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Abstract

Population imaging markedly increased the size of functional-imaging datasets, shedding new light on the neural basis of
inter-individual differences. Analyzing these large data entails new scalability challenges, computational and statistical.
For this reason, brain images are typically summarized in a few signals, for instance reducing voxel-level measures with
brain atlases or functional modes. A good choice of the corresponding brain networks is important, as most data analyses
start from these reduced signals. We contribute finely-resolved atlases of functional modes, comprising from 64 to 1024
networks. These dictionaries of functional modes (DiFuMo) are trained on millions of fMRI functional brain volumes
of total size 2.4TB, spanned over 27 studies and many research groups. We demonstrate the benefits of extracting
reduced signals on our fine-grain atlases for many classic functional data analysis pipelines: stimuli decoding from 12,334
brain responses, standard GLM analysis of fMRI across sessions and individuals, extraction of resting-state functional-
connectomes biomarkers for 2,500 individuals, data compression and meta-analysis over more than 15,000 statistical
maps. In each of these analysis scenarii, we compare the performance of our functional atlases with that of other popular
references, and to a simple voxel-level analysis. Results highlight the importance of using high-dimensional “soft”
functional atlases, to represent and analyse brain activity while capturing its functional gradients. Analyses on high-
dimensional modes achieve similar statistical performance as at the voxel level, but with much reduced computational
cost and higher interpretability. In addition to making them available, we provide meaningful names for these modes,
based on their anatomical location. It will facilitate reporting of results.
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1. Introduction

Population imaging has been bringing in terabytes of
high-resolution functional brain images, uncovering the
neural basis of individual differences (Elliott et al., 2008).
While these great volumes of data enable fitting richer sta-
tistical models, they also entail massive data storage (Pol-
drack et al., 2013; Gorgolewski et al., 2017) and challeng-
ing high-dimensional data analysis. A popular approach
to facilitate data handling is to work with image-derived
phenotypes (IDPs), i.e. low-dimensional signals that sum-
marize the information in the images while keeping mean-
ingful representations of the brain (Miller et al., 2016).

While brain atlases originated in characterizing the
brain’s microstructure (Brodmann, 1909), today they are
widely used to study functional connectomes (Sporns
et al., 2005; Varoquaux and Craddock, 2013) and for data
reduction in functional imaging (Thirion et al., 2006; Crad-
dock et al., 2012). For these applications, the choice of
brain regions conditions the signal captured in the data
analysis. To define regions well suited to brain-imaging
endeavors, there is great progress in building atlases from
the neuroimaging data itself (Eickhoff et al., 2018). Yet,
most functional atlases describe the brain as parcellations,

locally-uniform functional units, and thus do not represent
well functional gradients (Huntenburg et al., 2018).

For functional imaging, brain structures delineated by
an atlas should capture the main features of the functional
signal, e.g. the functional networks (Smith et al., 2011). In
a nutshell, there are two approaches to define well-suited
structures. These can strive to select homogenous neural
populations, typically via clustering approaches (Goutte
et al., 1999; Bellec et al., 2010; Craddock et al., 2012;
Thirion et al., 2014; Schaefer et al., 2017). They can also
be defined via continuous modes that map intrinsic brain
functional networks (Damoiseaux et al., 2006; Varoquaux
et al., 2011; Harrison et al., 2015). These functional modes
have been shown to capture well functional connectivity,
with techniques such as Independent Component Analysis
(Kiviniemi et al., 2009; Pervaiz et al., 2019) or sparse dic-
tionary learning (Mensch et al., 2016b; Dadi et al., 2019).

High-resolution atlases can give a fine-grained divi-
sion of the brain and capture more functionally-specific
regions and rich descriptions of brain activity (Schaefer
et al., 2017). Yet, there is to date no highly-resolved set
of “soft” functional modes available, presumably because
increasing the dimensionality raises significant computa-



tional and statistical challenges (Mensch et al., 2016a; Per-
vaiz et al., 2019). In this paper, we address this need with
high-order dictionaries of functional modes (DiFuMo) ex-
tracted at a large scale both in terms of data size (3 million
volumes of total data size 2.4TB) and resolution (up to
1024 modes). For this, we leverage the wealth of openly-
available functional images (Poldrack et al., 2013) and ef-
ficient dictionary-learning algorithms to fit on large data.
This is unlike ICA which is hard to use for a high number
of modes (Pervaiz et al., 2019).

Contributions. We provide Dictionaries of Functional
Modes1 “DiFuMo” that can serve as atlases to extract
functional signals, e.g. provide IDPs, with different di-
mensionalities (64, 128, 256, 512, and 1024). These modes
are optimized to represent BOLD data well, over a wide
range of experimental conditions. They are more finely-
resolved than existing brain decompositions with contin-
uous networks. By providing validated fine functional at-
lases, our goal is to streamline fMRI analysis with reduced
representations, to facilitate large-cohort and inter-studies
work. Through thorough benchmarking over classic data
analysis tasks, we show that these modes gives IDPs that
ground better analysis of functional images. Finally, we
provide a meaningful label to each mode, summarizing its
anatomical location, to facilitate reporting of results.

2. Methods: data-driven fine-grain functional
modes

We describe in this section the models and methods un-
derlying our definition of brain structures to extract IDPs.

2.1. Context: Image Derived Phenotypes

While analysis of brain images has been pioneered at
the voxel level (Friston et al., 1995), image-derived pheno-
types (IDP) are increasingly used in the context of pop-
ulation imaging. Trading voxel-level signals for IDPs has
several motivations. First and foremost, it greatly facili-
tates the analysis on large cohorts: the data are smaller,
easier to share, requiring less disk storage, computer mem-
ory, and computing power to analyze. It can also come
with statistical benefits. For instance, in standard analysis
of task responses, e.g. in mass-univariate brain mapping,
the statistical power of hypothesis test at the voxel level
is limited by multiple comparisons (Friston et al., 1995),
while working at the level of IDPs mitigates this prob-
lem (Thirion et al., 2006). For predictive modeling, e.g. in
multi-variate decoding (Mourão-Miranda et al., 2005), the
high-dimensionality of the signals is a challenge to learning
models that generalize well—a phenomenon known as the
curse of dimensionality in machine learning (Hastie et al.,
2009). Finally, for functional connectomes, working at
voxel-level is computationally and statistically intractable

1https://parietal-inria.github.io/DiFuMo

as it entails modeling billions of connections. The stan-
dard approach is therefore to average signals on regions or
networks (Varoquaux and Craddock, 2013).

Functional neuroimaging is currently largely dependent
on neuroanatomy for mapping function to structure (De-
strieux et al., 2010; Devlin and Poldrack, 2007). Some
anatomical structures support well a direct mapping to
specific functions (Brett et al., 2002; Rademacher et al.,
1993), e.g. the primary visual areas. Yet other functional
units are not simply defined from anatomical features, for
instance in high-level regions such as the default mode,
which is defined from functional data (Leech et al., 2011;
Greicius et al., 2003).

2.2. Methods for data-driven functional atlases

Compared to anatomical atlases, defining regions from
the functional signal can lead to a better explanation of
behavioral outcomes (Dadi et al., 2019), as they capture
the functional structure of the brain. Clustering of fMRI
timeseries has been heavily used to define brain parcella-
tions (Goutte et al., 1999), or for data reduction in pre-
dictive models (Michel et al., 2012). Reference functional
brain parcellations have been defined with various cluster-
ing algorithms on resting-state fMRI (Bellec et al., 2010;
Yeo et al., 2011; Craddock et al., 2012). Another class
of approaches seeks modes of brain activity, decomposing
the signal as a product of spatial maps and correspond-
ing time-series (Figure 1). The most popular model in
neuroimaging is independent component analysis (ICA,
Hyvärinen and Oja, 2000), which optimizes spatial inde-
pendence between extracted maps. It has been extensively
used to define resting-state networks (Kiviniemi et al.,
2003; Beckmann et al., 2005; Calhoun et al., 2001) and
implicitly outlines soft parcellations of the brain at high
order (Kiviniemi et al., 2009; Varoquaux et al., 2010b).
ICA-defined networks are used to extract the official IDPs
of UK BioBank, the largest brain-imaging cohort to date;
these have been shown to relate to behavior (Miller et al.,
2016).

We rely on another decomposition model, dictionary
learning (Olshausen and Field, 1997), that enforces spar-
sity and non-negativity instead of independence on the
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Figure 1: Linear decomposition model of fMRI time-series
for estimating brain networks: The fMRI time series X are fac-
torized into a product of two matrices, D wich contain spatial modes
and A temporal loadings of each mode. p - number of features, n -
number of volumes in fMRI image, k - number of dictionaries.
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spatial maps. While less popular than ICA in neuroimag-
ing, sparsity brings the benefit of segmenting well func-
tional regions on a zeroed-out background (Lee et al., 2010;
Varoquaux et al., 2011). For our purposes, an important
aspect of sparse models is that they have computationally-
scalable formulations even with high model order and
on large datasets (Mensch et al., 2016a, 2018). Func-
tional modes defined from sparse dictionary learning have
been used to predict Autism Spectrum Disorder (Abraham
et al., 2017), or mental processes (Mensch et al., 2017).

Rest and task fMRI. Most functional brain atlases have
been extracted from rest fMRI (Bellec et al., 2010; Power
et al., 2011; Craddock et al., 2012; Yeo et al., 2011; Miller
et al., 2016; Schaefer et al., 2017). Brain networks can also
be extracted from task fMRI data (Calhoun et al., 2008;
Lee et al., 2010), and segment a similar intrinsic large-
scale structure (Smith et al., 2009). In our work, we build
functional modes from datasets with different experimen-
tal conditions, including task and rest. Our goal is to be
as general as possible and capture information from differ-
ent protocols. Indeed, defining networks on task fMRI can
help representing these brain images and predicting the
corresponding psychological conditions (Duff et al., 2012).

2.3. DiFuMo extraction: model and data

We consider BOLD time-series from fMRI volumes, re-
sampled and registered to the MNI template. After tempo-
ral concatenation, those form a large matrix X ∈ Rp×n,
where p is the number of voxels of the images (around
2 · 105), and n is the number of brain images, of the or-
der of 106 in the following. To extract DiFuMos, each
brain volume is modeled as the linear combination of k spa-
tial functional networks, assembled in a dictionary matrix
D ∈ Rp×k. We thus assume that X approximately fac-
torizes as DA, where the matrix A ∈ Rk×n holds in every
column the loadings αi necessary to reconstruct the brain
image xi from the networks D. The dictionary D is to
be learned from data. For this, we rely on Stochastic On-
line Matrix Factorization2 (Mensch et al., 2018, SOMF),
that is computationally tractable for matrices large in both
directions, as with high-resolution large-scale fMRI data.
SOMF solves the constrained `2 reconstruction problem

min
D∈Rp×k,A∈Rk×n

D>0,∀ j∈[k], ‖dj‖161

‖X −DA‖2F + λ‖A‖2F ,

where λ is a regularization parameter that controls the
sparsity of the dictionary D, via the `1 and positivity con-
straints. Encouraging sparsity in spatial maps is key to
obtaining well-localized maps that outline few brain re-
gions. The parameter λ is chosen so that the union of all
maps approximately covers the whole brain.

2Available at: https://arthurmensch.github.io/modl/

Input fMRI data. We build the input data matrix X
with BOLD time-series from 25 different task-based fMRI
studies and 2 resting state studies, adding up to 2 192
functional MRI recording sessions. We gather data from
OpenNeuro (Gorgolewski et al., 2017) –Table A4 lists the
corresponding studies while Table A5 gives their data-
acquisition parameters.

We use fMRIprep (Esteban et al., 2019) for minimal
preprocessing: brain extraction giving as a reference to
correct for head-motion (Jenkinson et al., 2002), and co-
registration to anatomy (Greve and Fischl, 2009). All the
fMRI images are transformed to MNI template space. We
then use MRIQC (Esteban et al., 2017) for quality control.

Multi-dimensional DiFuMo atlases. We estimate dictio-
naries of dimensionality k ∈ {64, 128, 256, 512, 1024}. This
is useful as the optimal dimensionality for extracting IDPs
often depends on the downstream data analysis task. The
obtained functional modes segment well-localized regions,
as illustrated in Figure 2.

2.4. Extracting signal on functional modes

The functional modes take continuous values (we re-
fer to them as soft) and can have some overlap –though
in practice this overlap is small. As a consequence, sig-
nal extraction calls for more than averaging on regions.
The natural formulation is that the extracted signals (the
IDPs) should best approximate the brain image x ∈ Rp

as a linear combination α ∈ Rk of the set of modes in the
dictionary D ∈ Rp×k. This is solved by linear regression:

α = argmin
α∈Rk

‖x−Dα‖22, i.e. α = D†x, (1)

where D† = (DTD)−1DT ∈ Rk×p is the pseudo-inverse
of D. For atlases composed of non-overlapping regions,
such as classic brain parcellations—e.g. BASC (Bellec
et al., 2010) or normalized cuts (Craddock et al., 2012)—
linear regression simply amounts to averaging the images
values in every cluster of D. For overlapping modes as the
ones of DiFuMo or the ICA maps used in UKBB (Miller
et al., 2016), the linear regression formulation caters for
the overlap and softness of the regions.

2.5. Region names: relation to anatomical structures

Relating IDPs to known brain structures facilitates in-
terpretation and discussion of results. Though the Di-
FuMo atlases are defined from functional signal, we choose
to reference their regions by their anatomical location, as
it is a common and well-accepted terminology in neuro-
science. For each resolution, we match the modes with re-
gions in references of brain structure: the Harvard-Oxford
atlas (Desikan et al., 2006), Destrieux atlas (Destrieux
et al., 2010), the MIST atlas (Urchs et al., 2019), Johns
Hopkins University (JHU) atlas (Hua et al., 2008), and the
Dierdrichsen cerebellum atlas (Diedrichsen et al., 2009).
We name each mode from the anatomical structure that
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Figure 2: Schema of DiFuMo atlases and their usage in typical fMRI analyses. DiFuMo atlases are extracted from a massive
concatenation of BOLD time-series across fMRI studies, using a sparsity inducing matrix factorization algorithm. We compute the DiFuMo
atlases at different resolutions, up to 1024 components. We assess our atlases in 4 benchmarks that measure suitability to classic fMRI
analyses. Those are performed on reduced and non-reduced data, with different atlas sizes and a comparison between atlases. The easiest
way to view and download DiFuMo atlases is via the online interactive visualizations: parietal-inria.github.io/DiFuMo.

it most overlaps with. When the overlap was weak, a
trained neuroanatomist (AMS) looked up the structure in
standard classic anatomy references (Henri, 1999; Schmah-
mann et al., 1999; Rademacher et al., 1992; Ono et al.,
1990; Catani and de Schotten, 2012). AppendixF gives
more details on the naming of the brain areas.

3. Brain-image analysis on functional modes

We use the reduced representations (IDPs) introduced
above for various functional-imaging analytic tasks: stan-
dard mass-univariate analysis of brain responses (§3.2); de-
coding of mental processes from brain activity (§3.3); pre-
diction of phenotypes from functional connectomes (§3.4);
finally, we measure the quality of signal reconstruction af-
ter the dimension reduction, with an illustration on meta-
analyses (§3.5).

3.1. Benchmarking several functional atlases

To gauge the usefulness of the extracted IDPs, we com-
pare each analysis pipeline across several functional at-

lases: DiFuMo and reference atlases are used to compute
functional IDPs. We use the same signal-extraction func-
tion (1), but vary the spatial componentsD. As a baseline,
we also perform the voxel-level analyses, though it entail
significantly larger computational costs.

We consider other functional atlases that are multi-
resolutions, accessible to download, and volumetric (Ta-
ble 1): ICA maps with k ∈ {21, 55} components,
extracted on large-scale rs-fMRI from UKBB (Miller
et al., 2016); bootstrap analysis of stable clusters (BASC)
built with hierarchical clustering on rs-fMRI, with var-
ious number of clusters (Bellec et al., 2010); spatially-
constrained clustering on rs-fMRI, with k ∈ {200, 400}
clusters (Craddock et al., 2012); k = 333 cortical ar-
eas derived from rs-fMRI using a local gradient ap-
proach (Gordon et al., 2014); k ∈ {90, 499} functional
regions covering cortical and subcortical gray matter
with ICA and Ward clustering (Shirer et al. (2012),
Altmann et al. (2015)); and brain parcellations derived
with gradient-weighted Markov Random Field, with reso-
lutions similar to ours (Schaefer et al., 2017, k up to 1000).
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Name Dimensionality # subj. Soft Extraction method Reference

BASC 64, 122, 197, 325, 444 43 No Hierarchical clustering Bellec et al. (2010)
Craddock 200, 400 41 No Spectral clustering Craddock et al. (2012)
FINDa 90, 499 15 Yes ICA; Ward clustering Shirer et al. (2012); Altmann et al. (2015)
Gordon 333 120 No Local-gradient approach Gordon et al. (2014)

UKBB ICA 21, 55 4100 Yes Selected ICA componentsb Miller et al. (2016)
Schaefer 100, 200, 300, 400, 500,

600, 800, 1000
1489 No Gradient-weighted Markov

Random Field (gwMRF)
Schaefer et al. (2017)

DiFuMoc 64, 128, 256, 512, 1024 2192 Yes Sparse dictionary learning This paper

a https://findlab.stanford.edu/functional_ROIs.html b https://www.fmrib.ox.ac.uk/ukbiobank/
c https://parietal-inria.github.io/DiFuMo

Table 1: Functional atlases that we benchmark; they define IDPs for brain-images. analysis

3.2. Mapping brain response: standard task-fMRI analysis

Standard analysis in task fMRI relates psychological
manipulations to brain activity separately for each voxel
or region. It models the BOLD signal as a linear com-
bination of experimental conditions—the General Linear
Model (GLM, Friston et al., 1995). The BOLD signal
forms a matrix Y ∈ Rn×p, where p is the number of voxels.
With data reduction, we use as input the reduced signal
Yred = Yvoxel(D

†)> ∈ Rn×k (Equation 1). The GLM
models Y or Yred as Y = Xβ+ ε where X ∈ Rn×q is the
design matrix formed by q temporal regressors of interest
or nuisance and ε is noise (Friston et al., 1998). In our
experiments, we use the Nistats library3.

With reduced input Yred, we obtain one signal per re-
gion, as β ∈ Rq×k. The full β-maps can then be recon-
structed by setting βrec = βD> ∈ Rq×p. We transform
the reconstructed β-maps into z-maps z ∈ Rq×p using base
contrasts, before thresholding them with Benjamini and
Hochberg (1995) FDR correction for multiple comparisons.
We then compare the z-maps obtained using voxels as in-
put, and z-maps using reduced input and reconstructed β-
maps, using the Dice (1945) similarity coefficient. We also
perform an intra-subject analysis detailed in AppendixD.

Data. We consider the Rapid-Serial-Visual-Presentation
(RSVP) language task of Individual Brain Charting (IBC)
(see Pinho et al., 2018, for experimental protocol and pre-
processing). We model six experimental conditions: com-
plex meaningful sentences, simple meaningful sentences,
jabberwocky, list of words, lists of pseudowords, conso-
nant strings. β-maps are estimated for each subject using
a fixed-effect model over 3 out of the 6 subject’s sessions.
We randomly select 3 sessions 10 times to estimate the
variance of the Dice index across sessions. As a baseline,
we evaluate the mean and variance of the Dice index across
z-maps when varying the sessions used in voxel-level GLM.

3.3. Decoding experimental stimuli from brain responses

Decoding predicts psychological conditions from task-
related z-maps (Haynes and Rees, 2006). The validity of
a decoding model is evaluated on left-out data (following

3https://nistats.github.io/

Varoquaux et al., 2017), e.g. left-out subjects for inter-
subject decoding (Poldrack et al., 2009). We use linear
decoding models: ridge regression for continuous target
and Support Vector Machine (SVC, Hastie et al., 2009)
for classification. For each study, we separate sessions (for
intra-subject decoding) or subjects (for inter-subject de-
coding) into randomly-chosen train and test folds (20 folds
with 30% test size), and measure the test accuracy. We
compare the performance of predictive models using the
voxel-level z-maps or using the data reduced with func-
tional atlases.

Data. We use 6 open-access task fMRI studies. We per-
form inter-subject decoding in the emotional and sensi-
tivity to pain experiences from Chang et al. (2015), and
in three studies from HCP900 (Van Essen et al., 2012):
working memory, gambling (Delgado et al., 2000), and
relational processing (Smith et al., 2007). We perform
intra-subject decoding using the several sessions of left
and right button press responses in IBC (ARCHI proto-
col, Pinel et al., 2007). The unthresholded z-maps used in
the decoding pipeline are either obtained from Neurovault
(Gorgolewski et al., 2015), or computed with the GLM
following §3.2. Details are reported in AppendixB.1.

3.4. Predicting phenotype from functional connectomes

Resting-state fMRI can be used to predict phenotypic
traits (Richiardi et al., 2010). For this, each subject is rep-
resented by a functional connectivity matrix that captures
the correlation between brain signals at various locations.
Our functional-connectome prediction pipeline comprises
three steps: 1) we extract a reduced representation of the
BOLD signal, projecting voxel-level data onto a functional
atlas as in §3.2; 2) we compute a functional connectome
from the reduced BOLD signals; 3) we use it as input to a
linear model. We compute a connectome from activations
with the Ledoit and Wolf (2004) covariance estimator as
Varoquaux and Craddock (2013); Brier et al. (2015). We
then derive single-subject features from covariance matri-
ces using their tangent space parametrization (Varoquaux
et al., 2010a; Barachant et al., 2013; Pervaiz et al., 2019).
Those are used to fit an `2-penalized logistic regression for
classification and a ridge regression for continuous targets.
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We assess predictive performance with 20 folds, random
splits of subjects in train and test sets, with 25% test size.

Data. We use 7 openly-accessible datasets with diverse
phenotypic targets, as summarized in Table A3. We pre-
dict diagnostic status for Alzheimer’s disease on ADNI
(Mueller et al., 2005), PTSD on ADNIDOD; Autism
Spetrum Disorder on ABIDE (Di Martino et al., 2014)
and schizophrenia on COBRE (Calhoun et al., 2012);
drug consumption on ACPI; IQ measures on HCP
(Van Essen et al., 2013); and age (with a regression model)
in normal aging with CamCAN (Taylor et al., 2017).

3.5. Quality of image reconstruction

The signals extracted on a brain atlas can be seen as
a compression, or simplification, of the original signal. In-
deed, a full image can be reconstructed from these signals.
We quantify the signal loss incurred by this reduction. For
this, we project a brain map x onto an atlas (solving Eq.
(1)), and compute the best reconstruction of x from the
loadings α, namely x̂ = Dα ∈ Rp. We compare original
and reconstructed images through the R2 coefficient,

R2(x, x̂) = 1− ‖x− x̂‖
2
2

‖x− x̄‖22
, (2)

where x̄ ∈ R is the spatial mean of map x. The R2 coeffi-
cient is averaged across all images. Higher R2 coefficients
means that the reduced signals (IDPs) explain more vari-
ance of the original images, where R2 = 1 corresponds to
no signal loss. The larger the number of signals used, the
easier it is to explain variance; it is therefore interesting to
compare this measure across atlases with similar number
of components.

Data. We use NeuroVault (Gorgolewski et al., 2015), the
largest public database of statistical maps. To avoid circu-
larity, we exclude maps derived from the studies used to ex-
tract the DiFuMo atlases, along with maps that fail semi-
automated quality inspection (filtering out thresholded or
non-statistical maps), resulting in 15,542 maps.

Meta-analysis of contrasts maps. Ideally, the extracted
IDPs should allow to compute meta-analytical summaries
of brain activity maps. In this setting, a single map, corre-
sponding to a certain cognitive concept, is computed from
many z-maps across different studies, associated to con-
ditions that involve this cognitive concept. We compare
the summaries obtained at voxel-level, i.e. averaging the
maps {x}, with the ones obtained using reconstructed im-
ages, i.e. averaging the maps {x̃} used in Eq. (2). We use
maps from our curated subset of NeuroVault annotated
with terms motor, language and face recognition.

4. Results: comparing atlases for analyses

We report benchmarking results on the analytic tasks
listed in the previous section.
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Figure 3: Overlap between GLM maps obtained with func-
tional atlases and voxel-level analysis. Top: The overlap is
measured with the Dice similarity coefficient. The black line gives
a baseline the mean overlap between voxel-level contrast maps over
several random selections of sessions per subject. The figure gives
Dice similarity scores between the GLM maps computed with sig-
nals extracted on functional atlases and at the voxel-level, after re-
construction of full z-maps and voxel-level thresholding with FDR
control. The best similarity is achieved for highest dimensional-
ity, though 1024-dimensional DiFuMo atlas largely dominates 1000-
dimensional Schaefer parcellation. Each point is the mean and the
error bar denotes the standard deviation over contrast maps. Bot-
tom: The activity maps encoded on 1024-dimensional space capture
the same information and much smoother to voxel-level.

4.1. Brain mapping: standard task-fMRI analysis

Figure 3 reports the results of standard analysis of task
fMRI (GLM), comparing analysis at the voxel-level with
analyses on signals extracted from functional atlases. Best
correspondence is obtained at highest dimensionality, as
the regions are finer. Notably, analysis with DiFuMo of
dimensionality 1024 is markedly closer to voxel-level analy-
sis than using the largest alternative, the 1000-dimensional
Schaefer parcellation. In addition, the Dice index relative
to the voxel-level gold standard is comparable to the Dice
index between runs of voxel-level GLM estimated across
folds. We note that using soft functional modes from only
55 ICA components shows excellent results, comparable
to those obtained using the 1000 components Schaefer
atlas. This stresses the benefit of continuous functional
modes for the analysis of task responses. Overall, stan-
dard task-fMRI analysis on signals derived from 512 or
1024-dimensional DiFuMo gives results close to the voxel-
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Figure 4: Impact of the choice of atlas on decoding perfor-
mance. Each point gives the relative prediction score, over 6 differ-
ent task-fMRI experiments. The thick lines give the median relative
score per atlas. The baseline (black) is the relative score. High-
order resolutions increase prediction accuracy. Using high-order Di-
FuMo (k = 1024) and Schaefer parcellations (k = 1000) gives the
best performance and, on average, outperforms voxel-level predic-
tion. AppendixB.2 reports absolute prediction scores for each task
separately.

Voxel-level DiFuMo=1024 Schaefer=1000
L R

z=-10
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Figure 5: Decoding maps of the working memory task, face
versus rest, showed for Voxel-level analysis, DiFuMo, and Schaefer.
The maps are highly interpretable with high-dimensional soft modes
(DiFuMo 1024) compared to voxel-level analysis. Brain areas impor-
tant in the visual working memory task –fusiform gyrus and lateral
occipital cortex– are clearly visible. Figure A4 gives a full view of
decoding weights across atlases and resolutions.

level gold standard (Figure 3 shows that the maps are
also qualitatively similar). Figure A6 shows similar trends
while comparing intra-subject explained-variance maps,
both qualitatively and quantitatively. Dimension reduc-
tion have the additional benefit of alleviating the burden
of correcting for multiple comparisons.

4.2. Decoding mental state from brain responses

Figure 4 shows the impact on decoding performance of
reducing signals with various functional atlases. It reports
the performance relative to the median across methods for
each of the 6 tasks. These results clearly show the impor-
tance of high-dimensional functional modes for decoding.
Indeed, the higher the atlas resolution, the better the pre-
dictions. Using DiFuMo k = 1024 or Schaefer k = 1000
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Predicting traits from functional connectomes

Figure 6: Impact of the choice of atlas for predictions based
on functional connectomes. Each data point gives the prediction
accuracy relative to the median for one of the 7 phenotypic prediction
targets, i.e. each point a dataset. The thick line shows the median
over the datasets. While the results are noisy, the optimal dimension-
ality seems to lie around 300 nodes, and the best-performing atlas is
DiFuMo k = 256, followed by Craddock k = 400 and BASC k = 444.
Figure A5 report absolute results for each prediction problem.

gives the best performance. In addition, as these func-
tional atlases segment sufficiently-fine regions, prediction
from the corresponding signals tends to outperform voxel-
level prediction. Indeed, applying multivariate models to
a larger number of signals with a limited amount of data
is more prone to overfitting—data reduction acts here as
a welcome regularization. Qualitatively, brain maps con-
taining decoding weights can be reconstructed. With high-
dimensional atlases, they are interpretable and capture in-
formation similar to voxel-level analysis (Figure 5).

4.3. Predicting traits from functional connectomes

Figure 6 shows the impact of the choice of functional
atlas when predicting phenotypes from functional connec-
tomes. It reports the relative prediction accuracy for 7
different prediction problems (each composed of a dataset
and a target phenotype); the lines give the median across
the prediction problems. Here, we do not report a voxel-
level baseline, as it requires to compute covariance matri-
ces of dimensions around 100, 000× 100, 000 and is there-
fore computationally and statistically intractable. Unlike
with the previous results, high-resolution atlases do not
provide the best performance, likely because the complex-
ity of the statistical models increases with the square of the
number of nodes. The best prediction overall is achieved
using DiFuMo k = 256, followed by Craddock k = 400
and BASC k = 444 atlases. Different outcomes have dif-
ferent optimal dimensionality, consistently across atlases
(Figure A5): k ∼ 150 for age prediction; k ∼ 300 for
Autism Spectrum Disorder, PTSD, or IQ prediction; and
k ∼ 50 for Alzheimer’s Disease and drug use prediction.
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Figure 7: Image reconstruction qual-
ity. Left: Quantitative comparison on
15542 statistical images. The R2 loss be-
tween the true and recovered images af-
ter compression with brain atlases of mul-
tiple resolutions. In general, higher-order
atlases capture more signal. Right: Meta-
analysis summaries for the motor task.
High R2 score (left) correspond to better
capturing fine structures of images, as vis-
ible on the qualitative images. DiFuMo
atlases better capture the gradients and
smooth aspects of the original images than
hard parcellations, as BASC. 32 64 128 256 512 1024Dimension
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4.4. Fraction of the original signal captured

Figure 7 (left) displays the R2 scores summarizing the
loss of information when data are reduced on an atlas and
reconstructed back to full images. Unsurprising, reduc-
ing the images with lower-order dimensions (atlases with
fewer regions) yields a high loss of information across all
methods. DiFuMo k = 1024 captures 70% of the original
voxel-level signal. Qualitatively, the benefits of functional
modes can be seen by comparing the meta-analytic maps
related to motor tasks (Figure 7 right)—Figure A7 shows
additional meta-analysis on other topics. The DiFuMo
have clear visual benefits over brain discrete parcellations,
such as BASC, as they better capture gradients.

5. Discussion

This paper introduces brain-wide soft functional
modes, named DiFuMos and made of a few hundreds to a
thousand of brain sub-divisions. They are derived from
BOLD time-series across many studies to capture well
functional images with a small number of signals. In the
context of population imaging, these signals are known as
image-derived phenotypes (IDP, Miller et al., 2016) and
are crucial to easily scale statistical analysis, building a sci-
ence of inter-individual differences by relating brain signals
to behavioral traits (Dubois and Adolphs, 2016). Reduc-
ing the dimensionality of the signals not only come with a
1000× gain in storage, but also with 100× computational
speed-up for the analysis (Table A1). Even small-scale
studies may need functional nodes, e.g. for computing
functional connectomes (Zalesky et al., 2010; Varoquaux
and Craddock, 2013). There already exist many functional
brain atlases; yet DiFuMos have the unique advantage of
being both soft and highly resolved. These features are
important to capture gradients of functional information.

Grounding better image-derived phenotypes. Signals ex-
tracted from a functional atlas should enable good sta-
tistical analysis of brain function. We considered quan-
titative measures for typical neuroimaging analytic sce-
narii and compared the fitness of extracting signal on Di-
FuMo with using existing functional brain atlases. The

biggest gains in analysis come from increasing the dimen-
sionality of brain sub-divisions, aside for functional con-
nectome studies where an optimal is found around 200
nodes. Choosing the number of nodes then becomes a
tradeoff between complexity of the representation and an-
alytic performance. Importantly, the gains in analytic per-
formance continue way beyond the dimensionality typi-
cally used for IDPs (e.g. 55 components from Miller et al.,
2016). These results extend prior literature emphasizing
the importance of high-dimensional parcellations for fMRI
(Abou Elseoud et al., 2011; Thirion et al., 2014; Arslan
et al., 2017; Sala-Llonch et al., 2019). To foster good anal-
ysis, the second most important aspect of a parcellation
appears that it be soft, i.e. continuously-valued. For a
given dimensionality, soft modes tend to outperform hard
parcellations, whether they are derived with ICA or dic-
tionary learning.

Modes well-adapted to the EPI signal. The functional
modes are optimized to fit well a large number of EPI
images: 2,192 sessions across 27 studies. As a result, they
form a division of the brain well adapted to the signal.
For instance, they define regions larger in the white mat-
ter and in the CSF than in the grey matter (Figure A1).
A large dataset is needed to capture such implicit regular-
ities of the signal with high-dimensional spatial decompo-
sitions. Indeed, running the same model on less data ex-
tracts modes with less spatial regularity (Figure A2). The
combination of high dimensionality and large dataset leads
to significant computational demands. The extraction of
DiFuMos was possible thanks to fast algorithms for huge
matrix factorization (Mensch et al., 2018), and gathering
data representative of a wide variety of scanning protocols
via openfMRI (Poldrack et al., 2013).

We did not limit the DiFuMo modes to gray matter, as
measures outside gray matter can be useful in subsequent
analysis, for instance to remove the global signal (Murphy
and Fox, 2017). In addition, distributed modes extracted
from full-brain EPI can separate out noise –such as move-
ment artifacts– and help rejecting it in a later analysis
(Perlbarg et al., 2007; Griffanti et al., 2014; Pruim et al.,
2015). Some DiFuMo modes indeed segment ventricles or
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Figure 8: Modes around the puta-
men, for DiFuMo dimensionality 64,
256, and 512. As dimensionality in-
creases: sub-divisions are more refined,
modes are split into right and left hemi-
sphere and anterio-posterior direction.
Each color represents a single mode.
Figure A8 details more this breakdown.
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interfaces. Depending on the application, practitioners can
choose to restrict signal extraction to a grey-matter mask.

The functional modes are sharp and anatomically relevant.
To extract structures defined by brain anatomy or mi-
crostructure, atlasing efforts have used anatomical or mul-
timodal imaging (Mori et al., 2005; Desikan et al., 2006;
Eickhoff et al., 2007; Glasser et al., 2016). The DiFuMo
atlases capture a different signal: brain activity. Yet,
thanks to the sparsity and non-negativity constraint, they
are made of localized modes which often have a natural
anatomical interpretation. Consequently, we have labeled
the modes with a unique name based on the most relevant
anatomical structure, following Urchs et al. (2019) who
also give anatomical labels to functional regions. Indeed,
using a common vocabulary of brain structures is impor-
tant for communication across the neuroimaging commu-
nity. As visible on Figure 8, the modes are well anchored
on anatomical structures such as the putamen. They are
however not constrained to contain only one connected
region. Smaller dimension DiFuMos indeed capture dis-
tributed networks, often comprising bilateral regions. As
the dimensionality increases, the networks progressively
separate in smaller networks which eventually form single
regions. For instance, the left and right putamen appear in
the same mode at dimension 64, and are first sub-divided
along the anterio-posterior direction, and later the left and
right putamen are separated (Figure 8). Dimension choice
is data driven: it should best explain the functional signal.

6. Conclusion

We provide multidimensional atlases of functional
modes that can be used to extract functional signals:
parietal-inria.github.io/DiFuMo. They give excellent per-
formance for a wide variety of analytic tasks: GLM-
based analysis, mental-process decoding or functional-
connectivity analysis. Their availability reduces compu-
tational burdens: practitioners can readily perform anal-
yses on a reduced signal, without a costly ROI-definition
step. In addition, working on common functional modes
across studies facilitates comparison and interpretations
of results. To help communication, we have labeled ev-
ery functional mode to reflect the neuroanatomical struc-
tures that it contains. To date, these are the only high-
dimensional soft functional modes available. As they have
been extracted from a variety of data (more than 2,000 ses-
sions across 27 studies, 2.4TB in size) and improve many

analytic tasks, the rich descriptions of neural activity that
they capture is well suited for a broad set of fMRI studies.
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J., Nissilä, J., Tervonen, O., Timonen, M., Kiviniemi, V., 2011.
Group-ica model order highlights patterns of functional brain con-
nectivity. Frontiers in Systems Neuroscience 5, 37.

Abraham, A., Milham, M.P., Di Martino, A., Craddock, R.C., Sama-
ras, D., Thirion, B., Varoquaux, G., 2017. Deriving reproducible
biomarkers from multi-site resting-state data: An autism-based
example. NeuroImage 147, 736–745.

Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller,
A., Kossaifi, J., Gramfort, A., Thirion, B., Varoquaux, G., 2014.
Machine learning for neuroimaging with scikit-learn. Frontiers in
neuroinformatics 8.

Altmann, A., Ng, B., Landau, S.M., Jagust, W.J., Greicius, M.D.,
2015. Regional brain hypometabolism is unrelated to regional
amyloid plaque burden. Brain 138, 3734–3746.

Alvarez, R., Poldrack, R., 2011. Cross-language repetition priming.
Stanford Digital Repository .

Aron, A.R., Behrens, T.E., Smith, S., Frank, M.J., Poldrack, R.A.,
2007. Triangulating a cognitive control network using diffusion-
weighted magnetic resonance imaging (mri) and functional mri.
Journal of Neuroscience 27, 3743–3752.

Aron, A.R., Gluck, M.A., Poldrack, R.A., 2006. Long-term test-
retest reliability of functional mri in a classification learning task.
NeuroImage 29, 1000 – 1006.

Arslan, S., Ktena, S.I., Makropoulos, A., Robinson, E.C., Rueckert,
D., Parisot, S., 2017. Human brain mapping: A systematic com-
parison of parcellation methods for the human cerebral cortex.
NeuroImage .

Barachant, A., Bonnet, S., Congedo, M., Jutten, C., 2013. Classifi-
cation of covariance matrices using a riemannian-based kernel for
bci applications. Neurocomputing 112, 172 – 178.

Beckmann, C., DeLuca, M., Devlin, J., Smith, S., 2005. Investiga-
tions into resting-state connectivity using independent component
analysis. Philos Trans R Soc Lond B 360, 1001.

Behzadi, Y., Restom, K., Liau, J., Liu, T., 2007. A component based
noise correction method (compcor) for BOLD and perfusion based
fMRI. Neuroimage 37, 90.

Bellec, P., Rosa-Neto, P., Lyttelton, O., Benali, H., Evans, A., 2010.
Multi-level bootstrap analysis of stable clusters in resting-state
fMRI. NeuroImage 51, 1126.

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery
rate: A practical and powerful approach to multiple testing. J R
STAT SOC B (Methodological) 57, 289.

Brett, M., Johnsrude, I.S., Owen, A.M., 2002. The problem of func-
tional localization in the human brain. Nat Rev Neurosci 3, 243.

Brier, M.R., Mitra, A., McCarthy, J.E., Ances, B.M., Snyder, A.Z.,
2015. Partial covariance based functional connectivity computa-
tion using ledoit–wolf covariance regularization. NeuroImage 121,
29.

Brodmann, K., 1909. Vergleichende Lokalisationslehre der Grosshirn-
rinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues.
Barth.

Calhoun, V., Sui, J., Kiehl, K., Turner, J., Allen, E., Pearlson, G.,
2012. Exploring the psychosis functional connectome: Aberrant
intrinsic networks in schizophrenia and bipolar disorder. Frontiers
in Psychiatry .

Calhoun, V.D., Adali, T., Pearlson, G.D., Pekar, J.J., 2001. A
method for making group inferences from fMRI data using in-
dependent component analysis. Hum Brain Mapp 14, 140.

Calhoun, V.D., Kiehl, K.A., Pearlson, G.D., 2008. Modulation of
temporally coherent brain networks estimated using ICA at rest
and during cognitive tasks. Hum Brain Map 29, 828.

Catani, M., de Schotten, M.T., 2012. Atlas of Human Brain Con-
nections. Oxford University Press.

Cera, N., Tartaro, A., Sensi, S.L., 2014. Modafinil alters intrinsic
functional connectivity of the right posterior insula: A pharmaco-
logical resting state fmri study. PLOS ONE 9, 1–12.

Chang, L.J., Gianaros, P.J., Manuck, S.B., Krishnan, A., Wager,
T.D., 2015. A sensitive and specific neural signature for picture-
induced negative affect. PLOS Biology 13, 1–28.

Craddock, R.C., James, G.A., Holtzheimer, P.E., Hu, X.P., Mayberg,
H.S., 2012. A whole brain fMRI atlas generated via spatially
constrained spectral clustering. Hum brain map 33, 1914.

Dadi, K., Rahim, M., Abraham, A., Chyzhyk, D., Milham, M.,
Thirion, B., Varoquaux, G., 2019. Benchmarking functional
connectome-based predictive models for resting-state fMRI. Neu-
roImage 192, 115 – 134.

Damoiseaux, J.S., Rombouts, S.A.R.B., Barkhof, F., Scheltens, P.,
Stam, C.J., Smith, S.M., Beckmann, C.F., 2006. Consistent
resting-state networks across healthy subjects. Proc Natl Acad
Sci 103, 13848.

Delgado, M.R., Nystrom, L.E., Fissell, C., Noll, D.C., Fiez, J.A.,
2000. Tracking the hemodynamic responses to reward and punish-
ment in the striatum. Journal of Neurophysiology 84, 3072–3077.

Desikan, R., S., Ségonne, F., Fischl, B., Quinn, B., T., Dickerson,
B., C., Blacker, D., Buckner, R., L., Dale, A., M., Maguire, R.,
P., Hyman, B., T., Albert, M., S., Killiany, R., J., 2006. An auto-
mated labeling system for subdividing the human cerebral cortex
on MRI scans into gyral based regions of interest. Neuroimage 31,
968.

Destrieux, C., Fischl, B., Dale, A., Halgren, E., 2010. Automatic par-
cellation of human cortical gyri and sulci using standard anatom-
ical nomenclature. NeuroImage 53, 1 – 15.

Devlin, J.T., Poldrack, R.A., 2007. In praise of tedious anatomy.
NeuroImage 37, 1033 – 1041.

Di Martino, A., Yan, C.G., Li, Q., Denio, E., Castellanos, F.X.,
Alaerts, K., Anderson, J.S., Assaf, M., Bookheimer, S.Y.,
Dapretto, M., et al., 2014. The autism brain imaging data ex-
change: towards a large-scale evaluation of the intrinsic brain ar-
chitecture in autism. Molecular psychiatry 19, 659–667.

Dice, L.R., 1945. Measures of the amount of ecologic association
between species. Ecology 26, 297–302.

Diedrichsen, J., Balsters, J.H., Flavell, J., Cussans, E., Ramnani,
N., 2009. A probabilistic mr atlas of the human cerebellum. Neu-
roImage 46, 39 – 46.

Dubois, J., Adolphs, R., 2016. Building a science of individual dif-
ferences from fmri. Trends in cognitive sciences 20, 425–443.

Duff, E.P., Trachtenberg, A.J., Mackay, C.E., Howard, M.A., Wilson,
F., Smith, S.M., Woolrich, M.W., 2012. Task-driven ica feature
generation for accurate and interpretable prediction using fmri.
NeuroImage 60, 189 – 203.

Duncan, K.J., Pattamadilok, C., Knierim, I., Devlin, J.T., 2009.
Consistency and variability in functional localisers. Neuroimage
46, 1018.

Eickhoff, S.B., Paus, T., Caspers, S., Grosbras, M.H., Evans, A.C.,
Zilles, K., Amunts, K., 2007. Assignment of functional activations
to probabilistic cytoarchitectonic areas revisited. Neuroimage 36,
511.

Eickhoff, S.B., Yeo, B.T.T., Genon, S., 2018. Imaging-based parcel-
lations of the human brain. Nat Rev Neurosci 19, 672.

Elliott, P., Peakman, T.C., et al., 2008. The UK biobank sample
handling and storage protocol for the collection, processing and
archiving of human blood and urine. Int J Epidemiology 37, 234.

Esteban, O., Birman, D., Schaer, M., Koyejo, O.O., Poldrack, R.A.,
Gorgolewski, K.J., 2017. MRIQC: Advancing the automatic pre-
diction of image quality in MRI from unseen sites. PLOS ONE
12, 1.

10



Esteban, O., Markiewicz, C.J., Blair, R.W., Moodie, C.A., Isik, A.I.,
Erramuzpe, A., Kent, J.D., Goncalves, M., DuPre, E., Snyder,
M., et al., 2019. fMRIPrep: a robust preprocessing pipeline for
functional MRI. Nature methods 16, 111.

Foerde, K., Knowlton, B.J., Poldrack, R.A., 2006. Modulation of
competing memory systems by distraction. Proc Natl Acad Sci
103, 11778.

Friston, K., Fletcher, P., Josephs, O., Holmes, A., Rugg, M., Turner,
R., 1998. Event-related fmri: Characterizing differential re-
sponses. NeuroImage 7, 30 – 40.

Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.B., Frith, C.,
Frackowiak, R., 1995. Statistical parametric maps in functional
imaging: A general linear approach. Hum Brain Mapp , 189.

Gabitov, E., Manor, D., Karni, A., 2015. Patterns of modulation in
the activity and connectivity of motor cortex during the repeated
generation of movement sequences. J Cog Neurosci 27, 736.

Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Har-
well, J., Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C.F.,
Jenkinson, M., Smith, S.M., Essen, D.C.V., 2016. A multi-modal
parcellation of human cerebral cortex. Nature 536, 171–178.

Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fis-
chl, B., Andersson, J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni,
J.R., Essen, D.C.V., Jenkinson, M., 2013. The minimal prepro-
cessing pipelines for the human connectome project. NeuroImage
80, 105 – 124.

Gordon, E.M., Laumann, T.O., Adeyemo, B., Huckins, J.F., Kelley,
W.M., Petersen, S.E., 2014. Generation and Evaluation of a Cor-
tical Area Parcellation from Resting-State Correlations. Cerebral
Cortex 26, 288–303.

Gorgolewski, K., Esteban, O., Gunnar, S., Brain, W., Poldrack, R.,
2017. Openneuro – a free online platform for sharing and analysis
of neuroimaging data., in: 23rd Annual Meeting of the Organiza-
tion for Human Brain Mapping, p. 1677.

Gorgolewski, K.J., Storkey, A., Bastin, M.E., Whittle, I.R., Ward-
law, J.M., Pernet, C.R., 2013. A test-retest fmri dataset for motor,
language and spatial attention functions. GigaScience 2, 2047–
217X–2–6.

Gorgolewski, K.J., Varoquaux, G., Rivera, G., Schwarz, Y., Ghosh,
S.S., Maumet, C., Sochat, V.V., Nichols, T.E., Poldrack, R.A.,
Poline, J.B., Yarkoni, T., Margulies, D.S., 2015. Neurovault.org:
a web-based repository for collecting and sharing unthresholded
statistical maps of the human brain. Frontiers in Neuroinformatics
9, 8.

Goutte, C., Toft, P., Rostrup, E., Nielsen, F.A., Hansen, L.K., 1999.
On clustering fMRI time series. NeuroImage 9, 298–310.

Greicius, M., Krasnow, B., Reiss, A., Menon, V., 2003. Functional
connectivity in the resting brain: a network analysis of the default
mode hypothesis. Proc Natl Acad Sci 100, 253.

Greve, D.N., Fischl, B., 2009. Accurate and robust brain image
alignment using boundary-based registration. NeuroImage 48, 63.

Griffanti, L., Salimi-Khorshidi, G., Beckmann, C.F., Auerbach, E.J.,
Douaud, G., Sexton, C.E., Zsoldos, E., Ebmeier, K.P., Filippini,
N., Mackay, C.E., et al., 2014. ICA-based artefact removal and
accelerated fMRI acquisition for improved resting state network
imaging. Neuroimage 95, 232–247.

Hanson, S.J., Matsuka, T., Haxby, J.V., 2004. Combinatorial codes
in ventral temporal lobe for object recognition: Haxby (2001)
revisited: is there a “face” area? NeuroImage 23, 156 – 166.

Harrison, S.J., Woolrich, M.W., Robinson, E.C., Glasser, M.F.,
Beckmann, C.F., Jenkinson, M., Smith, S.M., 2015. Large-scale
probabilistic functional modes from resting state fmri. NeuroIm-
age 109, 217 – 231.

Hastie, T., Tibshirani, R., Friedman, J., 2009. The elements of sta-
tistical learning. Springer.

Haxby, J.V., Gobbini, I.M., Furey, M.L., et al., 2001. Distributed
and overlapping representations of faces and objects in ventral
temporal cortex. Science 293, 2425.

Haynes, J.D., Rees, G., 2006. Decoding mental states from brain
activity in humans. Nat. Rev. Neurosci. 7, 523.

Henri, M.D., 1999. The Human Brain: Surface, Three-dimensional
Sectional Anatomy with MRI, and Blood Supply. Springer.

Hua, K., Zhang, J., Wakana, S., Jiang, H., Li, X., Reich, D.S., Cal-
abresi, P.A., Pekar, J.J., van Zijl, P.C., Mori, S., 2008. Tract
probability maps in stereotaxic spaces: Analyses of white matter
anatomy and tract-specific quantification. NeuroImage 39, 336.

Huntenburg, J.M., Bazin, P.L., Margulies, D.S., 2018. Large-scale
gradients in human cortical organization. Trends in cognitive sci-
ences 22, 21.

Hyvärinen, A., Oja, E., 2000. Independent component analysis: al-
gorithms and applications. Neural Networks 13, 411.

Iannilli, E., Gasparotti, R., Hummel, T., Zoni, S., Benedetti, C.,
Fedrighi, C., Tang, C.Y., Van Thriel, C., Lucchini, R.G., 2016.
Effects of manganese exposure on olfactory functions in teenagers:
A pilot study. PLOS ONE 11, 1–9.

Jenkinson, M., Bannister, P., Brady, M., Smith, S., 2002. Improved
optimization for the robust and accurate linear registration and
motion correction of brain images. NeuroImage 17, 825 – 841.

Jimura, K., Cazalis, F., Stover, E.R.S., Poldrack, R.A., 2014. The
neural basis of task switching changes with skill acquisition. Fron-
tiers in Human Neuroscience 8, 339.

Kelly, A.C., Uddin, L.Q., Biswal, B.B., Castellanos, F.X., Milham,
M.P., 2008. Competition between functional brain networks me-
diates behavioral variability. NeuroImage 39, 527 – 537.

Kim, J., Wang, J., Wedell, D.H., Shinkareva, S.V., 2016. Identi-
fying core affect in individuals from fmri responses to dynamic
naturalistic audiovisual stimuli. PLOS ONE 11, 1–21.

Kiviniemi, V., Kantola, J., Jauhiainen, J., Hyvärinen, A., Tervonen,
O., 2003. Independent component analysis of nondeterministic
fmri signal sources. Neuroimage 19, 253.

Kiviniemi, V., Starck, T., Remes, J., Long, X., Nikkinen, J., Haapea,
M., Veijola, J., et al., 2009. Functional segmentation of the brain
cortex using high model order group PICA. Hum Brain Map 30,
3865.

Ledoit, O., Wolf, M., 2004. A well-conditioned estimator for large-
dimensional covariance matrices. J. Multivar. Anal. 88, 365.

Lee, K., Tak, S., Ye, J.C., 2010. A data-driven sparse GLM for
fMRI analysis using sparse dictionary learning with MDL crite-
rion. IEEE Trans Med Imag 30, 1076.

Leech, R., Kamourieh, S., Beckmann, C.F., Sharp, D.J., 2011. Frac-
tionating the default mode network: Distinct contributions of the
ventral and dorsal posterior cingulate cortex to cognitive control.
J Neurosci 31, 3217.

Lepping, R.J., Atchley, R.A., Chrysikou, E., Martin, L.E., Clair,
A.A., Ingram, R.E., Simmons, W.K., Savage, C.R., 2016a. Neural
processing of emotional musical and nonmusical stimuli in depres-
sion. PLOS ONE 11, 1–23.

Lepping, R.J., Atchley, R.A., Savage, C.R., 2016b. Development
of a validated emotionally provocative musical stimulus set for
research. Psychology of Music 44, 1012–1028.

Mennes, M., Kelly, C., Colcombe, S., Castellanos, F.X., Milham,
M.P., 2013. The extrinsic and intrinsic functional architectures of
the human brain are not equivalent. Cerebral Cortex 23, 223–229.

Mensch, A., Mairal, J., Bzdok, D., Thirion, B., Varoquaux, G.,
2017. Learning Neural Representations of Human Cognition
across Many fMRI Studies, in: Neural Information Processing
Systems, p. 5885.

Mensch, A., Mairal, J., Thirion, B., Varoquaux, G., 2016a. Dictio-
nary Learning for Massive Matrix Factorization, in: International
Conference on Machine Learning, pp. 1737–1746.

11



Mensch, A., Mairal, J., Thirion, B., Varoquaux, G., 2018. Stochastic
Subsampling for Factorizing Huge Matrices. IEEE Trans Sig Proc
66, 113.

Mensch, A., Varoquaux, G., Thirion, B., 2016b. Compressed Online
Dictionary Learning for Fast Resting-State fMRI Decomposition,
in: Proc. ISBI, p. 1282.

Michel, V., Gramfort, A., Varoquaux, G., Eger, E., Keribin, C.,
Thirion, B., 2012. A supervised clustering approach for fMRI-
based inference of brain states. Pattern Recognition 45, 2041.

Miller, K.L., Alfaro-Almagro, F., et al., 2016. Multimodal popula-
tion brain imaging in the UK biobank prospective epidemiological
study. Nature Neuroscience .

Moran, J.M., Jolly, E., Mitchell, J.P., 2012. Social-cognitive deficits
in normal aging. J Neurosci 32, 5553.

Mori, S., Wakana, S., Van Zijl, P.C., Nagae-Poetscher, L., 2005. MRI
atlas of human white matter. Elsevier.

Mourão-Miranda, J., Bokde, A.L., Born, C., Hampel, H., Stetter, M.,
2005. Classifying brain states and determining the discriminating
activation patterns: Support vector machine on functional MRI
data. NeuroImage 28, 980.

Mueller, S., Weiner, M., Thal, L., Petersen, R., Jack, C., Jagust, W.,
Trojanowski, J.Q., Toga, A.W., Beckett, L., 2005. The alzheimer’s
disease neuroimaging initiative. Neuroimaging Clinics of North
America 15, 869.

Murphy, K., Fox, M.D., 2017. Towards a consensus regarding global
signal regression for resting state functional connectivity MRI.
Neuroimage 154, 169–173.

Olshausen, B., Field, D., 1997. Sparse coding with an overcomplete
basis set: A strategy employed by V1? Vision research 37, 3311.

Ono, M., Kubik, S., Abernathey, C.D., 1990. Atlas of the cerebral
sulci. G. Thieme Verlag.

O’Toole, A.J., Jiang, F., Abdi, H., Haxby, J.V., 2005. Partially dis-
tributed representations of objects and faces in ventral temporal
cortex. J Cog Neurosci 17, 580.

Pedregosa, F., Varoquaux, G., Gramfort, A., et al., 2011. Scikit-
learn: Machine learning in Python. Journal of Machine Learning
Research 12, 2825.

Perlbarg, V., Bellec, P., Anton, J.L., Pelegrini-Issac, M., Doyon,
J., Benali, H., 2007. CORSICA: correction of structured noise
in fMRI by automatic identification of ICA components. Magn
Reson Imaging 25, 35.

Pervaiz, U., Vidaurre, D., Woolrich, M.W., Smith, S.M., 2019. Op-
timising network modelling methods for fmri. bioRxiv .

Pinel, P., Thirion, B., Meriaux, S., Jobert, A., Serres, J., Le Bihan,
D., Poline, J., Dehaene, S., 2007. Fast reproducible identifica-
tion and large-scale databasing of individual functional cognitive
networks. BMC neuroscience 8, 91.

Pinho, A.L., Amadon, A., Ruest, T., Fabre, M., Dohmatob, E.,
Denghien, I., Ginisty, C., Becuwe-Desmidt, S., Roger, S., Laurier,
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Figure A1: Region volume (cm3) of modes on the brain with
1024 dictionary of DiFuMo. The volume of the modes tends to
be larger corresponding to white matter when compared with the
cortical gray matter. This justifies the adaptation of DiFuMo atlas
to the fMRI signal.
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Figure A2: 1024 components trained on two different sizes of the
input set of fMRI images. The components trained on the full data
have more spatial regularity, while the components trained on 100
volumes have more overlap in some regions of the brain. The addi-
tional spatial regularity shows the benefit of large-scale training size
in learning a data-driven based functional atlas.

AppendixA. Performance of DiFuMos

As discussed in §5, we report how DiFuMOs compo-
nents are well adapted to the fMRI EPI signal in Fig-
ure A1. Figure A2 qualitatively compare components ob-
tained training on the whole data corpus and training on
a fraction of it. Better component regularity is obtained
with more data. Finally, Table A1 reports the computa-
tional speed-ups obtained using DiFuMos IDPs instead of
voxel in the decoding experiment. Similar speed-ups are
observed in the other validation pipelines.

AppendixB. Details on stimulus decoding

We provide additional details for the decoding pipeline,
to complete the description in §3.3.
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Emotion 4924
Voxel-level 77.7

46×
Reduced 1.7

Pain 84
Voxel-level 1.5

250×
Reduced 0.006

Working 3140
Voxel-level 874.7

240×
memory Reduced 3.7

Gambling 1574
Voxel-level 298.7

270×
Reduced 1.12

Relational 1572
Voxel-level 263.1

405×
Reduced 0.65

Table A1: The comparison in computational times while predict-
ing mental state on two set of brain features space: voxel-level
≈ 200, 000 and reduced voxels to DiFuMo 1024. We report the aver-
aged time over 20 cross-validation folds for several task-fMRI condi-
tions. Clearly, there are benefits trading for reduced representations
in terms of computation time. On high-resolution brain images like
HCP, these are decreased by a factor 200.

Task-fMRI Prediction task # maps

NV503: Emotion Rating:1, 2, 3, 4, 5 4924

NV504: Pain Sensitivity: 1, 2, 3 84

HCP: Working mem. face vs place 3140

HCP: Gambling loss vs reward 1574

HCP: Relational relational vs matching 1572

IBC: Archi standard left vs right hand 1040

Table A2: Dataset, prediction tasks and dataset size for each
of the 6 decoding tasks we consider in §3.3. z-maps from HCP
and IBC were computed using the GLM, while NeuroVault directly
provided the β-maps for Emotion and Pain. NV: NeuroVault.

AppendixB.1. Input data and pre-processing pipelines

The decoding pipeline classifies input unthresholded
statistical maps. Table A2 summarizes the task-based
studies used to obtain these statistical maps.

Pre-encoded maps downloaded from Neurovault.org. We
download maps related to emotion and pain (Chang et al.,
2015) using Neurovault, querying the collections 503 and
504. We use the “Rating” & “PainLevel” labels as predic-
tive targets. We predict emotion using ridge regression,
and pain-level over 3 classes using Linear SVC. The super-
vised learning pipeline, that includes cross-validation and
linear models is implemented with Python based scikit-
learn (Pedregosa et al., 2011). We use nilearn (Abraham
et al., 2014) to download maps from Neurovault.org in-
terface (Gorgolewski et al., 2015). The data acquisition
parameters, preprocessing details and estimation of statis-
tical maps are described in Chang et al. (2015).

Statistical maps encoded using the GLM. We compute z-
maps from HCP900 (Van Essen et al., 2012) and IBC
(Pinho et al., 2018) studies, that comprise high-qualiy
task-fMRI experiments.
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Figure A3: Decoding prediction scores for each brain atlas
and target: Each marker denotes the mean performance of using
a certain brain atlas; error bars are the standard deviation of the
prediction scores for this atlas. Decoding from high-order dictionar-
ies, and especially from DiFuMos, perform similarly or better than
decoding from voxels.

HCP. We download fMRI data from the HCP900 re-
lease; those are already preprocessed using HCP pipelines
(Glasser et al., 2013). We use MNINonLinear-based reg-
istered data as input for the GLM, that outputs one z-
map per condition per subject. We consider three task-
based studies, namely: for Working Memory, we con-
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sider z-maps based on condition: “0-back faces”, “2-back
faces”, “0-back places”, “2-back places”. Similarly, for
Gambling (Delgado et al., 2000), we consider z-maps for
the conditions “loss” and “reward”; finally, on Relational
processing, we consider z-maps for the conditions “rela-
tional processing” and “matching”. For each study, we
use Linear SVC on encoded z-maps to predict psycholog-
ical conditions. The predictive model therefore perform a
2-class or 4-class classification. The experimental protocol
and data acquisition parameters are detailed in Van Essen
et al. (2012).

IBC. We consider the Archi Standard (Pinel et al.,
2007) motor task, where subjects are asked to press “left”
and “right” button press based on audio and visual in-
structions. We perform within-subject classification be-
tween left and right button press, using z-maps corre-
sponding to each repetition of the instruction. For each
of the 13 available subjects, a linear model is trained on
the z-maps from all but one session and prediction is per-
formed on the left-out session. Each subject provides 80
encoded z-maps across 4 sessions. We use data prepro-
cessed following the pipelines of Pinho et al. (2018).

GLM specification. For both datasets, the input z-
maps are estimated from the raw fMRI data by fitting a
GLM. We use Nistats4, a Python package for the statistical
analysis of fMRI data. The temporal regressors of the
model are specified according to the timing of stimulus
presentations convolved with hemodynamic models (spm
+ derivative). We use polynomial model to capture the
low-frequency drifts in the data.

AppendixB.2. Detailed results

To complete the summarizing Figure 4, we report the
raw prediction scores separately for each decoding tasks in
Figure A3. Prediction accuracy increases with the size of
functional atlases. Using 1024 atlases allows to match or
pass the performance of voxel-based prediction. In terms
of interpretation, the weights are much smoother and blobs
are clearly visible in the weight classification maps ob-
tained using DiFuMo. This is illustrated on Figure A4 for
face-versus-place decoding in the working-memory HCP
study.

AppendixC. Details on biomarker prediction

We consider multiple datasets to account for the diver-
sity of prediction targets in biomarker prediction problem.
We report datasets, prediction groups and prediction tar-
gets in Table A3.

AppendixC.1. Input data and prediction settings

The connectivity features built from functional atlases
predict various clinical outcomes (neuro-degenerative and
neuro-psychiatric disorders, drug abuse impact) and psy-
chological traits.

4https://nistats.github.io/
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Figure A4: Decoding classification weight maps for the HCP
working memory task (0BK face), obtained with voxel-level
decoding and decoding over various functional atlases. Using DiFu-
Mos yield highly interpretable weight maps; it clearly delineates the
fusiform gyrus and lateral occipital cortex.

Group classification. We use the Alzheimer’s Disease Neu-
roimaging Initiative5 (ADNI) and (ADNIDOD) (Mueller
et al., 2005) to predict neuro-degenerative diseases. We
discriminate between Alzheimer’s Disease (AD) from Mild

5www.adni-info.org
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Rest-fMRI Prediction groups Samples

HCP900
High IQ vs Low IQ

443 subjects
213/230

ABIDE
Autism vs control

866 subjects
402/464

ACPI
Marijuana use vs control

126 subjects
62/64

ADNI
Alzheimers vs MCI

136 subjects
40/96

ADNIDOD
PTSD vs control

167 subjects
89/78

COBRE
Schizophrenia vs control

142 subjects
65/77

CamCAN
Age

626 subjects
24− 86

Table A3: Resting-state fMRI datasets used in the pipeline
described on §3.4 for predicting phenotypic labels from
functional connectomes. In CamCAN, age is predicted using
ridge regression. The groups from other datasets are predicted using
logistic regression. IQ - Fluid intelligence, PTSD - Post Traumatic
Stress Disorder, MCI - Mild Cognitive Impairment.

Cognitive Impairment (MCI) group on ADNI. We discrim-
inate between post-traumatic stress disorder (PTSD) and
healthy individuals on ADNIDOD. We use data from the
Center for Biomedical Research Excellence6 (COBRE Cal-
houn et al. (2012) to predict schizophrenia diagnosis of in-
dividuals. We classify autism and healthy individuals on
Autism Brain Imaging Data Exchange database (ABIDE,
Di Martino et al. (2014), Finally, we consider data from
Addiction Connectome Preprocessed Initiative7 (ACPI),
where we discriminate Marijuana consumers versus con-
trol subjects.

Psychological traits. We first stratify individuals from
HCP900 release (Van Essen et al., 2013) into groups of high
and low IQ, and perform binary classification on these.
The details about the stratification into these groups are
described in Dadi et al. (2019).

Age regression. We use Cambridge Center for Ageing and
Neuroscience (CamCAN) dataset (Taylor et al., 2017) to
study brain ageing. This study comprises wide range of
age groups spanning from 24 – 86. We use ridge regression
to predict age on this dataset.

AppendixC.2. Data acquisition parameters and pre-
processing pipelines

The data acquisition details for ADNI, ADNIDOD,
COBRE, ABIDE, ACPI and HCP are described in Dadi
et al. (2019); those for CamCAN in Taylor et al. (2017).
We pre-process individuals from CamCAN, ADNI, AD-
NIDOD and COBRE. All rs-fMRI acquistions are pre-
processed with standard steps, described in Dadi et al.

6https://www.mrn.org/research/details/cobre
7http://fcon_1000.projects.nitrc.org/indi/ACPI/html/
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Figure A5: Connectome prediction scores for each brain at-
lases and target: Each marker denotes the mean performance of
using a certain brain atlas; error bars are the standard deviation of
the prediction scores for this atlas. BASC and DiFuMo-based atlases
give good prediction scores up to k = 256 ROIs.
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(2019). The other considered datasets provide prepro-
cessed data. We report the total number of subjects in-
cluded in the analysis in Table A3, after excluding for se-
vere scanning artifacts, head movements with amplitude
larger than 2 mm and individuals who have more than
one clinical diagnosis,

Confound removal and temporal signal pre-processing.
The strategy we use for cleaning temporal signals is the
same as in Dadi et al. (2019). We brieftly outline these
steps here. We regress out 10 CompCor (Behzadi et al.,
2007) components on the whole brain and six motion re-
lated signals which are provided in the ADNI, ADNIDOD,
COBRE, CamCAN datasets. We do not perform any ad-
ditionnal preprocessing steps on ABIDE, ACPI and HCP.
For all datasets, the signal of each region is normalized,
detrended and bandpass-filtered between 0.01 and 0.1Hz.
All these steps are done with nilearn (Abraham et al.,
2014).

AppendixC.3. Detailed results

Figure 6 summarizes the impact of the brain atlases
and ROIs in predicting diverse targets on rs-fMRI images.
Figure A5 shows the absolute prediction scores for each
target separately. DiFuMo-based predictions are on par
with those using UKBB ICA components, Craddock et al.
(2012) and BASC atlases.

AppendixD. Intra-subject encoding

In §3.2, we compare group-level z-maps computed at
the voxel-level and on reduced data using the DICE sim-
ilarity coefficient. We also performed an intra-subject,
across sessions, standard analysis. We consider the Rapid-
Serial-Visual-Presentation (RSVP) language task of Indi-
vidual Brain Charting (IBC) (see Pinho et al. (2018) for
details on experimental protocol and data pre-processing).

Encoding model. In this setting, we fit a GLM on the sev-
eral acquisition sessions of each subject considered sepa-
rately. That is, we compute a single β-map per session
and condition, forming a set of maps β ∈ Rq×p. β is
either computed directly at the voxel-level or using func-
tional atlases, in which case we set β = βredD

>, with
β ∈ Rq×k.

We then use a leave-one-session-out cross-validation
scheme to compare the observed, single-session, time se-
ries Y ∈ Rn×p to the reconstructed time-series Ŷ = Xβ̄,
where β̄ are the average β-maps across the 5 training ses-
sions. We obtain R2-maps, where each voxel holds the
proportion of variance explained by the model

ri = 1− ‖yi − ŷi‖
2
2

‖yi − ȳi‖22
,

where yi is the univariate time-series in Rn associated to
voxel i and ȳi is its temporal mean. We finally average
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Figure A6: Intra-subject univariate prediction of brain re-
sponse in the language task protocol of the IBC dataset.
We compare R2-maps obtained using voxel based and functional-
atlas based encoding models. Encoding models based on high-order
atlases better explain the variance of an unseen session. The compar-
ison is made for a single subject; results are similar across subjets.

R2 scores across leave-one-session-out folds, and thresh-
old non-positive values. The resulting R2-maps provides
information on how much encoded β-maps are able to pre-
dict univariate voxel activation on new sessions. A value
close to 1 means that the voxel activation is well predicted
by the encoding model, while a 0 value means that the
voxel activation cannot be predicted. We compare the
R2-maps across the various data-reduction methods for
estimating β.
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Validation. To measure the difference between R2 maps
R computed from voxels and R2 maps R̃ computed from
DiFuMos, we report correlation coefficients ρ between R
and R̃, and the slope s predicting the activations R̃ from
the activations R. This slope indicates a form of signal
loss due to using functional atlases. We expect it to be
smaller than 1, in part because projection on functional
atlases have a noise reduction effect.

Results. Figure A6, using higher order DiFumo atlases
leads to a loss of explained variance R2 of only 6% com-
pared to working directly with voxels, which may imputed
to a denoising effect. Qualitatively, the R2 maps are much
comparable. DiFuMo (k = 1024) is therefore suitable for
intra-subject encoding tasks; they make these much less
costly. Using lower-order atlases yield stronger signal loss.

AppendixE. Extra meta-analysis maps

Figure A7 shows the meta-analysis summary images
for two additional cognitive topics: language and face. We
compare non-reduced images with reduced images using
DiFuMo (k = 1024) and BASC (k = 444). The images re-
duced with DiFuMos are easier to interpret than the ones
reduced with BASC for both topics. Quantitatively, we
recall that Figure 7 shows the better performance of Di-
FuMos for image compression.

AppendixF. DiFuMos naming details

A measure of overlap with a reference anatomical atlas
allows to match each DiFuMo component with a specific
anatomical region, e.g. “postcentral gyrus”. Where there
are more than one component for each anatomical region,
the functional atlas region are further characterized by an
anatomical spatial descriptions, e.g. “postcentral gyrus in-
ferior”. Finally, we append the localisation of the region in
the left or right hemisphere, e.g. “postcentral gyrus infe-
rior RH”. Some of the nodes from DiFuMo atlases overlaps
a fraction of several regions in the anatomical atlas—those
are named by a trained neuroanatomist.
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Figure A7: Meta-analysis on cognitive topics –language (a.) and face (b.) – from statistical images: We compare images
reconstructed with DiFuMo (k = 1024) and BASC (k = 444) with voxel-level averages (right). The topic-related activations are better
visualized using DiFuMo (middle) than using BASC (left). DiFuMo results are closer to voxel-level averages, as the signal loss is minimal
when projecting on this atlas.
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Figure A8: Interpretation of higher-dimensional modes of DiFuMo: The putamen segmentation is refined as dimension of DiFuMos
increases. A single mode contain the left and right putamen in lower dimension (a), when higher order atlases holds separate components for
them. Larger atlases model the detailed organization within the sub-structures, which may be crucial in discriminative tasks.
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fMRI study Version Cognitive task #
S
u
b

je
ct

s

#
S
es

si
o
n
s

#
R

u
n
s

Conditions
(Schonberg et al., 2012) ds000001 R2.0.4 Balloon Analog 16 3 balloon analog risk

Risk-taking
(Aron et al., 2006) ds000002 R2.0.5 Classification learning 17 2 deterministic classification

mixed event related probe
probabilistic classification

(Xue and Poldrack, 2007) ds000003 R2.0.2 Rhyme judgment 13 rhyme judgment
(Jimura et al., 2014) ds000006 R2.0.1 ds000006 14 2 6 living nonliving decision-

with plain or mirror reversed text
(Xue et al., 2008) ds000007 R2.0.1 Stop-signal task with 20 2 stop manual

spoken & manual responses stop vocal
stop word

(Aron et al., 2007) ds000008 R2.0.0 Stop-signal task with 14 3 conditional stop signal
unconditional and conditional stop signal

stopping
(Foerde et al., 2006) ds000011 R2.0.1 Classification learning 14 2 Classification probe without

and tone counting feedback
Dual task weather prediction
Single task weather prediction
Tone counting

(Rizk-Jackson et al., 2011) ds000017 R2.0.1 Classification learning 8 2 3 probabilistic classification
and stop-signal (1 year test-retest) selective stop signal task

(Alvarez and Poldrack, 2011) ds000051 R2.0.2 Cross-language 13 8 abstract concrete judgment
repetition priming

(Poldrack et al., 2001) ds000052 R2.0.0 Classification learning 14 2 weather prediction
and reversal reversal weather prediction

(Mennes et al., 2013) ds000101 R2.0.0 Simon task 21 2 simon
(Kelly et al., 2008) ds000102 R2.0.0 Flanker task 26 2 flanker

(event-related)
(Haxby et al., 2001) ds000105 R2.0.2 Visual object recognition 6 12 object viewing

(O’Toole et al., 2005)
(Hanson et al., 2004)
(Duncan et al., 2009) ds000107 R2.0.2 Word and 49 2 1-back task

object processing
(Moran et al., 2012) ds000109 R2.0.2 False belief task 36 2 theory of mind

(Uncapher et al., 2011) ds000110 R2.0.1 Incidental encoding task 18 10 Incidental encoding task
(Posner Cueing Paradigm)

(Gorgolewski et al., 2013) ds000114 R2.0.1 A test-retest fMRI dataset 10 2 covert verb generation
for motor, language and finger footlips

spatial attention functions line bisection
overt verb generation
overt word generation

(Repovs and Barch, 2012) ds000115 R2.0.0 Working memory in healthy 1 letter 0-back task
and schizophrenic individuals letter 1-back task

letter 2-back task
(Cera et al., 2014) ds000133 R1.0.0 Modafinil alters intrinsic 26 2 3 rest

functional connectivity of the
right posterior insula: a

pharmacological
resting state fMRI study

(Verstynen, 2014) ds000164 R1.0.1 Stroop task 28 stroop
(Gabitov et al., 2015) ds000170 R1.0.1 Learning and memory: motor 15 3 Trained Hand Trained Sequence

skill consolidation and Trained Hand Untrained Sequence
intermanual transfer Untrained Hand Trained Sequence

(Lepping et al., 2016a) ds000171 R1.0.0 Neural Processing of Emotional 39 5 music
(Lepping et al., 2016b) Musical and Nonmusical non music

Stimuli in Depression
(Iannilli et al., 2016) ds000200 R1.0.0 Pre-adolescents Exposure 1 olfactory

to Manganese
(Stephan-Otto et al., 2017) ds000203 R1.0.2 Visual imagery and 26 2 visual imagery-

false memory for pictures false memory
(Kim et al., 2016) ds000205 R1.0.0 Affective Videos 11 2 functional localizer

view
(Romaniuk et al., 2016) ds000214 R1.0.0 EUPD Cyberball 40 Cyberball

(Roy et al., 2017) ds000220 R1.0.0 Cost Analysis TBI 26 2 rest

Table A4: Large-scale fMRI datasets downloaded from OpenNeuro to build our multi-scale functional atlases. Data are pre-processed using
fMRIprep. The data acquisition parameters of each study are listed on Table A5. The corpus is 2.4TB in total.

20



fMRI study MR scanner Slice FoV Voxel size Matrix TR TE Flip angle Number of
orientation (mm) (mm) size (msec) (msec) (◦) volumes

(Schonberg et al., 2012) 3T Siemens AG axial - 4 × 4 × 4 64 × 64 2000 30 90 300
Allegra (Erlangen,
Germany)

(Aron et al., 2006) 3T Siemens - - 4 × 4 × 4 64 × 64 2000 30 90 180
Allegra

(Xue and Poldrack, 2007) 3T Siemens - 200 4 × 4 × 4 64 × 64 2000 30 90 160
Allegra (Iselin, NJ)

(Jimura et al., 2014) 3T Siemens - 200 4 × 4 × 4 64 × 64 2000 30 90 205
Allegra (Erlangen,
Germany)

(Xue et al., 2008) 3T Siemens - 200 4 × 4 × 4 64 × 64 2000 30 90 182
Allegra

(Aron et al., 2007) 3T Siemens - 200 4 × 4 × 4 64 × 64 2000 30 90 176
Allegra

(Foerde et al., 2006) 3T Siemens - 200 4 × 4 × 4 64 × 64 2000 30 - 208
Allegra

(Poldrack et al., 2001) 3T Siemens axial 200 5 × 5 × 5 64 × 64 3000 30 - 225
Allegra

(Mennes et al., 2013) 3T Siemens - 192 3 × 3 × 4 64 × 64 2000 30 80 101
Allegra

(Kelly et al., 2008) 3T Siemens - 192 3 × 3 × 4 64 × 64 2000 30 80 146
Allegra

(Haxby et al., 2001) 3T GE sagittal 240 3.5 × 3.5 × 3.5 - 2500 30 90 121
(Duncan et al., 2009) 1.5T Siemens - 192 3 × 3 × 3. 64 × 64 3000 50 - 165
(Moran et al., 2012) 3T Siemens axial - 3 × 3 × 3 - 2000 35 - 179

Tim Trio
(Uncapher et al., 2011) 3T GE Signa axial - 3.44 × 3.44 × 3.44 64 × 64 2000 30 75 186
(Gorgolewski et al., 2013) 1.5T GE Signa - 256 4 × 4 × 4 64 × 64 2500 50 90 varied
(Repovs and Barch, 2012) 3T Tim Trio - 256 4 × 4 × 4 64 × 64 2500 27 90 137
(Cera et al., 2014) 3T Philips transaxial 256 4 × 4 × 4 64 × 64 1671 35 75 145
(Verstynen, 2014) 3T Siemens - - 3.2 × 3.2 × 4 - 1500 20 90 370
(Gabitov et al., 2015) 3T GE axial 220 3.4 × 3.4 × 3.4 64 × 64 3000 35 90 45
(Lepping et al., 2016a) 3T Siemens axial 220 2.9 × 2.9 × 3 64 × 64 3000 25 90 105

Skyra (Erlangen,
Germany)

(Iannilli et al., 2016) 1.5T Siemens axial - 3.3 × 3.3 × 3.3 64 × 64 2500 50 - 120
Aera (Erlangen,
Germany)

(Stephan-Otto et al., 2017) 1.5T GE Signa axial 240 4 × 4 × 4 64 × 64 2000 40 90 267
(Kim et al., 2016) 3T Siemens axial - 3 × 3 × 3 64 × 64 2200 35 90 365

Trio (Erlangen)
(Romaniuk et al., 2016) 3T Siemens axial 220 3.4 × 3.4 × 5 64 × 64 1560 26 66 341

Magnetom Verio
(Roy et al., 2017) 3T Philips axial 240 4 × 4 × 4 80 × 80 2000 30 90 144

Achieva

Table A5: Data acquisition parameters for each fMRI study that we use for training DiFuMo atlases. Data are downloaded from OpenNeuro.
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