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Introduction

The widespread failure of attempts to reproduce scientific results is largely attributed to the apparently incurable epidemic of misinterpreting p values. Much of the resulting debate about whether and how to test null hypotheses stems from the wide spectrum of attitudes toward frequentist and Bayesian schools of statistics, as seen in the special issue of The American Statistician introduced by [START_REF] Wasserstein | Moving to a world beyond "p < 0.05[END_REF]. For that reason, reconsidering the old probability interpretations that lurk beneath the expressed opinions may lead to new insights for resolving the controversy.

The subjective interpretation of the prior probability provides guidance in the selection of prior distributions even in practical situations in which it is not usually feasible to elicit the prior probability of any expert or other agent. In the case of reliable information about the value of the parameter, the subjective interpretation serves as a benchmark that gives meaning to assigning prior probabilities in the sense that they are interpreted as levels of belief that a hypothetical agent would have in the corresponding hypothesis [START_REF] Bernardo | Noninformative priors do not exist: A discussion[END_REF] or as an approximation of the agent's levels of belief. Likewise, in the absence of reliable information about the value of the parameter, a default or reference prior is used either to determine the posterior probability distribution of a hypothetical agent whose beliefs distribution matches the reference prior distribution or as an approximation of the belief distribution of one or more individuals. Such priors are sometimes called "objective" in the sense that they are not purely individualistic since whole communities can agree on their use.

That motivation for objective priors contrasts with the logical-probability position popularized by [START_REF] Jaynes | Probability Theory: The Logic of Science[END_REF] and called "objective Bayesianism" in the philosophical literature [START_REF] Williamson | Defence of Objective Bayesianism[END_REF]. This school follows the students [START_REF] Jeffreys | Theory of Probability[END_REF] and [START_REF] Keynes | A Treatise On Probability[END_REF] of W. E. Johnson in insisting on less subjective foundations of Bayesianism but has found little favor in the statistical community due in part to the marginalization paradox [START_REF] Dawid | Marginalization paradoxes in Bayesian and structural inference (with discussion)[END_REF] and to the failure of decades of research to find any genuinely noninformative priors [START_REF] Kass | The selection of prior distributions by formal rules[END_REF].

While there are important differences between this school and that of traditional Bayesian statistics, probability is viewed by both as a level of belief, whether of a real agent or of a hypothetical, perfectly logical agent. Indeed, the difference is chiefly that of emphasis since the most influential subjective Bayesians used probability to prescribe coherent behavior rather than to describe the actual behavior of any human agent [START_REF] Levi | Degrees of belief[END_REF]. (Carnap (1962, pp. 42-47;1971, p. 13;1980, p. 119) observed that, like H. Jeffreys, subjectivists such as F. P. Ramsay, B. de Finetti, and L. J. Savage sought normative theories of rational credence or decision, not ways to describe aspects of anyone's actual state of mind or behavior, in spite of differences in emphases and misleading uses of psychologizing figures of speech, which not even R. A. Fisher managed to avoid entirely [START_REF] Zabell | Fisher and the fiducial argument[END_REF].) Belief prescription, not belief description, is likewise sought in traditional Bayesian statistics (e.g., [START_REF] Bernardo | Bayesian Theory[END_REF].

All of those Bayesian interpretations of prior and posterior probability fall under the broad category of belief-type probability, which includes epistemic and evidential probabilities (e.g., [START_REF] Kyburg | Uncertain Inference[END_REF]) not associated with any actual beliefs (Hacking, 2001, Ch. 12). Frequentist statisticians instead prefer to work exclusively with what Hacking (2001, Ch. 12) calls frequencytype probability, some kind of limiting relative frequency or propensity that is a feature of the domain under investigation, regardless of what evidence is available to the investigators. In short, belief-type probability refers to real or hypothetical states of knowledge, whereas frequency-type probability refers to real or hypothetical frequencies of events.

Seeking the objective analysis of data, frequentists avoid belief-type priors: "The sampling theory approach is concerned with the relation between the data and the external world, however idealized the representation. The existence of an elegant theory of self-consistent private behaviour seems no grounds for changing the whole focus of discussion" [START_REF] Cox | Foundations of statistical inference: The case for eclecticism[END_REF]. Many wary of using Bayes's theorem with belief-type priors would nonetheless use it with frequency-type distributions of parameter values [START_REF] Neyman | inductive behavior" as a basic concept of philosophy of science[END_REF][START_REF] Fisher | Statistical Methods and Scientific Inference[END_REF][START_REF] Wilkinson | On resolving the controversy in statistical inference (with discussion)[END_REF][START_REF] Edwards | Likelihood[END_REF][START_REF] Kyburg | Uncertain Inference[END_REF][START_REF] Kyburg | Nonmonotonic logic and statistical inference[END_REF]Hald, 2007, p. 36;[START_REF] Fraser | Is Bayes posterior just quick and dirty confidence[END_REF]. In statistics, the random parameters in empirical Bayes models, mixed-effects models, and latent variable models have frequency-type distributions, representing variability rather than uncertainty. This viewpoint leads naturally to the empirical Bayes approach of estimating a frequency-type prior from data [START_REF] Efron | Simultaneous inference: When should hypothesis testing problems be combined?[END_REF]; see [START_REF] Neyman | inductive behavior" as a basic concept of philosophy of science[END_REF]'s enthusiasm for early empirical Bayes work [START_REF] Robbins | An empirical Bayes approach to statistics[END_REF].

Example 1. Consider the posterior probability of the null hypothesis conditional on p, the observed two-sided p value:

Pr (ϑ = θ H 0 | P = p) = Pr (ϑ = θ H 0 ) Pr (P = p |ϑ = θ H 0 ) Pr (P = p) = 1 + Pr (ϑ = θ H 0 ) 1 -Pr (ϑ = θ H 0 ) B -1 -1 (1) 
where ϑ and P are the parameter of interest and the p value as random variables, θ H 0 is the parameter value under the null hypothesis, the null hypothesis that ϑ = θ H 0 asserts the truth of the null hypothesis to a sufficiently close approximation for practical purposes, and B is the

Bayes factor f (p |θ = θ H 0 ) / f (p |θ = θ H 0 )
based on f , the probability density function of P . When

Pr (ϑ = θ H 0 | P = p) is a frequency-type probability, it is known as the local false discovery rate (LFDR) in the empirical Bayes literature on testing multiple hypotheses (e.g., [START_REF] Efron | Empirical Bayes analysis of a microarray experiment[END_REF][START_REF] Efron | Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction[END_REF] and on testing a single hypothesis (e.g., [START_REF] Bickel | Confidence distributions applied to propagating uncertainty to inference based on estimating the local false discovery rate: A fiducial continuum from confidence sets to empirical Bayes set estimates as the number of comparisons increases[END_REF]Bickel, , 2019c,e),e). If the assumptions of [START_REF] Sellke | Calibration of p values for testing precise null hypotheses[END_REF] hold for frequency-type probability distributions underlying LFDR, then its lower bound is

LFDR = 1 + Pr (ϑ = θ H 0 ) 1 -Pr (ϑ = θ H 0 ) B -1 -1 ; (2) B = -e p ln p, (3) 
where B denotes the corresponding lower bound on B .

LFDR is relevant not only for Bayesian inference but also for frequentist inference, given an estimate of the value of the frequency-type prior probability Pr (ϑ = θ H 0 ) can be estimated. Such an estimate of Pr (ϑ = θ H 0 ) may be obtained using the results of multiple hypothesis tests in a largescale data set or, when the data set does not have enough hypotheses for that, via meta-analysis.

For example, the estimate 10/11 is based on meta-analyses relevant to psychology experiments [START_REF] Benjamin | Redefine statistical significance[END_REF]. In that case, a frequentist may summarize the result of a statistical test by reporting an estimate of LFDR rather than p in order to use the information in the estimate of Pr (ϑ = θ H 0 ). That differs from estimating Pr (ϑ = θ H 0 ) to be the 50% default, which yields LFDR ≈ B = -e p ln p when p is sufficiently small.

But what if Pr (ϑ = θ H 0 ) = 0, as some maintain (e.g., [START_REF] Bernardo | Integrated objective Bayesian estimation and hypothesis testing[END_REF][START_REF] Mcshane | Abandon statistical significance[END_REF]?

Then LFDR = 0 regardless of the data, in which case reporting p would be much more informative, as when deciding whether there is enough evidence to conclude that ϑ > θ H 0 or that ϑ < θ H 0 [START_REF] Cox | The role of significance tests[END_REF][START_REF] Bickel | Estimating the null distribution to adjust observed confidence levels for genomescale screening[END_REF]. That highlights a gap in frequentism: there is no continuity between reporting an estimate of LFDR in certain extreme cases and reporting p in other extreme cases. What should be reported in less extreme cases such as those of the Pr (ϑ = θ H 0 ) = 1/100 or Pr (ϑ = θ H 0 ) = 1/10 suggested by Hurlbert and Lombardi ( 2009)?

One answer is the LFDR-calibrated two-sided p value equal to p LFDR = (1 -LFDR) p +2LFDR according to a simple method proposed in this paper. In the extreme of a very low LFDR, that calibrated two-sided p value is close to the uncalibrated p value p LFDR ≈ p . At the opposite extreme, LFDR is much larger than p, resulting in a calibrated two-sided p value that is about twice as large as LFDR p LFDR ≈ 2LFDR . Figure 1 displays p LFDR for various values of p and Pr (ϑ = θ H 0 ), revealing little need to calibrate when Pr (ϑ = θ H 0 ) = 1/100 but much more when That formula for p LFDR emerges naturally under the empirical Bayes interpretation of confidence levels offered in Section 2. Under that interpretation, each confidence level such as 95% estimates the frequency-type posterior probability that the parameter lies within the symmetric 95% calibrated confidence interval. That estimate only applies directly when Pr (ϑ = θ H 0 ) = 0 but also applies indirectly conditional on ϑ = θ H 0 , yielding symmetric and one-sided confidence intervals that are calibrated by LFDR or by another estimate of LFDR. The symmetric 95% calibrated confidence intervals tend to be much shorter than the corresponding 99.5% confidence intervals [START_REF] Pace | Likelihood, replicability and Robbins' confidence sequences[END_REF] inspired by the proposal of [START_REF] Benjamin | Redefine statistical significance[END_REF] to test null hypotheses at the 0.5% level.

Pr (ϑ = θ H 0 ) ≥ 1/2.
Rejecting the null hypothesis whenever θ H 0 is not in a symmetric 95% calibrated confidence interval based on LFDR is equivalent to rejecting the null hypothesis whenever p LFDR is less than 0.05. A general statement of that result for estimates of LFDR other than LFDR and for levels of confidence other than 95% is derived in Section 3. Its example estimates of LFDR include LFDR, another lower bound on LFDR, and estimates that are not lower bounds.

Section 4 derives a point estimate of the parameter of interest from the symmetric 0% calibrated confidence interval. Technical details on confidence levels as estimates of posterior probability and on the empirical Bayes coverage of calibrated confidence intervals appear in Appendix A and in 2 Calibrating confidence intervals with empirical Bayes estimation Sections 2.1-2.3 define the preliminary concepts for Section 2.4's empirical Bayes confidence intervals in the absence of multiple comparisons.

Uncalibrated confidence intervals and p values

A typical (100%) γ confidence interval C (γ; Y ) is valid in the sense that Pr (C (γ; Y ) ∋ θ|ϑ = θ) ≥ γ, ( 4 
)
where Y is a random sample of data distinguished from the observed sample y, and is nested in the sense that every confidence interval of level γ strictly contains every confidence interval of a confidence level less than γ.

Since the probability distribution Pr is unknown, its probability statements about parameter values must be estimated. For that, let the estimated posterior probability that ϑ ∈ C (γ; y) be the

confidence level of θ (γ; Y ) ≤ θ ≤ θ (γ; Y ), that is, Pr (ϑ ∈ C (γ; y) | P = p) = γ. (5) 
Although the fiducial argument for equation ( 5) when the estimand Pr (ϑ ∈ C (γ; y) | P = p) is a subjective probability has been discredited, equation ( 5) has support from the broadly applicable approximation of one-sided p values to posterior probabilities (Appendix A). If C (γ; Y ) is exact in the sense that formula (4) holds with equality, then the function Pr is a probability distribution known as a confidence distribution [START_REF] Schweder | Confidence and likelihood[END_REF][START_REF] Singh | Combining information from independent sources through confidence distributions[END_REF][START_REF] Nadarajah | Confidence distributions: A review[END_REF][START_REF] Schweder | Confidence, Likelihood, Probability: Statistical Inference with Confidence Distributions[END_REF]Bickel, 2019b).

Examples in which equation ( 5) is practical include methods of (100%) γ nested and valid confidence intervals of each of these forms:

C τ (γ; y) = [τ (γ) , ∞[ = {θ H 0 : p > (θ H 0 ) ≥ 1 -γ} (6) C υ (γ; y) = ]-∞, υ (γ)] = {θ H 0 : p < (θ H 0 ) ≥ 1 -γ} (7) 
where τ (γ) < υ (γ), p > (θ H 0 ) is a p value testing the null hypothesis that θ = θ H 0 with θ > θ H 0 as the alternative hypothesis, and p < (θ H 0 ) is a p value testing the null hypothesis that θ = θ H 0 with θ < θ H 0 as the alternative hypothesis.

The resulting p = (θ

H 0 ) = 2 min (p > (θ H 0 ) , p < (θ H 0 )
) is a two-sided p value testing the null hypothesis that θ = θ H 0 with θ = θ H 0 as the alternative hypothesis. By equations ( 6) and ( 7), if

γ = 1 -α/2, then [τ (γ) , υ (γ)] = {θ H 0 : τ (γ) ≤ θ H 0 ≤ υ (γ)} = C τ (γ; y) ∩ C υ (γ; y) = {θ H 0 : p > (θ H 0 ) ≥ 1 -γ, p < (θ H 0 ) ≥ 1 -γ} . ∴ θ H 0 / ∈ [τ (γ) , υ (γ)] ⇐⇒ θ H 0 / ∈ {θ H 0 : p > (θ H 0 ) ≥ 1 -γ, p < (θ H 0 ) ≥ 1 -γ} ⇐⇒ θ H 0 ∈ {θ H 0 : p > (θ H 0 ) < 1 -γ} ∪ {θ H 0 : p < (θ H 0 ) < 1 -γ} ⇐⇒ min (p > (θ H 0 ) , p < (θ H 0 )) < 1 -γ ⇐⇒ p = (θ H 0 ) < 2 (1 -γ) = α, (8) 
which implies that θ

H 0 ∈ [τ (1 -α/2) , υ (1 -α/2)] is equivalent to p = (θ H 0 ) ≥ α. The confidence intervals [τ (γ) , ∞[, ]-∞, υ (γ)],
and [τ (γ) , υ (γ)] are nested since τ (γ) and υ (γ) are strictly monotonic as functions of γ for every γ between 0 and 1, with τ (γ) decreasing and υ (γ) increasing with γ. Those confidence intervals are also valid since the probability that each covers the fixed true value of the parameter over repeated sampling is at least γ.

Estimating the probability of coverage in the presence of a plausible null hypothesis

Suppose the null hypothesis that ϑ = θ H 0 is plausible enough that its frequency-type prior probability is not 0: 

Pr (ϑ = θ H 0 ) > 0.
| P = p) = Pr (ϑ = θ H 0 | P = p) Pr (ϑ ∈ C (γ; y) |ϑ = θ H 0 , P = p) + Pr (ϑ = θ H 0 | P = p) Pr (ϑ ∈ C (γ; y) |ϑ = θ H 0 , P = p) = LFDR χ (θ H 0 ∈ C (γ; y)) + (1 -LFDR) Pr (ϑ ∈ C (γ; y) |ϑ = θ H 0 , P = p) ,
where χ (θ

H 0 ∈ C (γ; y)) is 1 if θ H 0 ∈ C (γ; y) but is 0 if not.
Then the natural estimate is

Pr (ϑ ∈ C (γ; y) | p) = LFDR χ (θ H 0 ∈ C (γ; y)) + 1 -LFDR Pr (ϑ ∈ C (γ; y) |ϑ = θ H 0 , P = p) = LFDR χ (θ H 0 ∈ C (γ; y)) + 1 -LFDR γ, ( 10 
)
where LFDR is an estimate of LFDR such as one of those in Section 2.3.

Estimating the local false discovery rate

Recall that LFDR denotes any estimate of the local false discovery rate, the posterior probability defined in equation ( 1). While Bickel (2012b) used results of multiple tests to determine LFDR for each test, as is usual in empirical Bayes testing [START_REF] Efron | Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction[END_REF]Bickel, 2019c), the following examples of LFDR apply when testing a single null hypothesis given Pr (ϑ = θ H 0 ), an estimate of the frequency-type probability probability that the null hypothesis holds. Those versions of LFDR are compared in Figure 2.

Example 2. Suppose LFDR = LFDR, where LFDR is Example 1's lower bound on LFDR. One reason for that choice of an estimate of LFDR is that the lower bound brings the estimate as close as possible to 0 [START_REF] Bickel | Maximum entropy derived and generalized under idempotent probability to address Bayes-frequentist uncertainty and model revision uncertainty[END_REF], which is the value of the LFDR under a null hypothesis known with certainty to be false, as some argue is the case for all point null hypotheses involving continuous parameters (e.g., [START_REF] Bernardo | Integrated objective Bayesian estimation and hypothesis testing[END_REF][START_REF] Mcshane | Abandon statistical significance[END_REF]. While the extreme form of that position would be hard to sustain for many applications in fields as diverse as biomedicine, genomics, genetics, particle physics, and psychology, a more moderate form is plausible. In particular, [START_REF] Hurlbert | Final collapse of the Neyman-Pearson decision theoretic framework and rise of the neoFisherian[END_REF] argue that Pr (ϑ = θ H 0 ) is often much closer to 0 than to 1/2. In short, setting LFDR = LFDR might be justified as a way to compensate for a positive bias in Pr (ϑ = θ H 0 ).

Another reason for setting LFDR = LFDR is that LFDR is the maximum-likelihood estimate (MLE) of LFDR under typical conditions [START_REF] Held | On p-values and Bayes factors[END_REF]cf. Bickel, 2014Bickel, 2019c, chapter 7). Then the problem would be reduced to justifying the use of the MLE on the basis of a single observed p value: since the effective sample size is 1, the usual asymptotic justifications do not apply. [START_REF] Bickel | Confidence distributions applied to propagating uncertainty to inference based on estimating the local false discovery rate: A fiducial continuum from confidence sets to empirical Bayes set estimates as the number of comparisons increases[END_REF] used an MLE of LFDR to generate a Bayes-frequentist continuum between the extremes of credible intervals and confidence intervals.

Further arguments for LFDR = LFDR appear in Bickel (2019e).

Example 3. Different assumptions lead to different versions of B , the lower bound on the Bayes factor [START_REF] Held | On p-values and Bayes factors[END_REF]. Instead of the version given by equation (3), this example uses B = e -z 2 , which Held and Ott (2016) call the universal lower bound, where z is the standard normal quantile of a one-sided p value testing ϑ = θ H 0 (Bickel, 2019g). Since that B may be too low to be a reasonable estimate of the Bayes factor B , it might require some kind of averaging with B , an upper bound on B . A readily available upper bound is 1 if the two-sided p value is small enough that it can be assumed that the null hypothesis is not supported by the data. Given that the Bayes factor is between the bounds B and B , the weighted geometric mean B 1-c B c is a minimaxoptimal Bayes factor, where c is a degree of caution that is between 0 and 1 (Bickel, 2019f). For Example 4. A lower bound similar to that of equation ( 3) is the normal-distribution bound

B = |z | e -z 2
-1 2 [START_REF] Held | How the maximal evidence of p-values against point null hypotheses depends on sample size[END_REF], where z , assumed to satisfy |z | > 1, is defined in Example 3.

An interpretation of Occam's razor (Bickel, 2019a) leads to increasing B by a factor of |z | (Bickel, 2019g). Then concerns about using a lower bound on B as an estimate of B may motivate instead 

Symmetric calibrated confidence intervals

In the framework developed in Sections 2.1-2.3, the symmetric 100 c % confidence interval is θ (c; y) , θ (c; y) , where

θ (c; y) = τ 1 - 1 -c 2 = τ 1 + c 2 (11) θ (c; y) = υ 1 - 1 -c 2 = υ 1 + c 2 . ( 12 
)
Similarly, the symmetric 100 c % LFDR-calibrated confidence interval is θ LFDR (c; y) , θ LFDR (c; y) , where

θ LFDR (c; y) =                τ (γ -) if c ≥ 2 LFDR -1, τ (γ -) < θ H 0 τ (γ + ) if c ≤ 1 -2 LFDR, τ (γ + ) > θ H 0 θ H 0 otherwise (13) θ LFDR (c; y) =                υ (γ + ) if if c ≤ 1 -2 LFDR, υ (γ + ) < θ H 0 υ (γ -) if c ≥ 2 LFDR -1, υ (γ -) > θ H 0 θ H 0 otherwise (14) γ -= (1 + c) /2 -LFDR 1 -LFDR γ + = (1 + c) /2 1 -LFDR .
The equations are ready for use since τ (γ -), τ (γ + ), υ (γ -), and υ (γ + ) are generally available in software given that 0 ≤ γ -≤ 1 and 0 ≤ γ + ≤ 1, which are respectively satisfied under the c ≥ 2 LFDR -1 and c ≤ 1 -2 LFDR conditions of equations ( 13)-( 14).

Example 5. To get an 80% LFDR-calibrated confidence interval of a real-valued parameter that is 0 under the null hypothesis (θ H 0 = 0), first compute LFDR from equations ( 3) and ( 2) as per Example 2. Suppose LFDR = 40%. Then 80% = c ≥ 2 LFDR -1 = -20% and γ -= 5/6 = 83%, and equations ( 13)-( 14) yield [min (τ (83%) , θ H 0 ) , max (υ (83%) , θ H 0 )] as the 80% LFDR-calibrated confidence interval, where τ (83%) and υ (83%) may be obtained from software as limits of two onesided 83% confidence intervals.

If the estimated prior probability of the null hypothesis is 0, the estimated posterior probability is also 0. In that degenerate case, γ -= γ + = (1 + c) /2 since LFDR = 0, and θ (c; y) , θ (c; y)

then reduces to [τ (γ -) , υ (γ -)],
the symmetric 100 c % confidence interval of Section 2.1.

For any c between 0 and 1, an interval I is a 100 c % empirical Bayes interval if

Pr (ϑ ∈ I| P = p) ≥ c . (15) 
The symmetric 100 c % LFDR-calibrated confidence intervals are 100 c % empirical Bayes intervals, as seen in Corollary 1 of Appendix B.

Calibrating p values with empirical Bayes estimation

Recall that p = (θ H 0 ) denotes a two-sided p value. Let

p = LFDR = 1 -LFDR p = (θ H 0 ) + 2 LFDR,
as illustrated in Section 1 for the LFDR = LFDR case.

Theorem 1. For any p = (θ H 0 ) satisfying the conditions of Section 2.1, p = LFDR ≥ α if and only if

θ H 0 ∈ θ LFDR (1 -α; y) , θ LFDR (1 -α; y) , the symmetric (100%) (1 -α) LFDR-calibrated confi- dence interval.
Proof. By equations ( 13) and ( 14), θ H 0 / ∈ θ LFDR (1 -α; y) , θ LFDR (1 -α; y) if and only if both

1 -α ≤ 1 -2 LFDR (i.e., 2 LFDR ≤ α) and υ γ + < θ H 0 or τ γ + > θ H 0 ; (16) 
γ + = 1 -α/2 1 -LFDR .
Disjunction ( 16) is equivalent to this statement according to equations ( 6) and ( 7):

θ H 0 ∈ -∞, υ γ + ∪ τ γ + , ∞ = θ : p > (θ) < 1 -γ + ∪ θ : p < (θ) < 1 -γ + = θ : min (p > (θ H 0 ) , p < (θ H 0 )) < 1 -γ + = θ : p = (θ) < 2 1 -γ + ,
which holds if and only if

p = (θ H 0 ) < 2 1 -γ + = 2 1 - 1 -α/2 1 -LFDR = α -2 LFDR 1 -LFDR 1 -LFDR p = (θ H 0 ) + 2 LFDR < α p = LFDR < α.
Assembling the above statements of equivalence, we have

θ H 0 / ∈ θ LFDR (1 -α; y) , θ LFDR (1 -α; y) ⇐⇒ 2 LFDR ≤ α and p = LFDR < α ⇐⇒ p = LFDR < α since p = LFDR < α =⇒ 2 LFDR ≤ α. In other words, θ H 0 ∈ θ LFDR (1 -α; y) , θ LFDR (1 -α; y) ⇐⇒ p = LFDR ≥ α.
Theorem 1 justifies calling p = LFDR the LFDR-calibrated two-sided p value. It may be interpreted by noting that p = LFDR /2 is an estimate of the posterior probability of a sign error or directional error (Bickel, 2019e). In addition, p = LFDR estimates a special case of an extended evidence value (Bickel, 2019b), which is a generalization of the evidence value proposed by [START_REF] Pereira | Evidence and credibility: Full Bayesian significance test for precise hypotheses[END_REF]. Related extended evidence values are the likelihood-ratio posterior probability defined by Aitkin (2010, p. 42), the strength of evidence defined by Evans (2015, p. 114), and the two-sided posterior probability defined by [START_REF] Shi | Reconnecting p-value and posterior probability under one-and two-sided tests[END_REF].

4 Calibrating point estimates with empirical Bayes estimation A simple LFDR-based point estimate of θ is the estimated posterior mean given by

θ LFDR = 1 - p = LFDR 2 θ + LFDR θ H 0 + p = LFDR 2 -LFDR θ H 0 = 1 - p = LFDR 2 θ + p = LFDR 2 θ H 0 ,
where θ is the maximum-likelihood estimate or another estimate of the posterior mean conditional on the alternative hypothesis (Bickel, 2019e). However, θ LFDR is almost never equal to θ H 0 , the value of the parameter under the null hypothesis, even when LFDR, the frequency-type posterior probability of the null hypothesis, is very high. To overcome that drawback, an alternative estimate will be derived from the LFDR-calibrated confidence intervals of Section 2.4.

The main idea is to define a point estimate that would be in the symmetric 100 c % LFDRcalibrated confidence interval for every value of c, in agreement with the argument for 0% confidence intervals reviewed by Pace and Salvan (1997, Appendix D). Since the intervals are nested, that requirement is equivalent to the requirement that the point estimate be in the symmetric 0%

LFDR-calibrated confidence interval, which is θ LFDR (0; y) , θ LFDR (0; y) , where

θ LFDR (0; y) = τ LFDR (1/2) =                τ 1/2-LFDR 1-LFDR if LFDR ≤ 1 2 , τ 1/2-LFDR 1-LFDR < θ H 0 τ 1/2 1-LFDR if LFDR ≤ 1 2 , τ 1/2 1-LFDR > θ H 0 θ H 0 otherwise θ LFDR (0; y) = υ LFDR (1/2) =                υ 1/2 1-LFDR if LFDR ≤ 1 2 , υ 1/2 1-LFDR < θ H 0 υ 1/2-LFDR 1-LFDR if LFDR ≤ 1 2 , υ 1/2-LFDR 1-LFDR > θ H 0 θ H 0 otherwise
according to equations ( 13) and ( 14) with c = 0.

It can be seen that if Pr (ϑ = θ H 0 ) > 0, then LFDR > 0, and θ LFDR (0; y) = θ LFDR (0; y) could only occur if θ H 0 = θ (0; y) = θ (0; y), which does not happen since θ H 0 does not depend on y. By contrast, in the degenerate case that Pr (ϑ = θ H 0 ) = 0, we have LFDR = 0, and θ LFDR (0; y) , θ LFDR (0; y) is the confidence interval θ (0; y) , θ (0; y) , often enabling θ LFDR (0; y) = θ LFDR (0; y) since the limits of typical 0% confidence intervals from continuous data are equal to each other (e.g., Pace and Salvan, 1997, Appendix D). In cases of Pr (ϑ = θ H 0 ) > 0, an additional condition is needed to uniquely define a point estimate. To exercise caution in case the null hypothesis holds, the LFDR-calibrated point estimate is the value in θ LFDR (0; y) , θ LFDR (0; y) that is closest to θ H 0 :

θ LFDR =                υ 1/2 1-LFDR if LFDR ≤ 1 2 , υ 1/2 1-LFDR < θ H 0 τ 1/2 1-LFDR if LFDR ≤ 1 2 , τ 1/2 1-LFDR > θ H 0 θ H 0 otherwise .
A less cautious but also less biased approach instead takes the midpoint of θ LFDR (0; y) and θ LFDR (0; y) as the point estimate. The LFDR-calibrated point estimate resembles the posterior median that Bickel (2012b) applied to genomics data using a version of LFDR developed for multiple testing. , 2012a). While that may work for a fixed parameter value, it needs to be generalized to cases in which a random parameter ϑ has an unknown frequency-type distribution.

1 if θ ∈ [θ (2.5%) , θ (97.5%)] but is 0 if θ / ∈ [θ (2.5%) , θ (97.5%)] (Bickel
How can the confidence level help us estimate the the frequency-type posterior probability that the parameter lies within the observed confidence interval? If very little is known about that distribution, it may be reasonable to estimate the posterior probability with an estimator that is higher for higher confidence levels. That is, the estimated posterior probability that the parameter is in the observed confidence interval increases when, for example, the confidence level is increased from 95% to 99% since that results in a wider interval. For example, an estimator That can be made more definite using the observation that one-sided p values tend to closely approximate posterior probabilities corresponding to certain prior probability density functions that are diffuse (Pratt, 1965, §7) or impartial (Casella and Berger, 1987, §2); see [START_REF] Shi | Reconnecting p-value and posterior probability under one-and two-sided tests[END_REF]. Accordingly, in the notation of Section 2.1, let the estimators of Pr (ϑ ≥ θ H 0 | P = p) and

Pr (ϑ ≤ θ H 0 | P = p) be Pr (ϑ ≥ θ H 0 | P = p) = p < (θ H 0 ) (17) 
Pr (ϑ ≤ θ H 0 | P = p) = p > (θ H 0 ) (18) 
for any θ H 0 , where the inequalities may be replaced by strict inequalities since Pr (ϑ = θ H 0 | P = p) = 0. The fact that Pr θ ≤ ϑ ≤ θ| P = p = 1 -Pr (ϑ < θ| P = p) -Pr ϑ > θ| P = p for any interval θ, θ of parameter values suggests estimating that probability by

Pr θ ≤ ϑ ≤ θ| P = p = 1 -Pr (ϑ < θ| P = p) -Pr ϑ > θ| P = p . ( 19 
) Theorem 2. If p > (θ H 0 ) = 1 -p < (θ H 0 ) is a bijective function of θ H 0 , then the observed confidence intervals of Section 2.1 satisfy Pr (ϑ ∈ [τ (γ) , ∞[ | P = p) = γ (20) Pr (ϑ ∈ ]-∞, υ (γ)] | P = p) = γ (21) Pr ϑ ∈ τ 1 + γ 2 , υ 1 + γ 2 | P = p = γ for any γ ∈ [0, 1].
Proof. From equations ( 18), (6), and p > (θ H 0 ) = 1p < (θ H 0 ),

Pr (ϑ ∈ [τ (γ) , ∞[ | P = p) = p < (τ (γ)) = p < (inf {θ H 0 : p > (θ H 0 ) ≥ 1 -γ}) = p < (inf {θ H 0 : p < (θ H 0 ) < γ}) = p < p -1 < (γ) = γ, (22) 
where equation ( 22) follows from the bijectivity condition. Analogously, from equations ( 17), [START_REF] Bickel | Small-scale inference: Empirical Bayes and confidence methods for as few as a single comparison[END_REF], and p > (θ H 0 ) = 1p < (θ H 0 ),

Pr (ϑ ∈ ]-∞, υ (γ)] | P = p) = p > (υ (γ)) = p > (sup {θ H 0 : p < (θ H 0 ) ≥ 1 -γ}) = p > (sup {θ H 0 : p > (θ H 0 ) < γ}) = p > p -1 > (γ) = γ, (23) 
with equation ( 23) from bijectivity. By equation ( 19) and the now proved equations ( 20)-( 21),

Pr ϑ ∈ τ 1 + γ 2 , υ 1 + γ 2 | P = p = 1 -Pr ϑ < τ 1 + γ 2 | P = p -Pr ϑ > υ 1 + γ 2 | P = p = 1 -1 -Pr ϑ ≥ τ 1 + γ 2 | P = p -1 -Pr ϑ ≤ υ 1 + γ 2 | P = p = 1 -1 - 1 + γ 2 -1 - 1 + γ 2 = 1 -2 + 1 + γ = γ.
That justifies equation ( 5 the null hypothesis that ϑ = θ H 0 is approximately true, for in that case the prior distribution flagrantly violates the regularity conditions of [START_REF] Pratt | Bayesian interpretation of standard inference statements[END_REF] and [START_REF] Casella | Reconciling Bayesian and frequentist evidence in the one-sided testing problem[END_REF] since That satisfies equation ( 15), establishing the claim that τ LFDR (γ 1 ) , υ LFDR (γ 2 ) is a (100%) (γ 1 + γ 2 -1) empirical Bayes interval.

In the special case that Pr (ϑ = θ) = 0, we have LFDR = 0 by Bayes's theorem, and equation holds for all θ, establishing the validity of [τ (γ 1 ) , υ (γ 2 )] as a (100%) (γ 1 + γ 2 -1) confidence interval.

The (100%) (γ 1 + γ 2 -1) LFDR-calibrated confidence interval τ LFDR (γ 1 ) , υ LFDR (γ 2 ) is essentially the (100%) (γ 1 + γ 2 -1) marginal confidence interval of Bickel (2012b), with the main difference being that the latter requires the choice of an empirical Bayes estimator of LFDR that is based on data across multiple comparisons.

Corollary 1. For every c ∈ [0, 1], the symmetric 100 c % LFDR-calibrated confidence interval θ LFDR (c; y) , θ LFDR (c; y) of Section 2.4 is a 100 c % empirical Bayes interval.

Proof. Substituting γ 1 = γ 2 = (1 + c) /2 into equations ( 24)-(25) yields equations ( 13)-( 14). The claim then follows from Theorem 3.
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 1 Figure 1: The LFDR-calibrated two-sided p value as a function of the uncalibrated p value. The three curves use Pr (ϑ = θ H 0 ) = 10/11 (dashed black), Pr (ϑ = θ H 0 ) = 1/2 (solid black), and Pr (ϑ = θ H 0 ) = 1/100 (solid gray).

  Then its LFDR, defined by LFDR = Pr (ϑ = θ H 0 | P = p), is also nonzero: LFDR > 0. That can strongly conflict with the confidence-based estimation of Section 2.1, as can be seen by considering a confidence interval C (γ; y) that covers the null hypothesis value θ H 0 (that is, θ H 0 ∈ C (γ; y)) and that has a level of confidence much lower than the LFDR (that is, γ ≪ LFDR). Then the default confidence-based estimate of Pr (ϑ ∈ C (γ; y) | y) is only Pr (C (γ; y) | y) = γ, but Pr (ϑ ∈ C (γ; y) | P = p) must be at least Pr (ϑ = θ H 0 | P = p) since θ H 0 ∈ C (γ; y), with the result that γ is inaccurate as an estimator of Pr (ϑ ∈ C (γ; y) | P = p): Pr (ϑ ∈ C (γ; y) | y) = γ ≪ LFDR = Pr (ϑ = θ H 0 | P = p) ≤ Pr (ϑ ∈ C (γ; y) | P = p) . (9) For that reason, the default confidence-based estimate should be reserved for cases in which the null hypothesis has 0 frequency-type prior probability (Appendix A). That suggests considering γ as an estimate of Pr (ϑ ∈ C (γ; y) |ϑ = θ H 0 , P = p), which is the posterior probability of coverage conditional on the alternative hypothesis (ϑ = θ H 0 ) and on the observed p value. Accordingly, Pr (ϑ ∈ C (γ; y) |ϑ = θ H 0 , P = p) = γ will denote the default confidence-based estimate of Pr (ϑ ∈ C (γ; y) |ϑ = θ H 0 , P = p). Pr (ϑ ∈ C (γ; y) | P = p) will instead denote an estimate of Pr (ϑ ∈ C (γ; y)

  this example, let c = 1/2, and let the resulting inferential Bayes factor B B(Bickel, 2019f) serve as B , the estimate of the Bayes factor. By B = e -z 2 and B = 1, we haveB = √ e -z 2 × 1 = e -|z |for a sufficiently small two-sided p value, that is, for a sufficiently large value of |z |. Then plugging B into B and Pr (ϑ = θ H 0 ) into Pr (ϑ = θ H 0 ) in equation (1) results in the inferential LFDR as LFDR, the estimate of the LFDR.

Figure 2 :

 2 Figure 2: Each local false discovery rate estimate LFDR as a function of the two-sided p value. The three curves are the conventional lower bound on the LFDR (solid gray), the inferential LFDR (dashed black), and the razor-based LFDR (solid black) as defined in Examples 2, 3, and 4, respectively. The left and right plots are identical except that the left plot is logarithmic, and the right plot is linear. The frequency-type prior probability estimate of Pr (ϑ = θ H 0 ) = 1/2 is assumed here.

  Pr([τ (γ) , υ (γ)] | P = p) of the frequency-type posterior probability Pr ([τ (γ) , υ (γ)] | P = p) that increases monotonically with the confidence level γ of the observed confidence interval [τ (γ) , υ (γ)].

  )'s estimating Pr (ϑ ∈ C (γ; y) | P = p) by γ for diffuse or impartial prior distributions. On the other hand, estimating Pr (ϑ ∈ C (γ; y) | P = p) with the confidencebased estimate Pr (ϑ ∈ C (γ; y) | P = p) = γ can be highly inaccurate when it is plausible that

( 26 )

 26 follows by substitution. Since [τ (γ; Y ) , ∞[ = [τ (γ) , ∞[ and ]-∞, υ (γ; Y )] = ]-∞, υ (γ)] are valid confidence intervals, Pr (τ (γ 1 ; Y ) ≤ θ ≤ υ (γ 2 ; Y ) |ϑ = θ) = 1 -Pr (τ (γ 1 ; Y ) > θ|ϑ = θ) -Pr (υ (γ 2 ; Y ) < θ|ϑ = θ) ≥ 1 -(1 -γ 1 ) -(1 -γ 2 ) = (γ 1 + γ 2 -1)
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A Confidence levels as estimates of frequency-type probabilities Confidence intervals are often interpreted as interval-valued estimates of parameter values. The idea has been extended to entire confidence distributions as distribution-valued estimates of parameter values [START_REF] Singh | Confidence distribution (CD) -distribution estimator of a parameter[END_REF][START_REF] Xie | Confidence distribution, the frequentist distribution estimator of a parameter: A review[END_REF]. But what does the confidence level of a confidence interval estimate? For example, given an observed 95% confidence interval [θ (2.5%) , θ (97.5%)],

what is the number 95% an estimate for? One answer is that it estimates the indicator of whether θ, the true value of the parameter, is in the confidence interval, where the value of the indicator is Pr (ϑ = θ H 0 ) > 0; see equation ( 9). How to apply confidence-based estimation to that setting is the topic of Section 2.2. It is well known from studies of fiducial probability that Pr (ϑ ∈ C (γ; y) | P = p) = γ can break rules of probability in the sense that Pr (ϑ ∈ C (γ; y) | P = p) is not necessarily an exact posterior probability (e.g., [START_REF] Lindley | Fiducial distributions and Bayes' theorem[END_REF], but minor violations need not cause concern, for estimators need not satisfy the properties of the quantities they estimate. That is why Wilkinson (1977, §6.2) considered γ as an estimated level of belief (Bickel, 2019d,e). Here, it is instead considered as an estimated frequency-type probability in the sense of Section 1 on the basis of Theorem 2.

B Calibrated confidence intervals

For any confidence levels γ 1 and γ 2 such that 1 ≤ γ 1 + γ 2 ≤ 2, a generalization of the symmetric

LFDR-calibrated confidence interval given by τ LFDR (γ 1 ) , υ LFDR (γ 2 ) , where

That is an empirical Bayes interval as defined by Section 2.4's equation ( 15).

Theorem 3. For every

Proof. By equation ( 24),