90% UKBB ICA 32 64 128 256 512 1024 relational vs match left vs right button press (intra-subject decoding) V o x e l s Dimension DiFuMo BASC Craddock FIND Gordon Schaefer Non reduced

Table A3 :

 A3 to predict neuro-degenerative diseases. We discriminate between Alzheimer's Disease (AD) from Mild Resting-state fMRI datasets used in the pipeline described on §3.4 for predicting phenotypic labels from functional connectomes. In CamCAN, age is predicted using ridge regression. The groups from other datasets are predicted using logistic regression. IQ -Fluid intelligence, PTSD -Post Traumatic Stress Disorder, MCI -Mild Cognitive Impairment.

	Rest-fMRI	Prediction groups	Samples
	HCP900	High IQ vs Low IQ 213/230	443 subjects
	ABIDE	Autism vs control 402/464	866 subjects
	ACPI	Marijuana use vs control 126 subjects 62/64
	ADNI	Alzheimers vs MCI 40/96	136 subjects
	ADNIDOD	PTSD vs control 89/78	167 subjects
	COBRE	Schizophrenia vs control 142 subjects 65/77
	CamCAN	Age 24 -86	626 subjects

Available at: https://arthurmensch.github.io/modl/

www.adni-info.org 

fMRI study

Version

Cognitive task # S u b je ct s # S es si o n s # R u n s Conditions [START_REF] Schonberg | Decreasing ventromedial prefrontal cortex activity during sequential risk-taking: An fmri investigation of the balloon analog risk task[END_REF] ds000001 R2.0.4 Balloon Analog 16 3 balloon analog risk Risk-taking [START_REF] Aron | Long-term testretest reliability of functional mri in a classification learning task[END_REF] ds000002 R2.0.5 Classification learning 17 2 deterministic classification mixed event related probe probabilistic classification [START_REF] Xue | The neural substrates of visual perceptual learning of words: Implications for the visual word form area hypothesis[END_REF] ds000003 R2.0.2 Rhyme judgment 13 rhyme judgment [START_REF] Jimura | The neural basis of task switching changes with skill acquisition[END_REF] ds000006 R2.0.1 ds000006 14 2 6 living nonliving decisionwith plain or mirror reversed text [START_REF] Xue | Common neural substrates for inhibition of spoken and manual responses[END_REF] ds000007 R2.