
HAL Id: hal-02496105
https://hal.science/hal-02496105v1

Submitted on 2 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Fog storage software architecture for the Internet of
Things

Bastien Confais, Adrien Lebre, Benoît Parrein

To cite this version:
Bastien Confais, Adrien Lebre, Benoît Parrein. A Fog storage software architecture for the Internet
of Things. Advances in Edge Computing: Massive Parallel Processing and Applications, 35, IOS
Press, pp.61-105, 2020, Advances in Parallel Computing, 978-1-64368-062-0. �10.3233/APC200004�.
�hal-02496105�

https://hal.science/hal-02496105v1
https://hal.archives-ouvertes.fr

November 2019

A Fog storage software architecture for
the Internet of Things

Bastien CONFAIS a Adrien LEBRE b and Benoı̂t PARREIN c,1

a CNRS, LS2N, Polytech Nantes, rue Christian Pauc, Nantes, France
b Institut Mines Telecom Atlantique, LS2N/Inria, 4 Rue Alfred Kastler, Nantes, France

c Université de Nantes, LS2N, Polytech Nantes, Nantes, France

Abstract. The last prevision of the european Think Tank IDATE Digiworld esti-
mates to 35 billion of connected devices in 2030 over the world just for the con-
sumer market. This deep wave will be accompanied by a deluge of data, applica-
tions and services. Thus, it is quite urgent to propose operational Fog architectures
that support low latency, mobility (of users and possibly infrastructure) and net-
work partitioning. In this chapter, we will detail such an architecture that consists in
coupling an object store system and a scale-out NAS (Network Attached Storage)
allowing both scalability and performance. Moreover, we provide a new protocol
inspired from the Domain Name System (DNS) to manage replicas in a context of
mobility. Finally, we discuss the conceptual proximity between Fog storage, Con-
tent Delivery Networks (CDN) and Name Data Networking (NDN). A complete
experimental evaluation is done over the French cluster Grid’5000 in a second part
of the chapter.

Keywords. Fog storage, data management, scale-out NAS, InterPlanetary File
System (IPFS), Domain Name System (DNS), Content Delivery Networks (CDN)

1. Introduction

Proposed by Cisco in 2012 [BMZA12], Fog infrastructure consists in deploying mi-
cro/nano datacenters geographically spread at the edge of the network. Each small dat-
acenter can be seen as a Fog site, hosting only few servers providing computational and
storage resources reachable with a low latency. The new Internet of Things follows a
hierarchical topology from the point of views of distance and power capabilities: Cloud
facilities are the farthest elements in terms of network latencies but the ones that provide
the largest computing and storage capabilities. Edge/Extreme Edge devices can benefit
from local computing and storage resources but those resources are limited in compari-
son to the Cloud ones. Finally, Fog sites can be seen as intermediate facilities that offer a
trade-off between distance and power capabilities of IT resources [BMNZ14,ZMK+15].
Moreover, Fog sites can complement each other to satisfy the needs between user’s de-
vices and Cloud Computing centers [BW15,DYC+15]. In a processing and storage as-

1Corresponding Author: Polytech Nantes, rue Christian Pauc, 44306 Nantes, France; E-mail:
benoit.parrein@univ-nantes.fr. This work is the PhD work of Bastien Confais (defended in July 2018 at the
University of Nantes, France) under the supervision of Adrien Lebre and Benoı̂t Parrein.

November 2019

pect, Fog sites are designed to process and store operational data that have a lifetime up
to few days while Cloud infrastructures are designed to store historical data on several
months [BMNZ14]. Thus, the architecture is both vertical (from the Cloud to the Edge)
and horizontal (between Fog sites). This highly distributed infrastructure is necessary to
support massive parallel IoT data streams from our point of view. The big question is
what kind of distributed software is able to manage such infrastructure and for doing
what?

Many use cases can benefit from such an infrastructure. For instance Bonomi et
al [BMZA12] proposes to use the Fog Computing in a context of connected vehicles.
The Fog collects metrics from them and makes the decision to stop the vehicles in a
certain area if a pedestrian is detected on the road. Another use case is to deploy Network
Virtualization Functions in the Fog so that the network functions follow the users in their
mobility [BDL+17]. This should even be extended to a scenario where Fog Sites are
mobile themselves, embedded in a bus or a train, to provide a low latency access to the
users data during their travel. Finally, the Fog Computing can be used in Industry 4.0,
where a large number of sensors uploads data to the fog, which is then handled by many
users [TZV+11,WSJ17].

Figure 1 depicts such a hierarchy and some of the possible use cases. Each site
hosts a limited number of servers that offer storage and computing capabilities. End-
users devices (smartphones, tablets, laptops, ...) as well as the IoT devices (sensors, smart
buildings, ...) can reach a Fog site with a rather low latency (noted LFog) lesser than 10 ms
(latency of a wireless link). We consider the latency between Fog sites (noted LCore)
is up to 50 ms (mean latency of a Wide Area Network link [MTK06]). The latency to
reach a Cloud platform (denoted LCloud) from the clients is higher (about 200 ms) and
unpredictable [FGH14,SSMM14,ZMK+15,SSMM14]. We argue that storing data is a
prerequisite to processing. Therefore, we need an efficient storage solution deployed in
the Fog layer to handle the massive amount of data produced by the huge number of
IoT devices. However, a single storage solution designed to work in this multi-site and
low-latency context does not currently exist and our goal is to create it.

The first contribution of this work is to present the advantages and the drawbacks of
different existing strategy to locate data in such a network. The second contribution is to
propose to improve an existing storage solution by adding it a local Scale-Out NAS that
enables it to locate locally stored data more efficiently. Finally, our last contribution is to
propose a new protocol to locate data efficiently within a distributed network.

We particularly focus on the scenario of a symmetric Content Delivery Network,
where data (i.e., media documents) is produced at the edge of the network and is shared
with the other sites. The main interest of such a usecase is that replicas are static replicas
because the data is neither modified. This characteristic enables us not to consider the
consistency.

In the following of the chapter, we will first describe what an ideal storage solution
for Fog infrastructure is and present why existing solutions, developed for the Cloud
architecture cannot be used. Then, we present our solutions to improve them.

November 2019

Extreme Edge

Frontier Frontier

Frontier

Domestic network

Enterprise network

Wired link
Wireless link

Cloud Computing

Cloud Latency

ge to Fog latency
[10-100ms]

Mo

Figure 1. Cloud, Fog and Edge infrastructures for the IoT with related end-to-end delays.

2. Distributed storage for the Fog: an overview

In this section, we introduce the properties we expect from an ideal storage solution
designed for a Fog infrastructure before explaining why the existing solutions and ap-
proaches used for Cloud Computing are not appropriated and must be revised.

2.1. Properties for an object store working in a Fog environment

Our goal is to create a unified storage solution for Fog architectures that can handle both
a large quantity of data and a lot of accesses in parallel. This means each user and IoT
device should be able to efficiently access all stored objects, regardless the site they are
connected to. We previously established a list of 5 properties an ideal storage solution
should meet [CLP16].

Data locality: in order to reduce the access times to the lowest value as possible, data
should be written on the closest site of the user, which should be the site reachable
with the lowest latency. Similarly, read data should be located on the site that restricts
by consequence the forbidden remote accesses. Besides a high Quality of Service, the
expected outcomes are also privacy and sustainability [BMNZ14].

Data availability: storage nodes are spread among a huge number of sites connected
with non-reliable links. Therefore, an ideal storage solution should be fault-tolerant. Iso-
lated failures should be managed inside the site they occur while an unreachable site
should not impact the availability of the other sites. It is particularly the case with mobile
Fog sites embedded in a bus or a train by example.

Network containment: Network containment consists in limiting the network traffic
exchanged between the sites. This property has three aspects. First, only actions of the
users should produce network traffic exchanged between the sites. Secondly, the access to
a site should not impact the performance of the other sites. When a site is more solicited

November 2019

than the others, the other sites should not see their performance degraded. Finally, when
users access data that is not stored on the site they are connected to, data should be
located before being able to access it. Nevertheless, sites that do not participate in this
exchange should not be contacted. In this context, the physical topology should be taken
into account: exchanges using close sites, connected via a low latency link should be
favoured. For instance, in case of document sharing between work and home, only the
Fog sites located on the road between these two locations should be solicited.

Disconnected mode: the ability to access data stored locally on the site when no other
site can be reached due to network failure is an essential property. Sites should be the
most independent as possible. For instance, in a mobile Fog Site, users connected to it
should access the data, even in case of network partitioning.

Mobility support: users are mobile and are always connected to the site reachable with
the lowest latency. When the requested data is not stored on the local site, the data should
be downloaded and cached on the current site to improve performance of future and
predictable accesses.

Scalability: finally, an ideal storage solution for Fog architectures should be scalable
to a large number of sites and a large number of clients.

To conclude, these properties can be understood with the Brewer theorem’s in mind.
The Brewer’s theorem establishes that it is impossible to support simultaneously the con-
sistency, the data availability (e.g., the client gets a response in a finite time) and the
partitioning of the network [GL02,Bre10]. Because, data availability and disconnected
mode are in the list of the properties we want for an ideal storage solution, consistency is
therefore not a property we can meet at all time and especially when the network is par-
titioned. This is also the reason why in this work, we consider all the data as immutable
and where all replicas are static. In other words, we consider the access pattern to be
write-once, read-many.

2.2. From Cloud storage solutions to Fog: the metadata management challenge

Because Fog nodes are geographically spread, the main challenge storage solutions will
have to face to work in such an environment is how they locate the data.

Traditional distributed filesystems often rely on a centralised metadata server. As
illustrated in Figure 2, the client first contacts a metadata server to locate the data and
then reaches the node storing the replica. This approach is particularly used by High
Performance Computing (HPC) solutions such as PVFS [CLRT00], Lustre [DHH+03]
or IO intensive Scale-Out NAS such as RozoFS [PDÉ+14].

Nevertheless, this approach cannot provide the scalability required for large deploy-
ments characterized by a large number of storage nodes as well as a huge workload and
cannot work in a distributed environment, where the centralised metadata server is not
on the local site. To overcome this challenge, object stores propose a flat namespace,
where each data is simply associated to a name. This reduces the amount of metadata to
store and to access due to the absence of directories. As a consequence, the centralised
metadata server is far less solicited and can be replaced by a more scalable but not so
performant mechanism like a Distributed Hash Table.

November 2019

where is
{data identifier}?

on “serveur 2”

read {data identifier}
data=”mydata”

Client Metadata server
Storage
server 1

Storage
server 2

Storage
server 3

Figure 2. Sequence diagram showing how a client can access a data in a traditional distributed storage solution.

2.2.1. Approaches to locate data in a distributed manner

In this section, we present different approaches to locate data in a distributed manner that
is a major functionality of any storage solution. We decline the 5 properties of Section 2.1
for a fog storage solution into 5 more specific properties that need to be met by the
location process.

(i) Access times evaluate how close from the user the location records are stored. It is an
extension of the “data locality” property to the location records.

(ii) Amount of network traffic while adding or removing a site and
(iii) Knowledge of the network topology evaluate how the location approach is scalable

and reacts to the mobility of the sites themselves.
(iv) Amount of network traffic to locate an object is related to the above “network con-

tainment” property.
(v) Minimal redundancy corresponds to the “” property of the solution. The approaches

that require to replicate the location records on all the nodes cannot scale to a huge
number of objects.

We evaluated 6 software solutions commonly used to locate data: a centralised meta-
data server, a flooding, a gossip, a hash function, a DHT and a one-hop DHT [DHJ+07,
CRS+08,LM10,Ben14]. Figure 3 presents a qualitative analysis of these solutions in star
diagrams.

Centralised metadata server: the use of a centralised metadata server does not scale
and the need to reach a remote site to locate an object hugely impacts the access times.
The main advantages of this approach are that all nodes only have to know the address
of the metadata server to be able to locate objects and not the full network topology. This
also support network topology to change as long as the centralised metadataserver is not
impacted;

Flooding: this approach does not require to store the location of the objects. Each node
forwards the requests to its neighbours until the request reaches the node storing the
requested object. To avoid loops, requests are associated to a Time-to-Live (TTL). The
advantage of this approach is not to require all nodes to know the network topology.
And because the network topology is not know, the solution supports churn very well.
However, the main drawback of this approach is the unpredictable amount of time needed
to reach a requested object and the huge overhead of network traffic generated. Many

November 2019

(a) – Centralised approach (b) – Flooding

(c) – Gossip (d) – Hash function

(e) – Distributed Hash Table (f) – One hop Distributed Hash Table

Figure 3. Star diagrams summarising the properties for several approaches that can be used to locate data
in a distributed system. The lower a value is, the more the property is compatible with a Fog Computing
infrastructure.

nodes receive request for objects they do not store. There is also no guarantee to succeed
in locating an existing object, as shown in Figure 4.

November 2019

Figure 4. Example of a flooding approach when the TTL specified is too low to reach the needed object.

Gossip: this approach consists for each node to select a random neighbour and to send
it all its knowledge about the location of objects. By repeating regularly this action, each
nodes tends to know where all objects are located. It leads to store the location of ev-
ery object on every node. Figure 5 shows an example of how location records are prop-
agated throughout the network. Once the location is propagated to all nodes, the main
advantage of this approach is to be able to locate any object without sending anything
on the network. It also does not require the nodes to know the whole network topology
but only their neighbouring. Because of this limited knowledge, managing churn can be
done without propagating a lot of new information. Nevertheless, the main drawback is
that the location of each object is stored on all the nodes, leading to increase the storage
cost. We also should consider the huge amount of network traffic to propagate the loca-
tion record of all pieces of data on all nodes prior to enable them to locate them without
any extra exchange. In fact, instead of generating the network traffic when it is needed, it
is generated in advance. This is why we think it is important to consider this background
traffic as the network traffic required to locate a piece of data.

Figure 5. Example of gossip propagation when the green object is located on node “n1” and orange object on
node “n4”. Nodes can receive several times the location record for a given replica (i.e., “n9”).

Hash function: applying a hash function on the name of the object is another approach.
In this way, any object can be located without storing the location and requesting the
network for it. The advantage is that locating can be done very quickly, without any net-
work exchange. But, the drawbacks is not to explicitely choose where to store a spe-

November 2019

cific piece of data. Also, each node has to know the entire topology of the network to be
able to associate the node address from the value computed with the hash function. This
also makes churn a new problematic because when the network topology change, there
is no guarantee the existing mapping between hash values and nodes can be preserved.
Therefore, churn requires to move some of the objects tored in the network. We note that
consistant hashing is a particular hashing that minimizes the number of objects to move
in case of churn.

Distributed Hash Table: a DHT proposes a trade-off between the amount of network
traffic generated to locate an object and the knowledge of the topology by each node.
Each key is stored on the node with the identifier immediately following the value of
the hash computed from the key. Routing tables are also computed so that each node
knows a logarithmic number of neighbours and can reach any key with a logarithmic
number of hops. Figure 6 shows an example of a Chord DHT where the hash function
computes the value 42 for the key key [SMK+01]. Therefore, the value associated to
the key will be stored on the node with the identifier 45 reached in 3 hops from the
node 0. According to the Chord routing protocol, each node forwards the request to the
node of its routing table which has the closest identifier to the hash of the key looked
for without exceeding its value. Each entry of the routing table is pointing to the node
with the identifier immediately greater than p+2i where p is the identifier of the current
node and i is varying from 0 to the log of the keyspace size. Based on these simple rules,
the node 0 uses the route 0+ 25 = 32 pointing to the node 38 because the next route
0+26 = 64 is greater than the key with the hash 42 we are looking for. In the same way,
the node 38, uses the route 38+21 = 40 pointing to the node 40, and finally, the node 40
uses the route 40+21 = 42 pointing to the node with the identifier 45.

Figure 6. Example of DHT routing to access the key with a hash equal to 42

The advantage of the DHT is the to have the good tradeoff between the network
exchanges required to locate an object and the amount of topology knowledge each node
has. We also note that DHT enables churn by moving the minimal number of objects.
Finally, the main drawback of the DHT is not to let user to choose where to store any
piece of data.

One-Hop Distributed Hash Table: a one-hop DHT is a mix between a hashing function
and a gossip approach. Instead of sending the location of each object with a gossip proto-
col, the topology of the network is propagated to all the nodes by a gossip protocol. Each
node sends to its neighbours the range of keys it is responsible for and build a table con-
taining these values for all the nodes of the network. Then, to locate an object, the hash

November 2019

of its name is computed and then the node responsible for the range of keys containing
the hash value is directly reached. Because once the network topology is gossiped to all
nodes, the location process is similar to the use of a hashing function, that is why Fig-
ure 3(d) is similar to Figure 3(f). The main drawback of such an approach is the location
is replicated on every node which is costly in terms of storage space usage.

We argue the best solution to store the location records does not impact the access
times, exchange a small amount of network traffic when an object is located and when
a site is added or removed in the network. For reasons, it is also a solution that does not
require each node to store the location of each object and to know the entire topology.

2.2.2. Existing Cloud storage solutions

In this section, we propose to present different object stores designed to work in tradi-
tional Cloud infrastructure and evaluate how they behave in a Fog environment.

We focus on Rados [WLBM07], Cassandra [LM10] or InterPlanetary Filesystem
(IPFS) [Ben14] that rely on the mechanisms we presented in the previous section to
locate the data. Rados relies on a hashing function called CRUSH [WBMM06] to locate
the data. An elected node is responsible for distributing a map describing the network
topology as well as some placement constraints to all the storage nodes and clients. Then,
each node is able to locally compute the location of each object wihtout any network
exchange. The main advantage of Rados is to contain the network traffic thanks to its hash
function but because this solution relies on a Paxos protocol to distribute the network
topology description to all the nodes, it is not able to work in case of network partitioning.
Also, moving exisiting stored data is not something easy making the support for mobility
limited.

Cassandra is a solution originally developed by Facebook that uses a one-hop DHT
maintained thanks to a gossip protocol. In Cassandra, each node regularly contacts an-
other node chosen randomly to send its knowledge of the network topology. Then, like
in Rados, objects can be located by each node without any other solicitation. The main
difference between Rados and Cassandra is the way the map describing the topology is
distributed among the nodes. Therefore, the advantages and drawbacks of Cassandra are
the same as Rados, except that Cassandra does not rely on a Paxos protocol to distribute
the description of the topology and therefore, can be used (is available according to the
Brewer’s theorem [Bre10]) in case of network partitioning.

Finally, IPFS is an object store relying on a BitTorrent protocol to exchange data
between the nodes and on a Kademlia DHT to locate the nodes storing a replica for a
given object. The advantage of this solution is to automatically create new replicas on
the nodes they are requested and in case of network partitioning because each node has
a limited knowledge of the network topology. But its disadvantages is to use immutable
objects. In other words, objects in IPFS cannot be modified. We also not that the DHT
spread to all nodes does not contain the network traffic.

Table 1 summarizes these points. Nevertheless, although all these solutions can deal
with a huge number of servers, they are not designed to work in a multi-sites environ-
ment connected by high latencies and heterogeneous network links. Some distributed
filesystems are designed to work in a multi-sites environment interconnected with Wide
Area Network (WAN) links such as XtreemFS [HCK+08], GFarm [THS10] or Glob-
alFS [PHS+16] but because they are filesystems and not object stores and because they

November 2019

Purpose Advantages Disadvantages

Rados Object store relying
on a CRUSH hash
function & a Paxos
protocol

• Locate data without any
network exchange (CRUSH)

• Cannot work in case of net-
work partitioning (Paxos pro-
tocol)

• Scalability difficulty (Paxos
protocol)
• Moving stored data with

difficulty

Cassandra Key/value store rely-
ing on a hash function
& a Gossip protocol

• Place data without any net-
work exchange

• Moving stored data with
difficulty

• Works in case of network
partitioning (Gossip)

IPFS P2P object store re-
lying on a Bittorrent
protocol & a DHT

• Automatically relocates
data to new location: improve
access times

• The DHT does not contain
the network traffic

• Works in case of network
partitioning

• Uses immutable objects

Table 1. Summary of the advantages and disadvantages of the presented storage solutions.

rely on a centralised approach, their performance is not what we can expect for Fog
infrastructures.

2.3. How existing solutions fit the properties

In order not to develop a storage solution from scratch, we deployed the object stores pre-
viouly introduced (Rados, Cassandra and IPFS) a Fog infrastructure and evaluated their
performance [CLP16] and how they met the properties we expect for a Fog storage solu-
tion. The complete analysis of this study is available in an article previously published by
the authors [CLP16]. In this chapter, we just underline that none of the existing solutions
meet the properties we defined for a Fog storage solution (as depicted in Table 2). For
Rados, the use of Paxos algorithm makes data unavailable in case of service partitioning
and limits its while for Cassandra, the lack of flexibility to move the stored object on the
sites the users are moved to make access times higher. Finally, IPFS provides a native
mobility because it does not have a placement strategy. Clients write where they want
and the object stores keep track of where each data object is written.

Rados Cassandra IPFS

Data locality Yes Yes Yes
Network containment Yes Yes No
Disconnected mode No Yes Partially
Mobility support Partially Partially Natively
Scalability No Yes Yes

Table 2. Summary of Fog characteristics a priori met for 3 different object stores.

In the following, we propose to use the IPFS object store as a starting point and we
propose some modifications to improve its behaviour in a Fog environment so that all

November 2019

the properties are met. We chose to start from IPFS because the mobility support is an
essential property that cannot be added without modifying the placement strategy at the
core of the storage solutions.

3. Designing a scalable and efficient Fog Layer

In a Fog Context, the inter-sites network exchanges are costly. It is important to limit
them, not only to reduce the access times but also to enable the system to work in an
environment with huge network latencies (with the extreme case of infinite latency due
to network partitioning). In an ideal case, communication between the sites should only
occur when an object is requested from a remote site.

In the following sections, we focus on the IPFS object store to adapt it to Fog en-
vironment. The goal of the first modification presented in Section 3.1, is to contain the
network traffic while users access to locally stored objects. To that end, we proposed to
couple IPFS to a Scale-out NAS solution.

The second modification consists in storing the location of the objects in a tree map-
ping the physical network topology to contain the network traffic in the data location
process. This new protocol is covered in Section 3.2 of this chapter.

3.1. Reduction of inter-sites network traffic for locally stored data

In this section, we first present why the DHT used by IPFS to locate an object is not able
to contain the network traffic. Secondly, we describe our approach consisting in coupling
IPFS to a Scale-Out NAS that enables users to access objects locally stored on the site
they are connected to without sending any inter-site network request.

3.1.1. Problem description

To understand the DHT limitation, we propose to detail the network exchanges we ob-
serve in IPFS. The writing and reading process are shown in the sequence diagrams of
Figure 7. Figure 7(a) shows the creation of a new object : the client sends the object to
any node located on the closest site (in terms of network latency). The object is stored
locally and the DHT storing the location of each object is updated. Because the DHT
does not provide any locality, the location of the object can be stored on any node of the
network. In our example, the Node 3 located on Site 2 stores the location of an object
that was written on Site 1. This node was determined thanks to a hash function on the
object identifier.

Figure 7(b) shows what happens when a client reads an object stored on the local
site. Each time a node receives a request for a particular object, it checks if the object
is not stored on its hard drive thanks to a bloom filter for instance. If it is not the case,
(i) a hash is computed according to the object name, (ii) the node storing the location is
contacted, (iii) the object is downloaded thanks to a BitTorrent like protocol, (iv) a local
replica is created while the object is forwarded to the client and (v) the DHT is updated to
reflect the existence of this new replica. Finally, Figure 7(c) describes the protocol when
an object is requested from a remote site: when the client moves from one site to another.
We nevertheless precise that in all the situations, the client contacts a node located on the
closest site (in terms of network latency).

November 2019

In other words, IPFS and more specifically the DHT it uses, does not take into ac-
count the physical topology of the Fog infrastructure. Each server is considered as inde-
pendent rather than being part of a cluster of computers located on a on same site. When
a new object replica is created, either by a user or by the relocation process, the other
IPFS nodes of the site are not informed of the existence of this new replica and relies
on the DHT to locate it. This is illustrated by the second read of the Figure 7(c). While
the object is already available on the Node 4 of the Site 3, the Node 5 must contact the
DHT to locate it. This has two main drawbacks. First, such a process increases the access
times and network traffic exchanged between the sites. Secondly, the clients cannot ac-
cess all the objects stored on the site when the site is disconnected to the other (network
partitioning) because the location of objects cannot be found. IPFS, provides an efficient
way to access data thanks to the BitTorrent protocol but does not take into account the
specificities of a Fog Computing architecture.

3.1.2. A Fog storage software architecture

In order to improve IPFS in a Fog Computing environment, we propose to deploy a dis-
tributed filesystem independently on each site, such as a Scale-Out NAS. This Scale-Out

Site 1 Site 2

store object

put

{object identifier}=
”data”

done add location in DHT:
”{object identifier} in IPFS Node1”

Client IPFS Node1 IPFS Node2 IPFS Node3

(a) – Writing of an object.

Site 1 Site 2

read object

get {object identifier}

object=”data”

DHT: locate
{object identifier}
in IPFS Node1

get/read

{object identifier}
object=”data”

get {object identifier}

object=”data”

store object

DHT: add ”{object identifier}
in IPFS Node2”

Client IPFS Node1 IPFS Node2 IPFS Node3

(b) – Reading of an object stored on the local site.

Site 1 Site 2 Site 3

DHT: locate
{object identifier}

in IPFS Node1&2

get/read {object identifier}
object=”data”

get/read {object identifier}
object=”data”

get {object identifier}

object=”data”

store object

DHT: add
”{object identifier}
in IPFS Node4”

IPFS Node1 IPFS Node2 IPFS Node3 IPFS Node4 IPFS Node5 Client

Site 1 Site 2 Site 3

DHT: locate {object identifier}
in IPFS Node1,2&4

get/read {object identifier}
object=”data”

get/read {object identifier}
object=”data”

get/read {object identifier}
object=”data”

get {object identifier}

object=”data”

store
object

DHT: add
”{object identifier}
in IPFS Node5”

IPFS Node1 IPFS Node2 IPFS Node3 IPFS Node4 IPFS Node5 Client

(c) – Reading of an object stored on a remote site (by requesting a local node: IPFS Node4 or IPFS Node5).
Figure 7. Sequence diagrams showing (a) the writing process, (b) the reading of an object stored on the local
site and (c) on a remote site with the IPFS solution.

November 2019

NAS is used as an underlying storage solution for all the IPFS nodes of the site, as il-
lustrated in Figure 8. This approach enables IPFS nodes to access all objects stored by
the other nodes of the site, while requiring very few modifications in the source code.
This coupling is possible because each IPFS node internally stores each object in a file.
Instead of accessing a file on the local filesystem, IPFS will access the distributed filesys-
tem provided by the Scale-Out NAS.

Figure 8. The Fog software architecture combining an object store (IPFS) and a Scale-Out NAS (like RozoFS).

Coupling an object store with a Scale-Out NAS is not a new idea and many pro-
posals have already been made. For instance, Yahoo developed Wlanut [CDM+12], an
object-store relying on different filesystems such as Hadoop Filesystem (HDFS). How-
ever, our approach is a bit different because the underlying Scale-Out NAS is not a global
filesystem but a distributed filesystem local to each site. IPFS is only a “glue” to create a
global namespace through the different sites. A similar approach was already proposed
in Group Base FileSystem (GBFS) [LBB14] where different filesystems deployed at dif-
ferent locations are aggregated into a common namespace. This solution was not effi-
cient because all accesses starts by requesting the server responsible for the root direc-
tory leading to a huge workload. The main difference in our approach is that we rely on
an object store and therefore there is no root directory to act like a bottleneck.

Finally, the interest of using a Scale-Out NAS such as RozoFS [PDÉ+14] or Glus-
terFS [DO13] is the capability to add nodes on the fly, increasing not only the storage
space but also the performance of the system because the requests are spread uniformly
between the different nodes.

Figure 8 shows the modification we made in the deployment of IPFS while Figure 9
shows through sequence diagrams the interactions between the different components.

We observe there is no change in the protocol when an object is created, except that
instead of storing the object directly on the node, it is sent to the distributed filesystem.

The main changes occur when a client wants to access an object. Figure 9(b) shows
this changes: thanks to the Scale-Out NAS, all IPFS nodes of a site see the objects manip-
ulated by the other nodes on the same site. As a consequence, regardless the IPFS node
requested, when the node checks if the object is stored locally, it requests the Scale-Out
NAS and finds it as if the object was written by itself. Contrary to the original conception

November 2019

Site 1 Site 2

get DFS Nodes to store {object identifer}
DFS n1

store object

put

{object identifer}=
”data”

done

DHT: add location record ”{object identifier} in IPFS n1”

Client IPFS n1 IPFS n2 DFS n1 DFS n2 DFS MDS IPFS n3

(a) – Writing.

Site 1 Site 2

get DFS Nodes storing {object identifer}
DFS n1

read object

get

{object identifier}

object=”data”

get DFS Nodes

storing {object identifier}
DFS n1

read object

get

{object identifier}

object=”data”

Client IPFS n1 IPFS n2 DFS n1 DFS n2 DFS MDS IPFS n3

(b) – Reading of an object locally stored.
Site 1 Site 2 Site 3

get DFS Nodes storing

{object identifier}
object not found

DHT: locate {object identifier}

in IPFS n1

get DFS Nodes storing {object identifier}

DFS n1
read object

get/read {object identifier}

object=”data”

get

{object identifier}

object=”data”
get DFS Nodes

to store {object identifier}
DFS2 n1

store object

DHT add:
”{object identifier} in IPFS n4”

get DFS Nodes

storing {object identifier}

DFS2 n1

read object

get

{object identifier}

object=”data”

IPFS n1 IPFS n2 DFS1 n1 DFS1 n2 DFS1 MDS IPFS n3 DFS2 MDS DFS2 n1 IPFS n4 IPFS n5 Client

(c) – Reading of an object stored on a remote site.
Figure 9. Sequence diagrams showing the reading and writing processes when IPFS is used on top of a dis-
tributed filesystem (DFS) deployed on each site independently.

of IPFS, there is no need to request the DHT to locate objects that are locally available
on a site.

In a similar way, Figure 9(c) shows the protocol when a client wants to access a data
stored on a remote site. As usual, the client sends its request to any IPFS node of the site.
The node checks in the distributed filesystem if the object exists and because it cannot
find it, it requests the DHT to locate a replica. The object is then downloaded and a new
replica is stored in the local Scale-Out NAS before the DHT is being updated. Future
accesses performed from this site will be answered without any communication with the
other sites, regardless the requested IPFS node .

This enables IPFS to meet the “network containment” property in case of local ac-
cess but also to enable each site to work independantly in case of network partitioning.
This is illustrated in Table 3. We finally have to remind the objects stored by IPFS are
immutable, thus, we are not concerned by checking if the local replica stored in the local
Scale-Out NAS is the most recent version of the object or if updated version can be found
on another site.

November 2019

To summarise, our approach limits the network traffic for accessing locally stored
objects because when a client requests an object which has one of its replica available
on the local site, the DHT is not used. In the other situations, the amount of inter-sites
network traffic is still the same.

A last point we mention is that our approach uniformly balances the data stored on
all the nodes composing the site. If a client sends a huge amount of data to a specific
IPFS node, the node will have to store these data in the standard approach but in our
proposal, the data is spread among all the storage servers composing the Scale-Out NAS
within a site.

IPFS IPFS coupled with Scale-Out NAS
(proposed solution)

Data locality Yes Yes
Network containment No Only for local access
Disconnected mode Partially Yes
Mobility support Natively Natively
Scalability Yes Yes

Table 3. Summary of Fog characteristics met by IPFS and our proposal.

3.1.3. Limitations

It is important to notice the performance of the approach we presented can greatly be
improved. When an object stored remotely is accessed, the object is downloaded from
all the nodes where a replica is stored (see Figure 7(c)). This is the default behaviour of
IPFS to download the object in the most efficient way: if a node is overloaded, all others
nodes are able to reply.

In our approach using the Scale-Out NAS, the situation is different because at most,
one node per site is known in the DHT as storing a replica of the object: either the node
on which the client writes the object or the first node of each site to access the object.
As it is illustrated in Figure 9(c), the IPFS Node 4 located on Site 1 can only download
the object from the IPFS Node 1 located on Site 1 because it is on this node the object
was previously written on and therefore, it is this node which is known in the DHT as
having the object. The IPFS Node 4 has no way to know that it can also download the
object from the IPFS Node 2, sharing the distributed filesystem with the IPFS Node 1.
This situation can lead to bottlenecks or to the overload of some nodes. In the same way,
if the IPFS Node 1 becomes unreachable, the object cannot be downloaded on the other
sites, whereas the IPFS Node 2 could be used as a source of the transfer.

A simple solution to these difficulties could be to store in the DHT an identifier of
the site rather than an identifier of the IPFS node. We nevertheless let this modification
for a future contribution.

3.2. Reduction of inter-sites network traffic for accessing data stored on a remote site

In the previous section, we proposed to couple IPFS with a Scale-Out NAS deployed
independently on each site to contain the network traffic while accessing to locally stored
object. However, for accessing objects stored on a remote site, the use of the DHT does

November 2019

not contain the network traffic close to the user and does not store the location of the
object close to the replicas. In the following section, we will present the Domain Name
System protocol that have interesting properties for a Fog infrastructure and then, we will
introduce our own protocol relying on a tree built according to the physical topology.

3.2.1. Domain Name System protocol: an inspiration for our approach

Because neither the DHT nor any other traditional approach are able to provide physical
locality and to relocate the records storing the location of object replicas close to where
they are needed, we propose a protocol inspired by the Domain Name System (DNS).
In the DNS protocol, a resolver who wants to perform a query, first requests a root node
and if the root node cannot answer the query directly, it indicates to the resolver which
server is the most able to answer. This mechanism is similar to the hops performed in a
DHT but with a major difference: it is possible to choose the node storing the location of
object replicas instead of using a hash function. It is also possible to control the servers
that a node needs to reach to perform a query which is a very interesting property in a
Fog context. Also, reusing the cache mechanisms of the DNS to reduce the access times
is something we want to benefit.

3.2.2. Metadata management overview

We propose to distribute the location records within a tree, in the same way as in the DNS
protocol, the different names are spread in different servers organised in a hierarchical
way. The tree is composed of different sites of Fog and contrary to the DNS, it is browsed
in a bottom-up manner, from the current site to the root node. If the location is not found
at a given level, the parent node is then requested.

We suppose the tree is built according to the physical topology of the network and
the network latencies with the ultimate goal of reducing the time to locate any piece
of data. In other words, the parent of each node is close physically and looking for the
location of the object by requesting it, is faster than requesting the parent of the parent.
Besides, it limits the network traffic to a small part of the topology.

Rennes Paris
4.5 ms

Lyon

10.0 ms

Bordeaux

5.0 ms 4.0 ms

NiceMarseille
5.0 ms

9.0 ms4.0 ms

Toulouse
2.5 ms

Strasbourg
4.0 ms

7.0 ms5.0 ms

5.0 ms

3.0 ms

Figure 10. Part of the French Na-
tional Research and Education Net-
work physical topology.

Strasbourg (Site 1)
*.strasbourg�at "strasbourg"

Nice (Site 2)
*.nice�at "nice"

Marseille (Site 5)
*.marseille�at "marseille

*.nice�at "nice

*.toulouse�at "toulouse"

Toulouse (Site 7)
*.toulouse�at "toulouse"

Paris (Site 3)
*.paris�at "paris

*.rennes�at "rennes"

Rennes (Site 4)
*.rennes�at "rennes"

Lyon (Site 6)
*.strasbourg�at "strasbourg

*.nice�at "nice
*.paris�at "paris

*.rennes�at "rennes
*.marseille�at "marseille

*.lyon�at "lyon
*.toulouse�at "toulouse

*.bordeaux�at "bordeaux"

Bordeaux (Site 8)
*.bordeaux�at "bordeaux"

Figure 11. Tree computed with our algorithm showing the initial
content of the “location servers”. Each site also has storage nodes
and clients which are not represented.

Figure 11 shows the tree we computed from the network topology of the French
NREN presented in Figure 10. This approach to build the tree will be explained in the
next section. Figure 11 shows the location record organisation as well. The edges be-
tween the nodes correspond to physical network links. Each node is able to answer to all
requests for objects stored in their subtree, and more specifically, the root node located in

November 2019

Lyon is able to provide an answer to all the requests. The root node was chosen because
of its central position in terms of latency according to the geographical topology (cen-
tral east of France). As explained by Dabek et al., network latency is dominated by the
geographic distance [DCKM04]. We consider each site is composed of a “storage back-
end” and a “location server”. The “storage backend” is in charge of storing the objects
but also of retrieving them from other sites when it is not stored locally (i.e., the NAS
server introduced in the Section 3.1 for instance). The “location server” is responsible
for storing the association between an object’s name and sites in its subtree, on which a
replica is stored. Concretely, they store location records composed of an object’s name
and the address of a storage node storing a replica for this object. For a given object, a
server stores at most one record per replica. Figure 11 also shows the initial content of
the location servers. For instance, the *.paris record defines the default location of all
the objects suffixed with .paris. The advantage of this special location record will be
explained in the next paragraph. In the following sections, we use Figures 12, 13 and 14
to explain how object replicas are created, accessed and deleted through this overlay.
This figure shows the network messages exchanged by these nodes but also the physical
path taken for routing them.

Object creation: Figure 12 shows when a client writes an object, a suffix corresponding
to the site where the object has been created, is added to the object’s name. This leads
not to update the location server as we see on the figure. With the wildcard delegation
(e.g., *.paris), location records are not updated when the object is created but only
when additional replicas are added. In our Fog Computing vision, we assume that objects
are mostly read from the site where they have been created. This strongly reduces the
amount of location records stored. Nevertheless, relying only on the suffix of an object
to determine its location is not sufficient. A storage node in Paris should not be directly
contacted when a user wants to access objectX.paris. Although we know a replica of
the object is available in Paris, we must be sure it does not exist a closer replica in the
network. Suffixes are only used here to limit the amount of updates messages when new
object replicas are created.

Paris

No location updated.
The stored record

*.paris→at ‘‘paris’’

matches the object’s name.

put
objectX.paris

done

Client
Storage
backend

Location
server

Figure 12. Sequence diagram of network traffic when a client writes an object in Paris.

Accessing an object from a remote site for the first time: Figure 13(a) shows the reading
process to get an object created in Paris from Nice. The client begins to request the local
storage node and then, if the requested object is not stored locally, this node looks for
the location of the object. The first location server requested is the local one, which is
the closest. Then, in case of non-existent location, the storage node requests the parent
of the location server (i.e., Marseille) and so on, until one metadata server answers with
the location. In the worst case, the location is found on the root metadata server (i.e.,
Lyon). Once the optimal location found, the object stored in Paris is relocated locally,
and because a new replica is created, the location record is updated asynchronously. The

November 2019

storage node sends an update to the location servers from the closest one to the one on
which the location was found. In this way, sites that are in the subtree of the updated
“location servers” will be able to find this new replica in future reads. We note that it
could be possible to not use “location records” but to directly replicate all object across
the path between the sites and the root node. However, this strategy cannot be envisioned
due to storage space it would require.

Accessing the object when several replicas are available: Figure 13(b) shows that when
Toulouse requests the object created in Paris and previously relocated in Nice. The read-
ing process is the same as previously described but the replica in Nice is accessed thanks
to the location record found in Marseille. The root metadata server in Lyon is neither
reached nor updated. We note that, despite a replica of the object was previously added
at Nice, the object’s name is not modified. Toulouse still looks for the object suffixed
with .paris but now, thanks to the location record stored in the tree, it is able to access
a closer replica stored at Nice. Therefore, suffix in object names does not have meaning
in the read process. Readers only need to know the site the object was first written on,
and not all the locations of the replicas. This approach has several advantages. First, no
network traffic is generated for objects that are written but never accessed. Secondly, the
more sites access an object, the more replicas of data and location records. Also, in our
approach, the object replica is always found in the subtree of the node we get the loca-
tion of this object replica. Therefore, the closer the location, the closer the data. In other
words, our approach enables the nodes to retrieve the closest replica (from the tree point
of view).

Nice Marseille Lyon Paris

Object lookup phase

Object relocation phase

where is
objectX.paris?

not found

where is
objectX.paris?

not found

where is
objectX.paris?

at “Paris”

get
objectX.paris

object

get
objectX.paris

object

store
objectX.paris

add
objectX.paris→at “Nice”

add objectX.paris→at “Nice”

add objectX.paris→at “Nice”

Client
Storage
backend

Location
server

Location
server

Location
server

Storage
backend

(a) – Read the object stored in Paris from Nice.

Toulouse Marseille Lyon Nice

Object lookup phase

Object relocation phase

where is
objectX.paris?

not found

where is
objectX.paris?

at “Nice”

get objectX.paris
object

get
objectX.paris

object

store
objectX.paris

add
objectX.paris→at “Toulouse”

add objectX.paris→at “Toulouse”

Client
Storage
backend

Location
server

Location
server

Location
server

Storage
backend

(b) – Read from Toulouse the object previously read from
Nice.

Figure 13. Sequences diagram of network traffic when a client reads from “Nice” and “Toulouse” an object
stored in “Paris”.

November 2019

Nice Marseille Lyon

delete
objectX.paris

delete
objectX.paris

done
where is

objectX.paris?

at “Nice”

delete
objectX.paris→at “Nice”

where is objectX.paris?

at “Nice” and “Toulouse”

delete objectX.paris→at “Nice”

where is objectX.paris?

at “Nice”

delete objectX.paris→at “Nice”

add objectX.paris→at “Toulouse”

Client
Storage
backend

Location
server

Location
server

Location
server

(a) – Delete a single object replica (Nice).

Paris Lyon

delete
objectX.paris

delete
objectX.paris

done

where is objectX.paris?

at “Toulouse”

add objectX.paris→at “Toulouse”

Client
Storage
backend

Location
server

Location
server

(b) – Delete a “master copy” (Paris).
Figure 14. Sequences diagram of network traffic when a client deletes a single replica.

Deleting a single replica or removing an object entirely: To delete a single replica, the
strategy we propose is to browse the tree from the site storing the replica to the first site
that does not store any location record pointing to it. All the location records between
pointing to this specific deleted replica are removed. But, it can lead to inconsistencies
where nodes do not know another replica is stored in their subtree. That is why we
propose to recopy some location records to the upper levels of the tree. For instance,
to delete the replica located in Nice, the location record objectX.paris→at “Nice” is
removed from the location servers of Nice and Marseille and Lyon. Nevertheless, because
the location server in Marseille has also a record for this object pointing to Toulouse, a
new record pointing to Toulouse has to be added in Lyon. In the case of removing the
“master copy” of an object, we can browse the tree from the current node to the root node
and to recopy on each server of the path any location record stored in the root node that
is not a wildcard for this object. For instance deleting the replica stored in Paris leads to
insert a record objectX.paris→at “Nice” in Paris.

To delete an object entirely which consists in removing all its replicas, we propose to
browse the tree from the root node and to follow and delete all the location records found
for this object. Nevertheless, wildcard records can be followed but cannot be deleted
because they are also used for other objects.

To conclude this section, we argue our protocol is more adapted for Fog infrastruc-
tures than the DHT because location is found along the physical path from the current
node to the root node. Finally, in addition to reducing the lookup latency, creation of
location records enables the sites to locate reachable objects replicas in case of network
partitioning, increasing Fog sites autonomy. The properties of the proposed protocol are
summarised in Figure 15. Our protocol limits the network traffic exchanged while locat-
ing an object (at most log(N) nodes are contacted when the tree is balanced) and thus the
impact on the access times. A second advantage is that it also limits the minimal number

November 2019

of replicas of location records needed because non replicated objects do not have a spe-
cific location record thanks to the wildcard. Finally, each node has a limited knowledge
of the topology. Each node only knows its parent node in the tree. We note the value for
the network traffic generated when adding or removing a site is not accurate because we
did not study our protocol in such a situation.

Figure 15. Star diagram summarising the characteristics of our proposed approach.

3.2.3. Algorithm to build the tree

Our protocol is relying on a tree that has to be built with care. For instance, a flat tree
as shown in Figure 19(b) does not enable nodes to benefit from new location storage
replicas because the root node is directly reached. Contrary to this, the other extreme is
the deep tree topology as shown in Figure 19(c) where the huge number of hops leads to
a poor performance. Indeed, the structure of the tree determines the maximal number of
hops to locate an object but also the opportunities for other nodes to find a close object
replica and the latency to locate it.

Nice (S2) Strasbourg (S1)

Rennes (S4)

Marseille (S5)

Toulouse (S7)

2.5 ms

Lyon (S6)

9.0 ms 7.0 ms 4.0 ms

Paris (S3)

5.0 ms

Bordeaux (S8)

5.0 ms

4.5 ms

(a) – Dijkstra with the traditional cost function

Nice (S2) Strasbourg (S1) Rennes (S4) Marseille (S5)

Toulouse (S7)

2.5 ms

Lyon (S6)

9.0 ms 7.0 ms 10.0 ms 4.0 ms

Paris (S3)

5.0 ms

Bordeaux (S8)

5.0 ms

(b) – Dijkstra with our cost function

Nice (S2)

Strasbourg (S1)

Rennes (S4)

Marseille (S5)

5.0 ms

Toulouse (S7)

2.5 ms

Lyon (S6)

7.0 ms 4.0 ms

Paris (S3)

5.0 ms

Bordeaux (S8)

5.0 ms

4.5 ms

(c) – Dijkstra with our relaxed cost function
Figure 16. Trees generated from the French NREN physical topology using different costs functions

The classical algorithm to compute the shortest paths from a source node to all the
other nodes is the Dijkstra’s algorithm [Dij59]. This list of the shortest paths from a
source node to each other node can be seen as a tree with the source node as root. We
propose to reuse this algorithm to generate our tree but one of the drawbacks of the
Dijkstra’s algorithm is that the root node needs to be specified. In order to choose the
“best” root node, we successively compute the tree with each node as source and select
the one with the lowest weight. For instance, in Figure 16(a), the tree has a weight of
9.0+7.0+4.0+5.0+5.0+(2.5+4.0)+(4.5+5.0)= 46. But the cost function does not
reflect the iterative way the servers are requested in our approach. For instance, in Figure

November 2019

11(a), the weight of the Rennes site as a weight of 9.5 (i.e., 4.5+5.0). In our approach,
the weight of this node should be equal to 14, that is 4.5+(4.5+ 5.0) because nodes
located at Rennes first request nodes located in Paris reachable in 4.5 ms and then if the
location is not found request nodes located in Lyon and reachable in 4.5+5.0 = 9.5 ms.
Instead of using the original evaluation function of the Dijkstra’s algorithm, we propose
to evaluate the cost function shown in Equation 1 that considers the depth of the nodes.

fc =

(
parent(node)

∑
i=root

d (i, parent (i))×depth(i)

)
+

d (parent (node) ,node)×depth(node)

(1)

The result of this modification is seen in Figure 16(b). Although this tree optimizes
the total latency, it is very flat and most nodes directly access the root without benefit
from any relocation. In order to generate a deeper tree, we introduce a similar mechanism
as proposed by Alpert et al. in the AHHK’s algorithm [AHHK93] to relax the constraint.
We connect a node through a specific link in the tree if the evaluated position of the node
is deeper than its current one and the total latency (as measured in Equation 1) is better or
degraded by a factor smaller than c. Even if the latency to reach all ancestor nodes until
the root is increased a little bit, a deeper node has more ancestors and a greater chance
to find a location record among them. Figure 16(c) shows the tree computed using this
algorithm when c = 1.2 and used in the final macro benchmark.

Although in the worst case, reaching the root node is longer than using the optimal
tree (in Figure 16(b)), this relaxed tree provides a better average latency to locate any ob-
ject. The average latency can be computed using Equation 2, showing how link latencies
are weighted by the probability p(j) to find the location record on the node j.

wtree = ∑i∈nodes ∑
root
j=node d(i, j)× p(j) (2)

To compute the value p(j), we consider a uniform workload among all the sites, i.e.,
a given object as an equal probability to be accessed from any Fog site. For instance,
with the tree shown in Figure 16(b), locating an object from Marseille requires in aver-
age 0× 1

7 + 4.0× 6
7 ≈ 3.43ms. We consider the object replica is not located locally in

Marseille but on any of the 7 others sites because there is no need to use the location
process to access a local replica. If an object replica exists in Toulouse (1 site among the
7), then Marseille already stores a location record and can locate the object in 0 ms. Oth-
erwise, if the object replica is located on any of the 6 other sites, Lyon has to be reached
with a latency of 4.0 ms. Equation 3 details the whole computation when we apply the
Equation 2 on the tree of the Figure 16(b). It shows an average of 45.4 ms are required to
locate an object.

w =
(
9.0× 7

7

)
+
(
7.0× 7

7

)
+
(
10.0× 7

7

)
+
(
4.0× 6

7

)
+(

5.0× 7
7

)
+
(
5.0× 7

7

)
+
(
2.5× 1

7

)
+
(
(2.5+4.0)× 6

7

)
w≈ 45.4

(3)

November 2019

Equation 4 shows the same computation performed on the tree of the Figure 16c. It
enables us to conclude that the average latency to locate an object is lower with our tree
(41.1 ms) built by relaxing the constraints than with the original one (45.4 ms).

w =
(
7.0× 7

7

)
+
(
4.0× 5

7

)
+
(
5.0× 6

7

)
+
(
5.0× 7

7

)
+(

5.0× 2
7

)
+
(
(5.0+4.0)× 5

7

)
+
(
2.5× 2

7

)
+(

(2.5+4.0)× 5
7

)
+
(
4.5× 1

7

)
+
(
(4.5+5.0)× 6

7

)
w≈ 41.1

(4)

3.3. Overhead

We now evaluate the overhead of our approach compared to a DHT. First, in our ap-
proach, all the servers contacted to locate a replica are then updated once the new replica
created whereas in a DHT, the number of update messages is a constant and depends
on the replication level. So, in our approach the number of update messages sent can
be in the worst case O(depth(tree)) whereas in a DHT, it is a constant O(k) with k, the
replication factor.

Nevertheless, in our approach, this number of update messages varies with data
movements. It can be O(depth(tree)) for the first access of the object but it will decrease
for future accesses. The more an object is accessed, the less the number of hops to locate
a replica and thus the number of update messages. Therefore, if we consider an object is
read successively on all the sites, in our approach the number of inter-sites update mes-
sages is equal to the number of edges in the tree (O(n− 1), with n the number of sites)
whereas in the DHT, it is the number of sites multiplied by the replication factor of the
DHT (O(n× k)). In this sense, we can say that for objects accessed from a large number
of sites, our approach is less costly than using a DHT.

Although, in the DHT, network traffic to maintain routing tables may be important,
we should not forget to evaluate the complexity to build our tree: the Dijkstra’s algorithm
with a complexity of O(n2) is executed with each node as a source, therefore, the total
complexity is O(n3). In this sense, strategies need to be found, to be able to deal with
the network dynamicity without recomputing the whole tree each time a site is added or
removed.

3.4. Resources consideration

In our protocol, we have not considered the available resources on the site a client is
connected to meet their requirements. Clients always write on the closest site in terms
of latency, but other metrics can be considered, such as the throughput and the available
resources. This can be seen as an optimisation problem with constraints. Such a problem
can be solved at a client level: the clients determine by themselves the best sites where
they have to write. The main drawback of such approach is that it leads the clients to
know all the network topology as well as all the sites characteristics. Another approach
would be for the clients to connect the closest site and this first site determines the best
location to store the objects.

We finally note that the cache replicas (i.e., not the master) can be automatically
deleted according to a Least Recently Used (LRU) policy in order to free the space usage
corresponding to objects that were requested at some point but are not used anymore.

November 2019

3.5. Conclusion and Discussion

We first presented how to reduce the inter-sites network exchanges when a locally-stored
object is requested. We proposed to couple IPFS with a Scale-Out NAS, so that all the
objects stored on each site are available to all the IPFS nodes of the site. Then, we pro-
posed to reduce the inter-sites network traffic when a remotely-stored object is accessed
by replacing the DHT used for managing object locations (i.e., metadata management)
with a protocol relying on a tree built with a modified version of the Dijkstra’s algorithm
taking into account the physical network topology.

Nevertheless, many improvements in our protocol are still needed. With immutable
objects, the consistency is not an obstacle but enabling users to modify their data is a
missing feature for an advanced object store. But, managing consistency is a real chal-
lenge because a modification requires to modify all the other replicas. This can be done
asynchronously to limit the impact on access times but in this case, our protocol should
be modified to become a protocol to locate a close replica at the recent version.

In its current state, our proposed Fog architecture can be seen as a symmetric or
reversed CDN. Content Distribution Networks (CDN) consist in caching data on servers
located close to the users. This has two advantages: (i) accessing to a close server can
lead to reduce the access times to requested resources and (ii) it reduces the load on the
central server because it only has to send the content to the caching server and not to ev-
ery client. This technique improves the . Akamai [NSS10] or Cloudflare are well-known
public CDN but companies like Google [GALM07] deploy their own CDN infrastruc-
ture to improve the QoS of their services. There is no standard architecture for these net-
works. Some rely on a tree and a hashing function [KLL+97,TT05] while other rely on a
DHT [KRR02] and some are hybrids and rely on a mix of different protocols [EDPK09].

For several authors, the Fog hierarchy can be considered as a Content Distribu-
tion Network where object replicas are created on the fly, close to where they are
needed [MKB18]. For instance, for Yang et al. [YZX+10], storage servers at the Edge
of the network are used to cache data stored in the Cloud, which is an approach similar
to what is proposed in this chapter. However, for us, the main difference between a CDN
and a storage solution for Fog Computing is that in a CDN, data are stored in the core of
the network and are propagated to the edge, while in the Fog, data are created at the edge.
In that sense, Fog Computing can be seen as a reversed Content Distribution Network
(CDN) where data sent from the clients pass through all the hierarchy until reaching the
Cloud [SSX+15,BDMB+17].

Also, because our approach does not use a network overlay, it may be compared to
an Information Centric Network as well. Information Centric Network (ICN) and more
particularly Named Data Network (NDN) or Networking Named Content (NNC) is a
concept consisting in using the network itself to directly route the requests to the node
storing the requested data [JST+09]. Contrary to every other approach, there is no need to
locate data before accessing them. The client just sent the request to the destination of a
data and not to a specific computer and the network forwards it to the computer storing it.
Several implementations have been proposed [KCC+07,JST+09,HBS+17]. Some have
been specialised to work within a datacenter [KPR+12] while other are adapted to work
in a multi-sites environment and especially in a CDN network [Pas12,WW17]. The main
advantage of this approach is not to require a metadata server or any protocol to locate
the different objects stored in the network, improving the access times. In this sense, this

November 2019

approach can be used to store data in a Fog Computing architecture. But, maintaining in
each router a table storing the location of each object is costly.

In the next section, we will experimentally evaluate our propositions, to measure
what are their impacts on the amount of network traffic exchanged between the sites but
also on the access times.

4. Experimental evaluations

In this section, we discuss the evaluations we performed regarding our IPFS version
for Fog environment. All the experiments are performed on a cluster of the Grid’5000
platform [BCAC+13]. The specificities of the emulated environment, such as latencies
or constraints in the network connectivity, are added virtually thanks to Linux tools.

4.1. Measuring the benefit from Coupling IPFS with a Scale-Out NAS

We first evaluate our coupling of IPFS with a Scale-Out NAS.
In order to IPFS be able to store objects in a distributed filesystem, we made some

modifications in the source code:

• We changed the path used to store the objects to use the Distributed filesystem
without moving the local database in which each node stores its node identifier
and its internal state;

• We removed the cache used in the blockstoremodule of IPFS. This cache is used
to keep trace of existing objects so that nodes know they do not store the requested
object and as a consequence, directly contact the global DHT. By removing it, we
force the nodes to first check the presence of the object in the Distributed filesystem
before contacting the DHT.

4.1.1. Material and Method

We evaluate our approach using 3 different architectures:

• IPFS in its default configuration, emulating a deployment in a Cloud Computing;
• IPFS deployed in a Fog/Edge infrastructure, without Scale-Out NAS;
• IPFS deployed in a Fog/Edge infrastructure with a local Scale-Out NAS deployed

independently on each site.

We choose to use the RozoFS as Scale-Out NAS [PDÉ+14]. RozoFS is an open-
source solution providing a high throughput both for sequential and random accesses.
It relies on a centralised metadata server to locate the data and on an erasure code to
dispatch the data between the storage nodes. The erasure code brings fault tolerance to
the distributed filesystem. Mojette projections are computed for each part of the file and
only 2 projections out of 3 are necessary to reconstruct the data. We emphasize this aspect
because it leads to an overhead in writing (50% overhead in size i.e., one redundant
projection to combat one failure).

In our deployment, we consider that each storage node acts as both an IPFS node and
a storage node of RozoFS (in fact, IPFS is a client of RozoFS through the rozofsmount

November 2019

daemon). To avoid any bias, we used tmpfs as the low level back-end for the three
evaluated architectures and drop all caches after each write or get operation.

The topology we evaluated corresponds to the one illustrated in Figure 8. The plat-
form is composed of 3 sites, each containing 6 nodes: 4 storage nodes, a metadata server
for RozoFS and a client. The Cloud-based IPFS is composed of 12 IPFS nodes (the same
number of nodes as used in the Fog experiments). Topology does not vary so that we
do not have any node churn. The one-way network latencies between the different nodes
have been set in order to be representative to:

• LFog = 10 ms is the network latency between clients and the closest site of Fog. It
is the latency of wireless link [JREM14];

• LCore = 50 ms is the network latency between sites of Fog. It represents the mean
latency of a wide area network link [MTK06];

• LCloud = 100 ms is the network latency for a client to reach a cloud plat-
form [SSMM14].

Network latencies are emulated thanks to the Linux Traffic Control Utility (com-
mand tc). Bandwidth was not modified and is set to 10 Gbps. Nevertheless, the TCP
throughput is already impacted by network latency [PFTK98]. With the iperf tool,
we measure 2.84 Gbps between clients and Fog sites, 533 Mpbs between Fog sites and
250 Mpbs to reach a Fog site.

We consider two scenarios: The first scenario of the evaluation consists in writing
objects on a site and read them from the same site. The second scenario we consider
consists in writing objects on a site and read them (twice) from another site. For each
object written, the client connects a node on the site that is chosen randomly. We measure
the time to access the object (with YCSB [CST+10]) but also the amount of network
traffic exchanged (thanks to iptables) To get consistent results, the test is performed
10 times. We first evaluate the performance of our approach with local accesses before
checking how it behaves in a remote reading context.

4.1.2. First scenario: writing and reading from the same site.

Table 4 shows the mean access times to write or read an object on the different infras-
tructures proposed. There is one client on each of the three sites and the number of ob-
jects indicated, is the number of objects read or written by each client. Therefore when
10 objects are read, it is in fact, 3×10 = 30 objects that are accessed.

Table 4(a) shows the access times for a Cloud infrastructure. In this scenario, each
client writes the object on a IPFS cluster reachable in 200 ms rather than on their closest
site. Results show time increases with object size: 1.72 s are needed to create a simple
object of 256 KB whereas writing an object of 10 MB requires 3.07 s. The time to send
the object through the high latency network links becomes important. If we increase the
number of accessed objects, we observe the maximum throughput we can reach is almost
290 Mbps (100×10/27.58 = 36 MBytes per second). For small objects, the situation is
even worse 11.18 Mbps (0.256× 100/2.29). Nevertheless, access times are better with
small objects for several reasons. First, the DHT is not used when the node storing an
object is the node the object was written on. And secondly, the TCP throughput is better
from the IPFS node to the client than the contrary. This is due to the management of TCP

November 2019

Mean writing time (seconds) Mean reading time (seconds)

Number
Size

256 KB 1 MB 10 MB
Number

Size
256 KB 1 MB 10 MB

1 1.72 2.14 3.07 1 1.47 1.88 3.04
10 1.53 2.00 7.97 10 1.35 1.77 5.22
100 2.29 5.55 27.58 100 1.57 2.62 11.24

(a) – By using a centralized Cloud to store the objects.

Mean writing time (seconds) Mean reading time (seconds)

Number
Size

256 KB 1 MB 10 MB
Number

Size
256 KB 1 MB 10 MB

1 0.17 0.22 0.34 1 0.25 0.28 0.54
10 0.17 0.21 0.40 10 0.26 0.27 0.54
100 0.33 1.07 3.92 100 0.29 0.50 1.98

(b) – By using the default approach of IPFS.

Mean writing time (seconds) Mean reading time (seconds)

Number
Size

256 KB 1 MB 10 MB
Number

Size
256 KB 1 MB 10 MB

1 0.18 0.23 0.38 1 0.14 0.18 0.31
10 0.17 0.22 0.43 10 0.14 0.18 0.36
100 0.33 1.08 3.97 100 0.19 0.36 1.83

(c) – By using IPFS on top of RozoFS distributed filesystem, deployed independently on each
site.

Table 4. Mean times (in seconds) to write and read an object by a client on the local site.

connections. The IPFS client sends data in small packets whereas the server try to send
them in bigger ones.

Table 4(b) shows the access times measured when IPFS is deployed in a Fog Com-
puting environment. The results clearly shows the interest of deploying a storage solution
at the Edge of the network. Access times are clearly better than there were previously
with a maximum throughput of 4 Gbps (500 MBps), which is half of the maximum ca-
pacity of the 10 Gbps link. Secondly, performance are reduced due to high latency net-
work links composing the DHT, which was not the case in a Cloud deployment, (0.5 ms
latency between the nodes).

Table 4(c) shows the access times when IPFS is deployed on top of RozoFS. First
of all, we observe that in the two deployments in a Fog environment, writing times are
similar. 3.92 seconds are needed per objects to write 100 objects of 10 MB on each site
when IPFS is deployed alone and 3.97 s when it is coupled with RozoFS. In other words,
adding a Scale-Out NAS does not change the performance. This can be surprising be-
cause we can think that adding a layer can add an overhead.

In reading, using RozoFS leads to improve the access times by 34 %. This is espe-
cially true for small objects, because for these objects the time to access the DHT is im-
portant in regard to the total access times. For instance, it takes 0.14 s to read 10 objects
of 256 KB when IPFS is on top of RozoFS and 0.25 s when IPFS is deployed alone (al-
most the double of time). We also note the clients choose randomly the IPFS node they
read the object from. Therefore in Table 4(b), there is 1

4 of chance the client contacts the
node the object was previously written on. Leading on to use the DHT. This probability
will decrease as long as Fog Sites contains more servers, leading to a general

November 2019

 0.01

 0.1

 1

 10

 100

1 × 1MB 10 × 1MB 100 × 1MB

A
m

o
u

n
t

o
f

in
te

r−
s
it
e

s
n

e
tw

o
rk

 t
ra

ff
ic

 (
M

B
)

IPFS alone (default approach)
IPFS deployed on top of RozoFS

(a) – Write

 0.01

 0.1

 1

 10

 100

1 × 1MB 10 × 1MB 100 × 1MB

A
m

o
u

n
t

o
f

in
te

r−
s
it
e

s
n

e
tw

o
rk

 t
ra

ff
ic

 (
M

B
)

IPFS alone (default approach)
IPFS deployed on top of RozoFS

(b) – Read
Figure 17. Amount of inter-sites network traffic exchanged between the sites while clients write and read
objects on their local site.

Figures 17(a) and 17(b) show the quantity of network traffic exchanged between the
sites while clients are writing and reading objects on their local site. We do not present the
results when IPFS is deployed in a Cloud architecture because in this case, the exchanged
traffic between sites corresponds to the amount of data sends to or reads from the Cloud.

We observe the amount of traffic exchanged between the sites only depends on the
number of accessed objects but not on their size. For a better visibility, we present the
results for objects of 1 MB. Figure 17(a) shows the amount of network traffic exchanged
during the writing. As expected, this quantity is equivalent in the two approaches because
the DHT is updated asynchronously each time a new object is written.

For the reading, the default approach shows the more manipulated objects, the more
the amount of network traffic. In our approach using RozoFS, we only observe a small
amount of traffic sent regularly to maintain the routing table of the DHT (13 KB for
the presented case). Therefore, the result depends only on the time taken to realise the
experimentation.

To conclude on this experiment, adding a Scale-Out NAS does not impact the per-
formance to write. Writing times are similar both when IPFS is used alone and when it
is coupled. In reading, using a Scale-Out NAS avoids using the DHT when the requested
objects are stored on the local site. This improves the access times, especially for small
objects for which accessing the DHT is longer than transferring the object data. At the
same time, not using this DHT leads to reduce significantly the inter-sites network traffic.

4.1.3. Second scenario: writing on a site and reading from another site.

We now evaluate how our approach when accessed objects are not stored on the local
site. A first client writes an object on the local site and then, another client, located on
another site, read the object that has just been written. We only present reading access
times because writing ones are similar to what we presented in the previous analysis.

Table 5(a) and 5(b) show the reading times for two successive reading. For the first
read, the two approaches get a similar access time. Indeed, for the two approaches, the
requested object is not stored on the local site. The DHT needs to be accessed to locate the
object and then a replica has to be downloaded. This corresponds to what we described
in Figures 7(c) and 9(c).

For the second read, we however observe better access times with our approach.
For instance, with RozoFS, when 100 objects of 10 MB are read in parallel, 1.86 s per
objects are required whereas it takes 6,08 s without RozoFS. This huge difference can be

November 2019

Mean reading time (seconds) Mean reading time (seconds)
First read Second read

Number
Size

256 KB 1 MB 10 MB
Number

Size
256 KB 1 MB 10 MB

1 1,39 1,92 13,07 1 1,01 1,85 3,70
10 1,01 1,92 6,48 10 0,70 1,31 5,95
100 0,94 2,02 9,76 100 0,71 1,37 6,08

(a) – Using IPFS alone.

Mean reading time (seconds) Mean reading time (seconds)
First read Second read

Number
Size

256 KB 1 MB 10 MB
Number

Size
256 KB 1 MB 10 MB

1 1,35 3,86 13,21 1 0,15 0,19 0,31
10 1,11 2,17 8,40 10 0,14 0,19 0,35
100 1,09 2,51 9,22 100 0,33 0,46 1,86

(b) – Using IPFS deployed on top of a RozoFS cluster deployed independently on each site.
Table 5. Mean times (in seconds) to read an object twice with IPFS, using the default approach (a) and our
coupling (b).

explained because in our approach, the object is downloaded from the local Scale-Out
NAS but in the default approach the DHT is accessed and then, two object replicas are
found: the first one and the replica created on the local site during the previous access.
But IPFS does not know a replica is reachable with a low latency and the other one is
reachable through the high latency links.

 0.01

 0.1

 1

 10

 100

 1000

 10000

1 × 1MB 10 × 1MB 100 × 1MB

A
m

o
u

n
t

o
f

in
te

r−
s
it
e

s
n

e
tw

o
rk

 t
ra

ff
ic

 (
M

B
)

IPFS alone (default approach)
IPFS deployed on top of RozoFS

(a) – First read

 0.01

 0.1

 1

 10

 100

 1000

 10000

1 × 1MB 10 × 1MB 100 × 1MB

A
m

o
u

n
t

o
f

in
te

r−
s
it
e

s
n

e
tw

o
rk

 t
ra

ff
ic

 (
M

B
)

IPFS alone (default approach)
IPFS deployed on top of RozoFS

(b) – Second read
Figure 18. Amount of inter-sites network traffic exchanged between the sites while clients read objects stored
remotely.

Figures 18(a) and 18(b) show the amount of network traffic exchanged between
the sites for the two succesive reads when the data is not located on the local site. For
the first read, the same amount of network traffic is exchanged in the two approaches:
as explained previously, an object replica has to be located using the global DHT and
downloaded from the remote site. For the second read, we observe a drastic reduction of
the network traffic. In the two approaches, two replicas of each object are available: the
remote one, and the local replica that was created in the first read. Nevertheless, in the
default approach, IPFS is not able to favorise the local replica. The DHT is accessed to
locate the two object replicas before downloading them in parallel in order to speed up
the process. This explains why the remote replica is accessed and the inter-sites network

November 2019

traffic is not reduced. In our approach, the nodes the requests are sent to retrieve the
objects from the local Scale-Out NAS, avoiding all the exchanges between the sites.

4.1.4. Conclusion

The main results of this evaluation are:

• Scale-Out NAS does not impact the performance in writing, with an interesting
side effect as 50% of extra data are stored for fault tolerance;

• Local reads are satisfied with the underlying distributed filesystem, avoiding using
the DHT and increasing the performance by 34%;

• The same amelioration is observed for remote reads, once a new replica is created
on the local site.

4.2. Evaluation of our location protocol relying on a tree

We now evaluate the second proposition we made. To understand how the location proto-
col relying on a tree behaves, we first evaluate it on micro benchmark before performing
an evaluation on a real topology.

4.2.1. Material and Method

In this evaluation, each site is composed of only one IPFS node that also acts as a “lo-
cation server”. To mitigate our development effort, “location servers” are implemented
in DNS servers deployed independently on each node. These DNS are used as key/value
store to save the location records. The DNS servers provide us the wildcard mechanism
as well as a get/put protocol to request and to update the location records they store. We
modified the routing mechanism used in IPFS to request these servers in a bottom-up
manner rather than using the DHT and to update the location records by sending Dy-
namic DNS messages.

More specifically, we use BIND servers, configured as authoritative servers to store
the records in flat text files (BIND default backend). We validated in an experiment
the response time increased only after approximately 30 000 records stored on a single
server. Because we store much fewer records, we argue that this backend does not impact
our results. Nevertheless, we precise that BIND servers are deployed independently to
enable us to store several location records for a given object. For a fair comparison, we
removed the content based hash used in IPFS both in our version2 and in the standard
one that uses a DHT3. The scenario consists in reading objects from several sites. In each
read, each object is accessed from one and only one site that did not access it previously.
In this way, we never read objects locally stored for which determining their location is
not needed.

We measure the time to access a location record for each object, but we also mea-
sure the number of network links crossed to reach it (we call this metric the number of
“hops”). We enabled IPFS to send several DHT requests in parallel. Different replication
levels in the DHT are evaluated in order to be fair with our approach which creates new
location records on the fly. We call “DHT k1”. “DHT k2” and “DHT k3” a DHT with

2https://github.com/bconfais/go-ipfs/tree/dns
3https://github.com/bconfais/go-ipfs/tree/dht_name_based

https://github.com/bconfais/go-ipfs/tree/dns
https://github.com/bconfais/go-ipfs/tree/dht_name_based

November 2019

1, 2 and 3 replicas respectively. We consider up to 6 replicas in our macro benchmark.
The object repository of IPFS and the zone file of the DNS servers in our approach, are
stored in a tmpfs in order to prevent any impact from the underlying filesystem. Tests
are performed on the Grid’5000 testbed. Network latencies are emulated using the Linux
Traffic Control Utility (tc). Network bandwidth between the sites is set to 1 Gbps. We
use 1000 objects with a size of 4 KB each. Because we only measure the time to locate
objects, we note the size of objects has no impact on our results. We performed micro
benchmarks using topology in Figure 19 to easily understand how our protocol behaves
on simple topologies. These topologies are manually built from 5 sites of the wondernet-
work matrix of latencies4.

Site 1

Site 3

13 ms

Site 2

Site 4

114 ms

Site 5

144 ms

35 ms

(a) – Balanced tree.

Site 1 Site 2 Site 3

Site 4

114 ms 35 ms 13 ms

Site 5

144 ms

(b) – Flat tree.

35 ms

13 ms

144 ms

114 ms

Site 1

Site 2

Site 3

Site 4

Site 5

(c) – Deep tree.
Figure 19. Topologies used for micro-benchmarks.

4.2.2. First topology, a balanced tree

We first evaluate our approach by performing the scenario with the tree given in Fig-
ure 19(a).

The time to locate objects is shown in Figure 20(a), both for the DHT and our ap-
proach when object are accessed for the first time. Objects are sorted from the time to
locate them. It appears that locating an object with our protocol takes in the worst case
1.982 s which is faster than a DHT with only one replica (about 4.794 s) but longer than

4https://wondernetwork.com

https://wondernetwork.com

November 2019

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

0 250 500 750 1000

T
im

e
 t
o
 l
o
c
a
te

 t
h
e
 o

b
je

c
t
(s

)

Object

DHT k1
DHT k2
DHT k3

Our approach

(a) – All sites

 0

 1

 2

 3

 4

 5

100 250 0 200

T
im

e
 t
o
 l
o
c
a
te

 t
h
e
 o

b
je

c
t
(s

)

Site 2

 0

 1

 2

 3

 4

 5

100 250 0 200

Site 3

 0

 1

 2

 3

 4

 5

100 250 0 200

Site 4

 0

 1

 2

 3

 4

 5

100 250 0 200

Site 5

(b) – Per site
Figure 20. Times to find the location of objects in the first read for all sites (a) and for each site (b). Objects
are created on Site 1 and are sorted by their time to determine their location.

a DHT with 3 replicas (about 1.740 s). We nevertheless note that the comparison with
“DHT k3” is not so totally fair in a frst read because for each object, three location
records are available in the DHT whereas only one is available in our approach. Because
objects are accessed in parallel, the time to locate the last object is also the time to lo-
cate the 1000 objects. We can compute an average throughput of 504 objects located per
second in our approach (vs 256 objects per second in the DHT with 2 replicas). Vertical
black lines of Figure 20(a) and next ones show the theoretical values delimiting groups
of objects for which the location record is reached with the same network latency. In
the first read, because each site locates objects with a different latency, we observe 4
different periods (one every 250 objects) separated by 3 different theoretical thresholds.

For instance before the first threshold we mostly observe objects read from Site 4,
for which the location of object replicas is stored locally. The second group is almost
composed of objects read from Site 3 for which the location of objects is found on Site
1, reachable in 13 ms (network latency between Site 1 and Site 3). Objects from 500 to
750 are read from Site 5. Finally, after the last threshold, we observe the objects read
from Site 2 requiring a first hop to Site 5 and a second hop to Site 4 to locate them.
The non-linearity we observe close to those lines means the observed result is what we
expect. Because objects are sorted, theoretical thresholds do not delimit exactly what is
happening site by site. To deeply understand their individual behaviours, we split the
Figure 20(a) according to the site requesting each object.

Figure 20(b) shows the time to locate an object is not the same for each site because
the network latency to connect them is different. For instance, in the DHT, Site 4 cannot
reach another node in less than 114 ms because it does not have closer neighbour whereas

November 2019

Site 3 can reach Site 1 in 13 ms. We do not observe non-linearity in our approach for a
given site because each of them finds all the location records from the same location.

We note in Figure 20(a), the tail from object 920 to 1000 is due to a bad parallelism
of IPFS we checked with sequential accesses. This is also the reason why in our approach
the times we measure are higher than the times we compute from the tree. In the tree,
the worst access time is from Site 2 which reaches the root in 35×2+144 = 214 ms and
thus can locate them in 428 ms (RTT latency to consider the time to send the request and
to receive the reply) but it appears Site 2 can take up to 1.982 s to access the location
record of an object. To remove this bias, we next evaluate the performance in terms of
hops rather than in absolute time.

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 0 200 400 600 800 1000

T
im

e
 t
o
 l
o
c
a
te

 t
h
e
 o

b
je

c
t
(s

)

Object

DHT k1
DHT k2
DHT k3

Our approach

(a) – Second read

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 0 200 400 600 800 1000

T
im

e
 t
o
 l
o
c
a
te

 t
h
e
 o

b
je

c
t
(s

)

Object

DHT k1
DHT k2
DHT k3

Our approach

(b) – Third read
Figure 21. Times to find the location of objects in the second read for all sites (a) and for the third read (b).

Figure 21 shows in further reads, the time to locate the objects does not vary with
the DHT but decreases in our approach that creates new location records when objects
are accessed. For the third read, our approach becomes better than the approach using
3 replicas in the DHT: location records are close to the sites which need them instead
of being spread uniformly. We need 1.417 s to locate the 1000 objects whereas the DHT
needs 2.206 s in this case.

Because new location records are created according to object’s access, these theo-
retical thresholds vary with the different reads. Therefore, for the second read, in Fig-
ure 21(a), location is found locally for 333 objects because Site 5 now store the location
for objects that have been read from Site 2 during the first read. A similar observation is
made on Site 2 for which objects are located from Site 5 instead of Site 4.

Figure 22 shows the number of physical hops to reach a location record for each
object. Because of the iterative way the requests are sent, the number of hops in our
approach can only be 0, 1 or 3 (a first request sent from Site 2 to Site 5 and another
request sent from Site 2 to Site 4 that crosses 2 physical links). The result is similar to

November 2019

 0

 1

 2

 3

 4

 5

 0 200 400 600 800 1000

N
u
m

b
e
r

o
f
p
h
y
s
ic

a
l
h
o
p
s

to
 l
o
c
a
te

 t
h
e
 o

b
je

c
t

Objet

DHT k1
DHT k2
DHT k3

Our approach

(a) – All sites

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250

N
u
m

b
e
r

o
f
p
h
y
s
ic

a
l
h
o
p
s

Site 2

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250

Site 3

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250

Site 4

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250

Site 5

(b) – Per site
Figure 22. Number of physical hops to reach the location record in the first read. Objects are sorted by the
number of hops to determine their location.

what we observed in Figure 20(a). But contrary to this figure, the number of physical
hops are not impacted by the network latencies. Therefore, implementation biases that
could speed up or slow down location times do not impact this result. The conclusion
of this experiment is that by requesting close nodes first and by creating new location
records read after read, our approach provides better performance than the DHT.

4.2.3. Flat tree topology

The second topology we evaluate is shown in Figure 19(b). In this topology, our approach
cannot benefit from the creation of new location records. When the location is not found
locally, the root node is reached directly. Nevertheless, we show that even in this scenario,
our approach outperforms the DHT. The reason is that network latencies are taken into
account when the tree is built so that the network latency to reach the root node is the
lowest as possible. We focus on the number of hops in order not to consider the different
possible latencies when a leaf node reaches another leaf node in the DHT. Figure 23
shows the number of hops does not decrease between the first and the fourth read, both in
our approach and with the DHT. In our approach, object’s location is always determined
by reaching Site 4. The theoretical thresholds delimit objects that are read from Site 4
for which location records are stored locally and the objects read from the other sites for
which location is determined after one hop. The conclusion on this experiment is that
even when our approach does not benefit from the creation of new location records, it
is still better than the DHT because objects are located with fewer hops and these hops
have the lowest latency possible due to the algorithm used to build the tree. We however

November 2019

 0

 1

 2

 3

 4

0 250 400 600 800 1000

N
u
m

b
e
r

o
f
p
h
y
s
ic

a
l
h
o
p
s

to
 l
o
c
a
te

 t
h
e
 o

b
je

c
t

Object

DHT k1
DHT k2
DHT k3

Our approach

(a) – First read

 0

 1

 2

 3

 4

0 250 400 600 800 1000

N
u
m

b
e
r

o
f
p
h
y
s
ic

a
l
h
o
p
s

to
 l
o
c
a
te

 t
h
e
 o

b
je

c
t

Object

DHT k1
DHT k2
DHT k3

Our approach

(b) – Fourth read
Figure 23. Number of physical hops to locate the objects in the first read (a) and fourth read (b) for the flat
tree topology. Objects are sorted.

note that a more important number of objects or peers, may overload the root node. This
highlights the importance of having a well-balanced tree.

4.2.4. Deep tree topology

The last topology we evaluate is the other extreme case in which all the sites are organised
in a very vertical tree as shown in Figure 19(c). We show that having a high latency link
close to a leaf node of the tree impacts negatively our approach, especially in the case
where a lot of hops are needed to locate the objects. We observe in 24(a) that reading the
1000 object in 4.5 s in our approach makes it worse than the DHT which only needs 1.7 s.
Figure 24(b) shows this result is due to Site 5, connected to the other sites with a high
latency link (about 144 ms). In the DHT, this site finds the object location in one logical
hops and thus, this network link is used only one time. In our approach, the link is used in
the first hop, to request Site 3, then in the second hop to request Site 2 and finally in the
third hop to request Site 1. Because the high latency link is more solicited to retrieve the
location, times are higher. This leads us to think to generate a tree in which deeper links,
which are more solicited, have a lower latency. The conclusion of this experiment is that
the high latency links close to a leaf node leads to degrade significantly the performance
of some objects (objects 750 to 1000). Nevertheless, such a drawback can be mitigated
when location records are added.

4.2.5. French NREN, a real topology

After performing micro benchmarks to understand how our protocol behaves, we per-
form a macro benchmark to validate if our approach can be used in real networks.

We consider the graph of a part of the French NREN network shown in Figure 10.
In order to evaluate our approach, we use the tree in Figure 11 that have been computed

November 2019

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

0 250 500 750 1000

T
im

e
 t
o
 l
o
c
a
te

 t
h
e
 o

b
je

c
t
(s

)

Object

DHT k1
DHT k2
DHT k3

Our approach

(a) – All sites

 0

 1

 2

 3

 4

 5

100 250 0 200

T
im

e
 t
o
 l
o
c
a
te

 t
h
e
 o

b
je

c
t
(s

)

Site 2

 0

 1

 2

 3

 4

 5

100 250 0 200

Site 3

 0

 1

 2

 3

 4

 5

100 250 0 200

Site 4

 0

 1

 2

 3

 4

 5

100 250 0 200

Site 5

(b) – Per site
Figure 24. Times to find the location of objects in the first read for all sites (a) and for each site (b) for the
deep tree topology. Objects are sorted by their time to locate them.

using our approach presented in Section 3.2.3. For the DHT-based approach, we compute
the shortest path (using the Dijkstra’s algorithm) between each couple of nodes, so that
each node can locate the objects with the best latency as possible. The consequence is
the DHT benefits from optimal routing paths.

We perform the same experiment as in the previous section. 1000 objects are written
on Site 1 (Strasbourg) and are read successively from other sites.

Figure 25 shows the times to access the location records in the first read, the third and
in the seventh read. Because of the high number of sites, we performed the experiment
with the DHT up to 6 replicas for a fair comparison. We observe that for all reads, our
approach has a better performance than the DHT, especially because in our approach, the
closest nodes are requested first. In Figure 25(a), the gap we observe around 600 objects
corresponds to the objects from which location record is accessed in 1 hop (accesses
from Sites 5, 3 and 8) and objects that are located with 3 physical hops (Sites 2, 4 and 7
that have to reach their parent in 1 hop, and then, the root node in 2 extra hops).

In the third read, shown in Figure 25(b), our approach becomes better than the DHT
with 3 replicas because of the relocation even if 5% of objects (the last 50 objects) are
read with a longer access time because these objects have not benefited from the reloca-
tion. For instance an object read in Lyon, then in Marseille benefits only from 2 replicas
when the third read is performed. Contrary to this, an object read from Nice and then
from Rennes benefits from five sites storing at least one location record in the third read.
Finally, Figure 25(c) shows better performance in our approach because when location
is not stored locally, it is requested on a close node.

November 2019

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000T
im

e
 t
o
 l
o
c
a
te

 t
h
e
 o

b
je

c
t
(s

)

Object

DHT k1
Our approach

(a) – First read

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000T
im

e
 t
o
 l
o
c
a
te

 t
h
e
 o

b
je

c
t
(s

)

Object

DHT k3
Our approach

(b) – Third read

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000T
im

e
 t
o
 l
o
c
a
te

 t
h
e
 o

b
je

c
t
(s

)

Object

DHT k6
Our approach

(c) – Sixth read
Figure 25. Times to locate objects in the first, the third and the sixth read.

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000

T
o
ta

l
ti
m

e
 t
o
 a

c
c
e
s
s

 t
h
e
 o

b
je

c
t
(s

)

Object

DHT (3 replicas)
Our approach

Figure 26. Time to locate and to retrieve the objects in the sixth read.

Figure 26 shows the total amount of time to locate the objects and to download them
on the site they are requested. It shows that better access times are achieved with our
approach, not only because of our way of locating an object but also because sites always
access the closest object replica. We also observe that the number of replicas in the DHT
does not have a high impact on the total access times and thus, we represented only the
curve for 3 replicas.

4.2.6. Conclusion

These experiments show that by limiting the amount of hops, containing and reducing the
network traffic sent between the sites, our approach enables the nodes to access the clos-
est location record and reduces the time to access it. We also showed that our approach
deployed with a real network topology still benefit from these characteristics.

November 2019

5. Coupling Grid’5000 and Fit/IoT-Lab testbeds: a platform for Fog
experimentations

After evaluating our approach on the Grid’5000 platform, where resources are abondants
and are not a limiting factor, we want to evaluate how our protocol behaves in a more
realistic environment, where the Internet of Things is interconnected to the Internet of
Servers. To the best of our knowledge, such a platform to test Fog applications does
not exist. In this section, we propose a specific environment coupling two testbeds: the
Grid’5000 and the FIT/IoT-Lab platforms. The FIT/IoT-Lab platform provides connected
sensors [ABF+15]. Using this platform in conjunction with Grid’5000 can enable us to
evaluate our approach with real sensors producing real data with a real workload. We
precise we found another work in the literature focusing on the interconnection of these
two platforms [DFLP18].

5.1. FIT/IoT-Lab platform

FIT/Iot-Lab is a testbed providing different kind of sensors with few computing resources
and few memory. “M3 nodes” use an ARM processor and a IEEE 802.15.4 (Zigbee)
radio link, limited to 250 Kbps. The nodes can be connected only with the radio link
but can also act as border routers, between the radio network and the Ethernet one. Dif-
ferent operating systems are available such as FreeRTOS [Bar10], Contiki [DSF+11] or
RIOT [BHG+13] and some nodes can be embedded in mobile robots.

A second type of nodes called “A8 nodes” are more powerful and provide a
Linux environment. Figure 27 shows a general overview of the platform and like with
Grid’5000, nodes are spread on different sites in France (Grenoble, Lille, Lyon, Saclay
and Strasbourg). We note all the nodes are connected to an IoT-Lab gateway that can
flash the ROM of the nodes and that can make the serial console remotely available.

m3 node

iotlab frontend

serial link

m3 node

a8 node
(linux embedded)

serial link

wsn430 node

IEEE 802.15.4

IEEE 802.15.4

serial link (console)

serial link
(�rmware update)

e
th

e
rn

e
t lin

k
 (IE

E
E
 8

0
2

.3
)

Mobile node
turtle bot

ethernet link

wireless link (wi IEEE 802.11)

IEEE 802.15.4

iotlab gateway

iotlab gateway

iotlab gateway

m3 nodeserial link

IEEE 802.15.4iotlab gateway

Figure 27. Network topology of a FIT/IoT-Lab site.

November 2019

5.2. Mapping a Fog environment to the testbed

While the Grid’5000 platform provides large computing and storage resources and can
be used to emulate a Fog site, the FIT/IoT-Lab provides sensors with low computing
resources that can be used as clients of the Fog site.

In order to provide some locality, we propose to perform the experimentation on
the physical locations hosting both a Grid’5000 and a FIT/IoT-Lab cluster. This is the
case for the cities of Grenoble, Lyon and Lille. We can expect a direct network routing
between the two platforms because they both rely on the French NREN.

5.3. Network interconnection of the two platforms

Although the two platforms are connected to the same network provider (Renater), they
are not easily reachable because each of them use an IPv4 network that is not globally
routed. Each platform uses a Network Address Translation (NAT) or a frontend between
the nodes and the Internet making difficult to reach the FIT/IoT-Lab platform from the
Grid’5000 one (and vice-versa). Also, the IPv6 protocol is only available on the FIT
platform but not on Grid’5000 making impossible an interconnection using this protocol.

From the Grid’5000 platform, only the frontend of the FIT/IoT-Lab platform can be
directly reached. We therefore propose to establish a SSH tunnel between this frontend
and a machine located in a Grid’5000 cluster. Unfortunately the frontend can reach the
nodes on the platform but it is impossible to make a port listening on the frontend to
use the tunnel from the nodes of the site. This is the reason we established a second
tunnel between the frontend and a A8 node. This network interconnection is presented
Figure 28 and the scripts to run this experiment are available on github5.

a8 node

m3 node (ipfs client)

iotlab frontend

ipfs node

g5k frontend

m3 node (border router)

G5K

IoTLab

 put/get object

g5k site frontend

ssh tu
nnel

ssh tunnel

Figure 28. Double SSH tunnel to connect the Grid’5000 and the FIT/IoT-Lab platform.

Nevertheless, using a tunnel adds a significant overhead that can impact the total
latency and thus the access times. Also, although the two testbeds are connected to the
same network provider and are located in the same city, the routing is not optimal. All
packets pass through a Grid’5000 gateway located either at Rennes or at Sophia.

5https://github.com/bconfais/benchmark/tree/master/iot-lab

https://github.com/bconfais/benchmark/tree/master/iot-lab

November 2019

Contribution Future work

Coupling IPFS to a local Scale-
Out NAS

• Solving the bottleneck issue in the DHT.

Tree protocol to locate data • Supporting network topology changes.

General open issues • Taking other metrics (storage capacity, workload, ...) into ac-
count rather than always accessing the closest site;
• Making objects mutable and managing the consistency.

Table 6. Future work and open issues.

In conclusion, having a platform to evaluate Fog applications is a real need but
coupling two testbeds like we proposed is not a straightforward solution and additional
work needs to be done to make it usable for real experimentations.

Beyond this coupling, we also note that proposing a full software stack for real
life Fog platforms is something required. We note that the DISCOVERY project aims
to adapt the OpenStack components to such a Fog environment [LPTDC15]. We also
note that few industrial Fog Computing platforms have already been deployed such as
Amazon Lambda@Edge6 or Akamai Cloudlet [PSW+15] even if the details of these
infrastructures such as the location of the sites are not publicly available.

6. Conclusion and Future work

In this chapter, we first introduced why traditional distributed Filesystems cannot work in
a multisites environment. We presented the list of characteristics we expect for a storage
solution to enable IoT devices to efficiently store the data they produce before explaining
why we chose the IPFS solution as a starting point to create a storage solution that can
handle the massive amount of data produced by IoT devices.

We proposed to couple IPFS with a distributed filesystem deployed independently
on each site so that all the nodes of a given site directly share what is stored on the
site. This reduces the load on the global DHT used to locate data and thus, the access
times (300 ms to 100 ms) because it is now only used when the requested object cannot
be found locally. This performance improvment is very important to enable the storage
solution to deal with the huge workload of the Internet of Things. Nevertheless, while
this approach contains the network traffic for locally stored objects, it may unbalance the
DHT in case of remote access because the DHT only knows at most one object replica
per site. To reduce the network traffic generated by the global DHT, we then presented a
new protocol relying on a tree mapping the physical topology. We experimentally showed
that by taking into account the physical topology and by replicating the location records
close to where objects are requested, our new approach contains the network traffic and
reduces significantly the time to locate data. Finally, we proposed to couple two different
testbeds to create an entire platform providing sensors and servers to evaluate Fog appli-
cations. Nevertheless, the interconnection of the two testbeds is not easy due to latency
constraints.

As presented in Table 6, we plan to improve our coupling of IPFS with a Scale-
Out NAS that currenlty leads to a bottleneck issue because the DHT reflects that only
one node pers site stores each object. We also plan to investigate how we can improve

6https://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html

https://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html

November 2019

our tree location protocol to support dynamic network topology, when latencies between
the sites change or when a site of Fog is dynamically added or shut down. This future
work leads to several problematics such as dynamically recomputing the tree but also
dynamically moving the location records to reflect the new tree. Enabling user to use
mutable objects and managing the consistency within the different object replicas is also
a challenge we also need to overcome. Finally, taking into account the resources (storage
space, computation resources) available on each site rather than always connecting the
closest one would be a great improvement.

References

[ABF+15] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel, R. Pissard-Gibollet, F. Saint-
Marcel, G. Schreiner, J. Vandaele, and T. Watteyne. FIT IoT-Lab: A large scale open exper-
imental IoT testbed. In 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), pages
459–464, December 2015.

[AHHK93] C. J. Alpert, T. C. Hu, J. H. Huang, and A. B. Kahng. A direct combination of the Prim
and Dijkstra constructions for improved performance-driven global routing. In 1993 IEEE
International Symposium on Circuits and Systems, pages 1869–1872 vol.3, May 1993.

[Bar10] R. Barry. Using the FreeRTOS Real Time Kernel: A Practical Guide. Real Time Engineers
Limited, 2010.

[BCAC+13] Daniel Balouek, Alexandra Carpen Amarie, Ghislain Charrier, Frédéric Desprez, Emmanuel
Jeannot, Emmanuel Jeanvoine, Adrien Lebre, David Margery, Nicolas Niclausse, Lucas Nuss-
baum, Olivier Richard, Christian Pérez, Flavien Quesnel, Cyril Rohr, and Luc Sarzyniec.
Adding Virtualization Capabilities to the Grid’5000 Testbed. In IvanI. Ivanov, Marten Sin-
deren, Frank Leymann, and Tony Shan, editors, Cloud Computing and Services Science, vol-
ume 367 of Communications in Computer and Information Science, pages 3–20. Springer In-
ternational Publishing, 2013.

[BDL+17] R. Bruschi, F. Davoli, P. Lago, A. Lombardo, C. Lombardo, C. Rametta, and G. Schembra.
An sdn/nfv platform for personal cloud services. IEEE Transactions on Network and Service
Management, 14(4):1143–1156, Dec 2017.

[BDMB+17] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar. Mobility-aware
application scheduling in fog computing. IEEE Cloud Computing, 4(2):26–35, March 2017.

[Ben14] Juan Benet. IPFS - Content Addressed, Versioned, P2P File System. Technical report, Protocol
Labs, Inc., 2014.

[BHG+13] E. Baccelli, O. Hahm, M. Gunes, M. Wahlisch, and T. C. Schmidt. Riot os: Towards an os
for the internet of things. In 2013 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pages 79–80, April 2013.

[BMNZ14] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. Fog Computing: A Platform
for Internet of Things and Analytics, pages 169–186. Springer International Publishing, 2014.

[BMZA12] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing and its role
in the internet of things. In Proceedings of the First Edition of the MCC Workshop on Mobile
Cloud Computing, MCC ’12, pages 13–16, New York, NY, USA, 2012. ACM.

[Bre10] Eric Brewer. A certain freedom: Thoughts on the cap theorem. In Proceedings of the 29th
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC ’10, pages
335–335, New York, NY, USA, 2010. ACM.

[BW15] Charles C. Byers and Patrick Wetterwald. Fog computing distributing data and intelligence for
resiliency and scale necessary for iot: The internet of things (ubiquity symposium). Ubiquity,
2015(November):4:1–4:12, November 2015.

[CDM+12] Jianjun Chen, Chris Douglas, Michi Mutsuzaki, Patrick Quaid, Raghu Ramakrishnan, Sriram
Rao, and Russell Sears. Walnut: A unified cloud object store. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’12, pages 743–754,
New York, NY, USA, 2012. ACM.

November 2019

[CLP16] Bastien Confais, Adrien Lebre, and Benoı̂t Parrein. Performance Analysis of Object Store
Systems in a Fog/Edge Computing Infrastructures. In IEEE CloudCom, Luxembourg, Luxem-
bourg, December 2016.

[CLRT00] Philip H. Carns, Walter B. Ligon, III, Robert B. Ross, and Rajeev Thakur. Pvfs: A parallel file
system for linux clusters. In Proceedings of the 4th Annual Linux Showcase & Conference -
Volume 4, ALS’00, pages 28–28, Berkeley, CA, USA, 2000. USENIX Association.

[CRS+08] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip Bohan-
non, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni. Pnuts: Yahoo!’s
hosted data serving platform. Proc. VLDB Endow., 1(2):1277–1288, August 2008.

[CST+10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking Cloud Serving Systems with YCSB. In Proceedings of the 1st ACM Symposium
on Cloud Computing, SoCC ’10, pages 143–154, New York, NY, USA, 2010. ACM.

[DCKM04] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: A decentralized network
coordinate system. SIGCOMM Comput. Commun. Rev., 34(4):15–26, August 2004.

[DFLP18] Bruno Donassolo, Ilhem Fajjari, Arnaud Legrand, and Mertikopoulos Panayotis. FogIoT
Orchestrator: an Orchestration System for IoT Applications in Fog Environment. In 1st
Grid’5000-FIT school, Nice, France, April 2018.

[DHH+03] S Donovan, G Huizenga, AJ Hutton, CC Ross, MK Petersen, and P Schwan. Lustre: Building
a file system for 1000-node clusters. In Proceedings of the Linux Symposium, 2003.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lak-
shman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dy-
namo: Amazon’s highly available key-value store. SIGOPS Oper. Syst. Rev., 41(6):205–220,
October 2007.

[Dij59] E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1(1):269–271,
December 1959.

[DO13] Alex Davies and Alessandro Orsaria. Scale out with glusterfs. Linux J., 2013, November 2013.
[DSF+11] Adam Dunkels, Oliver Schmidt, Niclas Finne, Joakim Eriksson, Fredrik Österlind, Nicolas

Tsiftes, and Mathilde Durvy. The contiki os: The operating system for the internet of things.
Technical report, Thingsquare AB, 2011.

[DYC+15] Harishchandra Dubey, Jing Yang, Nick Constant, Amir Mohammad Amiri, Qing Yang, and Ku-
nal Makodiya. Fog data: Enhancing telehealth big data through fog computing. In Proceedings
of the ASE BigData ; SocialInformatics 2015, ASE BD;SI ’15, pages 14:1–14:6, New York,
NY, USA, 2015. ACM.

[EDPK09] Manal El Dick, Esther Pacitti, and Bettina Kemme. Flower-cdn: A hybrid p2p overlay for
efficient query processing in cdn. In Proceedings of the 12th International Conference on
Extending Database Technology: Advances in Database Technology, EDBT ’09, pages 427–
438, New York, NY, USA, 2009. ACM.

[FGH14] Mohamed Firdhous, Osman Ghazali, and Suhaidi Hassan. Fog computing: Will it be the future
of cloud computing? In Third International Conference on Informatics & Applications, Kuala
Terengganu, Malaysia, pages 8–15, 2014.

[GALM07] Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anirban Mahanti. Youtube traffic characteriza-
tion: A view from the edge. In Proceedings of the 7th ACM SIGCOMM Conference on Internet
Measurement, IMC ’07, pages 15–28, New York, NY, USA, 2007. ACM.

[GL02] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News, 33(2):51–59, June 2002.

[HBS+17] Oliver Hahm, Emmanuel Baccelli, Thomas C. Schmidt, Matthias Wählisch, Cédric Adjih, and
Laurent Massoulié. Low-power Internet of Things with NDN & Cooperative Caching. In
ACM ICN 2017 - 4th ACM Conference on Information-Centric Networking, Berlin, Germany,
September 2017.

[HCK+08] Felix Hupfeld, Toni Cortes, Björn Kolbeck, Jan Stender, Erich Focht, Matthias Hess, Jesus
Malo, Jonathan Marti, and Eugenio Cesario. The xtreemfs architecture; a case for object-based
file systems in grids. Concurr. Comput. : Pract. Exper., 20(17):2049–2060, December 2008.

[JREM14] N. T. K. Jorgensen, I. Rodriguez, J. Elling, and P. Mogensen. 3G Femto or 802.11g WiFi:
Which Is the Best Indoor Data Solution Today? In 2014 IEEE 80th Vehicular Technology
Conference (VTC2014-Fall), pages 1–5, Sept 2014.

[JST+09] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass, Nicholas H. Briggs,

November 2019

and Rebecca L. Braynard. Networking named content. In Proceedings of the 5th International
Conference on Emerging Networking Experiments and Technologies, CoNEXT ’09, pages 1–
12, New York, NY, USA, 2009. ACM.

[KCC+07] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolinskiy, Kye Hyun Kim, Scott
Shenker, and Ion Stoica. A data-oriented (and beyond) network architecture. SIGCOMM
Comput. Commun. Rev., 37(4):181–192, August 2007.

[KLL+97] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and Daniel
Lewin. Consistent hashing and random trees: Distributed caching protocols for relieving hot
spots on the world wide web. In Proceedings of the Twenty-ninth Annual ACM Symposium on
Theory of Computing, STOC ’97, pages 654–663, New York, NY, USA, 1997. ACM.

[KPR+12] Bong Jun Ko, Vasileios Pappas, Ramya Raghavendra, Yang Song, Raheleh B. Dilmaghani,
Kang-won Lee, and Dinesh Verma. Architecture for data center networks an information-
centric architecture for data center networks. In Proceedings of the Second Edition of the ICN
Workshop on Information-centric Networking, ICN ’12, pages 79–84. ACM, 2012.

[KRR02] Jussi Kangasharju, James Roberts, and Keith W. Ross. Object replication strategies in content
distribution networks. Computer Communications, 25(4):376 – 383, 2002.

[LBB14] Adrien Lebre and Gustavo Bervian Brand. GBFS: Efficient Data-Sharing on Hybrid Plat-
forms. Towards adding WAN-Wide elasticity to DFSes. In WPBA Workshop in Proceedings of
26th International Symposium on Computer Architecture and High Performance Computing,
WPBA Workshop in Proceedings of 26th International Symposium on Computer Architecture
and High Performance Computing, Paris, France, October 2014. IEEE.

[LM10] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized structured storage system.
SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010.

[LPTDC15] Adrien Lebre, Jonathan Pastor, and . The DISCOVERY Consortium. The DISCOVERY Initia-
tive - Overcoming Major Limitations of Traditional Server-Centric Clouds by Operating Mas-
sively Distributed IaaS Facilities. Research Report RR-8779, Inria, September 2015.

[MKB18] Redowan Mahmud, Ramamohanarao Kotagiri, and Rajkumar Buyya. Fog Computing: A Tax-
onomy, Survey and Future Directions, pages 103–130. Springer Singapore, Singapore, 2018.

[MTK06] Athina Markopoulou, F. Tobagi, and M. Karam. Loss and delay measurements of Internet back-
bones. Computer Communications, 29(10):1590 – 1604, 2006. Monitoring and Measurements
of IP Networks.

[NSS10] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. The akamai network: A platform for
high-performance internet applications. SIGOPS Oper. Syst. Rev., 44(3):2–19, August 2010.

[Pas12] Andrea Passarella. A survey on content-centric technologies for the current internet: Cdn and
p2p solutions. Computer Communications, 35(1):1 – 32, 2012.

[PDÉ+14] Dimitri Pertin, Sylvain David, Pierre Évenou, Benoı̂t Parrein, and Nicolas Normand. Dis-
tributed File System based on Erasure Coding for I/O Intensive Applications. In 4th Interna-
tional Conference on Cloud Computing and Service Science, Barcelone, Spain, April 2014.

[PFTK98] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling TCP Throughput: A
Simple Model and Its Empirical Validation. SIGCOMM Comput. Commun. Rev., 28(4):303–
314, October 1998.

[PHS+16] L. Pacheco, R. Halalai, V. Schiavoni, F. Pedone, E. Rivière, and P. Felber. Globalfs: A strongly
consistent multi-site file system. In 2016 IEEE 35th Symposium on Reliable Distributed Sys-
tems (SRDS), pages 147–156, September 2016.

[PSW+15] Z. Pang, L. Sun, Z. Wang, E. Tian, and S. Yang. A survey of cloudlet based mobile computing.
In 2015 International Conference on Cloud Computing and Big Data (CCBD), pages 268–275,
November 2015.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. SIGCOMM Comput. Commun.
Rev., 31(4):149–160, August 2001.

[SSMM14] R. D. Souza Couto, S. Secci, M. E. Mitre Campista, and L. H. Maciel Kosmalski Costa. Net-
work design requirements for disaster resilience in IaaS Clouds. IEEE Communications Mag-
azine, 52(10):52–58, October 2014.

[SSX+15] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, W. Hu, and B. Amos. 0edge
analytics in the internet of things. IEEE Pervasive Computing, 14(2):24–31, April 2015.

[THS10] Osamu Tatebe, Kohei Hiraga, and Noriyuki Soda. Gfarm grid file system. New Generation

November 2019

Computing, 28(3):257–275, July 2010.
[TT05] Minh Tran and Wallapak Tavanapong. On using a cdn’s infrastructure to improve file transfer

among peers. In Jordi Dalmau Royo and Go Hasegawa, editors, Management of Multimedia
Networks and Services, pages 289–301, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[TZV+11] F Tao, L Zhang, V C Venkatesh, Y Luo, and Y Cheng. Cloud manufacturing: a computing and
service-oriented manufacturing model. Proceedings of the Institution of Mechanical Engineers,
Part B: Journal of Engineering Manufacture, 225(10):1969–1976, 2011.

[WBMM06] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and Carlos Maltzahn. Crush: Controlled,
scalable, decentralized placement of replicated data. In Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, SC ’06, New York, NY, USA, 2006. ACM.

[WLBM07] Sage A. Weil, Andrew W. Leung, Scott A. Brandt, and Carlos Maltzahn. Rados: A scalable,
reliable storage service for petabyte-scale storage clusters. In Proceedings of the 2Nd Inter-
national Workshop on Petascale Data Storage: Held in Conjunction with Supercomputing ’07,
PDSW ’07, pages 35–44, New York, NY, USA, 2007. ACM.

[WSJ17] Martin Wollschlaeger, Thilo Sauter, and Juergen Jasperneite. The future of industrial com-
munication: Automation networks in the era of the internet of things and industry 4.0. IEEE
Industrial Electronics Magazine, 11(1):17–27, 2017.

[WW17] Jake Wires and Andrew Warfield. Mirador: An active control plane for datacenter storage. In
Proceedings of the 15th Usenix Conference on File and Storage Technologies, FAST’17, pages
213–227, Berkeley, CA, USA, 2017. USENIX Association.

[YZX+10] Zhi Yang, Ben Y. Zhao, Yuanjian Xing, Song Ding, Feng Xiao, and Yafei Dai. Amazingstore:
Available, low-cost online storage service using cloudlets. In Proceedings of the 9th Interna-
tional Conference on Peer-to-peer Systems, IPTPS’10, pages 2–2, Berkeley, CA, USA, 2010.
USENIX Association.

[ZMK+15] Ben Zhang, Nitesh Mor, John Kolb, Douglas S. Chan, Nikhil Goyal, Ken Lutz, Eric Allman,
John Wawrzynek, Edward Lee, and John Kubiatowicz. The cloud is not enough: Saving iot
from the cloud. In Proceedings of the 7th USENIX Conference on Hot Topics in Cloud Com-
puting, HotCloud’15, pages 21–21, Berkeley, CA, USA, 2015. USENIX Association.

List of terms

Biographies

Bastien Confais received his Master’s degree in Computer Science in 2015 and his Ph.D.
from the University of Nantes (France) last July. Thanks to his background in network-
ing and in distributed systems, he is currently working on Fog Computing and more
particularly on how to store data efficiently in such distributed environments. Over the
last few years, he developed some skills to run experiments on testbed platforms such as
Grid’5000 or FIT/IoT-lab.

Benoı̂t Parrein received the Ph.D. degree in Computer Science from the University of
Nantes, France in 2001. He is currently Associate Professor at the University of Nantes
(Computer Science department of Polytech school). He is member of LS2N laboratory
(UMR CNRS 6004) dedicated to digital sciences. He is head of RIO research team ded-
icated to networks for the Internet of Things (IoT). His research interests are Fog and
Edge computing, mobile ad hoc networks, robot networks and Intelligent Defined Net-
works (IDN). He co-authored more than 50 peer-refereed publications, contributed to 5
chapters in collective book and is coinventor of 3 patents.

November 2019

Adrien Lebre is a full professor at IMT Atlantique, Nantes (France) and head of the
STACK research group. He holds a Ph.D. from Grenoble Institute of Technologies and
a habilitation from University of Nantes. His activities focus on large-scale distributed
systems, their design, compositional properties and efficient implementation. Since 2015,
his activities have been mainly focusing on the Edge Computing paradigm, in particular
in the OpenStack ecosystem.

