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In this paper, new sharp bounds for circular and hyperbolic functions are proved. We provide some improvements of previous results by using innite products, power series expansions and a variant of the so-called Bernoulli inequality. New proofs, renements as well as new results are oered.

During the past several years, sharp inequalities involving circular and hyperbolic functions have received a lot of attention. Thanks to their usefulness in all areas of mathematics. Old and new such inequalities, as well as renements of the so-called Jordan's, Cusa-Huygens and Wilker inequalities, can be found in [START_REF] Zhu | A source of inequalities for circular functions[END_REF], and the references therein. In this paper we present a new variant of the standard Bernoulli inequality. This is more general than the one proved in [START_REF] Chesneau | A note on some new bounds for trigonometric functions using innite products[END_REF]. It permits us to deduce some bounds for circular and hyperbolic functions. These bounds appear to be sharper than those proved previously. In this paper we provide new lower bounds for the function cos(x) and sin(x) x as well as bounds for the products sinh(x) sin(x)

x 2 and cosh(x) cos(x), improving some of those established in the literature.

A variant of the Bernoulli inequality

The following two results concerning circular functions, they have been proved by C. Chesneau and Y. Bagul [START_REF] Chesneau | A note on some new bounds for trigonometric functions using innite products[END_REF]. They improve theorems 1,2 of [START_REF] Bagul | Inequalities involving circular, hyperbolic and exponential functions[END_REF]. The rst result concerns bounds for cos(x).

Proposition 2 For α ∈ (0, π/2) and x ∈ (0, α), we have

e -βx 2 ≤ cos(x) ≤ e -x 2 /2 , with β = -log(cos(xα)) α 2 .
The second concerns bounds for sin(x)

x .

Proposition 3 For α ∈ (0, π/2) and x ∈ (0, α), we have

e -γx 2 ≤ cos(x) ≤ e -x 2 /2 , with γ = -log(sin(xα)) α 2 .
Their proofs are based on innite products of circular functions as well as the following standard Bernoulli inequality Proposition 1 For u, v ∈ (0, 1), we have

1 -uv ≥ (1 -v) u .
In this paper we propose at rst the following main result which improves the preceding Theorem 1-1 For u, v ∈ (0, 1), we have

1 -uv ≥ (1 -v) u 2 e uv(u-1) ≥ (1 -v) u .
Proof of Theorem 1-1 For u, v ∈ (0, 1) and k ≥ 1, one has u k ≤ u

The logarithm series expansion gives

log(1 -uv) = - ∑ k≥1 u k v k k = -uv - ∑ k≥2 u k v k k ≥ -uv + u 2 (- ∑ k≥2 v k k ) = -uv + u 2 (v + log(1 -v).
Composing by the exponential function, we obtain the left inequality. To prove the right inequality it suces to note that the function

f (v) = (1 -v)e v
is bounded by 1 for v ∈ (0, 1). Then powering by u -u 2 ≥ 0 one gets

f (v) u-u 2 = (1 -v) u-u 2 e v(u-u 2 ) ≤ 1 Implying (1 -v) u 2 -u e v(u 2 -u) ≥ 1
or equivalently

(1 -v) u 2 e uv(u-1) ≥ (1 -v) u since u 2 ≤ u.
Theorem 1-1 is a sort of a renement of the classical Bernoulli inequality. It allows us in particular to improve the lower bounds of preceding Propositions 1 and 2. It also allows to bring many other inequalities as well as with sharp bounds. Proposition 1-2 For α ∈ (0, π/2) and x ∈ (0, α), we have the following inequalities

(cos(α)) x 2 ≤ (cos(α)) x 4 e ( x 4 -α 2 x 2 2α 2 ) ≤ cos(x) ≤ e -x 2 /2
Proof of Proposition 1-2 We will use the innite product of the cosine function. For x ∈ IR we have

cos(x) = ∏ k≥1 (1 - 4x 2 π 2 (2k -1) 2 )
The upper bound has been proved (Proposition 2 of [START_REF] Chesneau | A note on some new bounds for trigonometric functions using innite products[END_REF]). The lower bound follows from Theorem 1. We have to prove the middle bound. With respect that x ∈ (0, α) using the innite product and Theorem 1 we may write following [START_REF] Chesneau | A note on some new bounds for trigonometric functions using innite products[END_REF] 

cos(x) = ∏ k≥1 (1 - 4α 2 x 2 α 2 π 2 (2k -1) 2 ) = ∏ k≥1 (1 - 4α 2 π 2 (2k -1) 2 x 2 α 2 ) ≥ ∏ k≥1 (1 - 4α 2 x 2 π 2 (2k -1) 2 ) x 4 α 4 e 4α 2 π 2 (2k-1) 2 ( x 4 α 4 -x 2 α 2 )
= (cos(α))

x 4 α 4 e ∑ k≥1 ( 4α 2 π 2 (2k-1) 2 ( x 4 α 4 -x 2 α 2 )) .
On the other hand the sum may be written

∑ k≥1 4α 2 π 2 (2k -1) 2 ( x 4 α 4 - x 2 α 2 ) = ( x 4 α 4 - x 2 α 2 ) 4α 2 π 2 ∑ k≥1 1 (2k -1) 2 = ( x 4 α 4 - x 2 α 2 ) 4α 2 π 2 π 2 π 2 8 = ( x 4 α 4 - x 2 α 2 ) α 2 2 since ∑ k≥1 1 (2k-1) 2 = π 2 8 .
Finally, we obtain the inequality

cos(x) ≥ (cos(α)) x 4 e ( x 4 α 4 -x 2 α 2 ) α 2 2 .
The result below gives a generalization of [1, Proposition 3 ]. It improves the lower bound Proposition 1-3 For α ∈ (0, π/2) and x ∈ (0, α), we have the following inequalities

( sin(α) α ) x 2 α 2 ≤ ( sin(α) α ) x 4 α 4 e ( x 4 -α 2 x 2 6α 2 ) ≤ sin(x) x ≤ e -x 2 /6
Proof of Proposition 1-3 We will use the innite product of the sine function the so-called Euler expansion. For x ∈ IR we have

sin(x) x = ∏ k≥1 (1 - x 2 π 2 k 2 )
The upper bound has been proved (Proposition 2 of [START_REF] Chesneau | A note on some new bounds for trigonometric functions using innite products[END_REF]). The lower bound follows from Theorem 1. We have to prove the middle bound. With respect that x ∈ (0, α) using the innite product and Theorem 1 we may write following [START_REF] Chesneau | A note on some new bounds for trigonometric functions using innite products[END_REF] sin(x)

x = ∏ k≥1 (1 - α 2 x 2 α 2 π 2 k 2 ) = ∏ k≥1 (1 - α 2 π 2 k 2 x 2 α 2 ) ≥ ∏ k≥1 (1 - α 2 x 2 π 2 k 2 ) x 4 α 4 e α 2 π 2 k 2 ( x 4 α 4 -x 2 α 2 ) = ( sin(α) α ) x 4 α 4 e ∑ k≥1 ( α 2 π 2 k 2 ( x 4 α 4 -x 2 α 2 )) .
On the other hand the sum may be written

∑ k≥1 α 2 π 2 k 2 ( x 4 α 4 - x 2 α 2 ) = ( x 4 α 4 - x 2 α 2 ) α 2 π 2 ∑ k≥1 1 k 2 = ( x 4 α 4 - x 2 α 2 ) α 2 π 2 π 2 6 = ( x 4 α 4 - x 2 α 2 ) α 2 6 since ∑ k≥1 1 k 2 = π 2 6 .
Finally, we obtain the inequality

sin(x) x ≥ ( sin(α) α ) x 4 α 4 e ( x 4 α 4 -x 2 α 2 ) α 2 6 .
2 Others applications on the lower bounds

In [3, Theorem 1.26] the authors proved for x ∈ (0, π) the following inequality

sin(x) x ≥ (1 - x 2 π 2 ) π 2 6 .
The following improves this lower bound Proposition 2-4 For x ∈ (0, π) we have the inequalities

sin(x) x ≥ (1 - x 2 π 2 ) π 4 90 e x 2 ( π 2 90 -1 6 ) ≥ (1 - x 2 π 2 ) π 2 6 .
Proof of Proposition 2-4 By Theorem 1 and the innite product we get

sin(x) x = ∏ k≥1 (1 - x 2 π 2 k 2 ) ≥ ∏ k≥1 (1 - x 2 π 2 ) 1 k 4 e x 2 π 2 k 2 ( 1 k 2 -1) = (1 - x 2 π 2 ) ∑ k≥1 1 k 4 e x 2 π 2 ( ∑ k≥1 1 k 4 - ∑ k≥1 1 k 2 ) = (1 - x 2 π 2 ) π 4 90 e x 2 π 2 ( π 4 90 -π 2 6 ) .
On the other hand, the well known inequality of the product sin(x) sinh(x) ≤ x 2 has been improved in [4, Propositions 2.1 and 2.2] in using innite product and Bernoulli inequality. We propose the following which is a renement than the previous. Proposition 2-5 For x ∈ (0, π) we have the inequalities

( sin(α) sinh(α) α 2 ) x 4 α 4 ≤ ( sin(α) sinh(α) α 2 ) x 8 α 8 e [ x 4 90 ( x 4 α 4 -1)] ≤ sin(x) sinh(x) x 2 ≤ e -x 4 90 x 2 (1 - x 4 π 4 ) π 4 90 ≤ x 2 (1 - x 4 π 4 ) π 8 9450 e [ x 4 90 ( x 4 π 4 -1)] ≤ sin(x) sinh(x) x 2
Proof of Proposition 2-5 The upper bound has been proved (Proposition 2.1 of [START_REF] Chesneau | New renements of two well-known inequalities[END_REF]). The lower bound follows from Theorem 1. We have to prove the middle bound. With respect that x ∈ (0, α) using the innite products

sin(x) x = ∏ k≥1 (1 - x 2 π 2 k 2 ), sinh(x) x = ∏ k≥1 (1 + x 2 π 2 k 2 ).
Therefore

sin(x) sinh(x) = x 2 ∏ k≥1 (1 - x 4 π 4 k 4 ).
For this bound we will use Theorem 1. It follows

sin(x) sinh(x) = x 2 ∏ k≥1 (1 - α 4 x 4 π 4 α 4 k 4 ) ≥ ∏ k≥1 (1 - α 4 π 4 k 4 ) x 8 α 8 e [ x 4 π 4 k 4 ( x 4 α 4 -1)] = x 2 ( sin(α) sinh(α) α 2 ) x 8 α 8 e [ x 4 π 4 ( x 4 α 4 -1) ∑ k≥1 1 k 4 ] .
It implies the inequality since

∑ k≥1 1 k 4 = π 4 90 .
For the second inequality which is sharp than the preceding we use again the innite products

sin(x) sinh(x) = x 2 ∏ k≥1 (1 - x 4 π 4 k 4 ).
By Theorem 1 we may write (4) .

sin(x) sinh(x) = x 2 ∏ k≥1 (1 - x 4 π 4 1 k 4 ) ≥ x 2 ∏ k≥1 (1 - x 4 π 4 ) 1 k 8 e [ x 4 π 4 k 4 ( x 4 π 4 -1)] = x 2 (1 - x 4 π 4 ) ζ(8) e x 4 π 4 ( x 4 π 4 -1)ζ
Thus

sin(x) sinh(x) ≥ x 2 (1 - x 4 π 4 ) π 8 9450 e [ x 4 π 4 ( x 4 π 4 -1) π 4 90 ] .
Similarly, for the cosine product cos(x) cosh(x) we have the following result which determines a double inequality improving [4, Propositions 2.3 and 2.4] Proposition 2-6 For x ∈ (0, π) we have the inequalities

[cos(α) cosh(α)] x 4 α 4 ≤ [cos(α) cosh(α)] x 8 α 8 e [ 16x 4 96 ( x 4 α 4 -1)] ≤ cos(x) cosh(x) ≤ e -x 4 6 (1 - 16x 4 π 4 ) π 4 90 ≤ (1 - 16x 4 π 4 ) 17π 8 161280 e [ 16x 4 96 ( x 4 π 4 -1)] ≤ cos(x) cosh(x).
Proof of Proposition 2-6 The upper bound has been proved (Proposition 2.3 of [START_REF] Chesneau | New renements of two well-known inequalities[END_REF]). The lower bound follows from Theorem 1. We have to prove the middle bound. With respect that x ∈ (0, α) using the innite products For

x ∈ IR we have

cos(x) = ∏ k≥1 (1 - 4x 2 π 2 (2k -1) 2 ), cosh(x) x = ∏ k≥1 (1 + 4x 2 π 2 (2k -1) 2 ). Therefore cos(x) cosh(x) = ∏ k≥1 (1 - 16x 4 π 4 (2k -1) 4 ).
For this bound we will use Theorem 1. It follows For the second inequality which is sharp than the preceding we use again the innite products cos(x) cosh(x) = ∏ k≥1

cos(x) cosh(x) = ∏ k≥1 (1 - 16α 4 x 4 π 4 α 4 (2k -1) 4 ) ≥ ∏ k≥1 [1 - α 4 π 4 (2k -1) 4 ]
(1 -16x 4 π 4 (2k -1) 4 ).

By Theorem 1 we may write 

[ x 4 96 ( x 4 π 4

 444 -1)] .