Abd Raouf Chouikha 
email: chouikha@math.univ-paris13.fr.
  
Keywords: Circular function, hyperbolic function, Innite product, Bernoulli inequality 26D07, 33B10, 33B20

   

Sharp inequalities for ratio of trigonometric and hyperbolic functions

The classical Bernoulli inequality is known

(1 + x) s ≤ 1 + sx
It is dened for x > -1 and 0 ≤ s ≤ 1, for s > 1, the inequality reverses. This one has been generalized in a number of ways. See Mitrinovic and Pecaric [START_REF] Mitrinovic | On Bernoulli's inequality[END_REF] for a survey.

This inequality played a historical role in improving the bounds of certain trigonometric and hyperbolic inequalities. Any renancing of this inequality has a denite impact on these improvements. One can refer to [START_REF] Mitrinovic | On Bernoulli's inequality[END_REF] and [START_REF] Mitrinovic | Bernoulli's Inequality[END_REF]. Recently the authors [START_REF] Chesneau | Some new bounds for ratio functions of trigonometric and hyperbolic functions[END_REF] and [START_REF] Zhu | Six new Redheer-type inequalities for circular and hyperbolic functions[END_REF] have highlighted renements of the Bernoulli inequality, i.e. for u, v ∈ (0, 1):

(1 -v) u ≤ 1 -uv.

1

This allowed them to produce inequalities with better bounds. These relate to both trigonometric and hyperbolic functions as well as their ratio or product. In [START_REF] Chesneau | Some new bounds for ratio functions of trigonometric and hyperbolic functions[END_REF] the authors introduced a function f (u, v) which permits to sharp the Bernoulli inequality. We shall propose an other function g (u, v). This function is nest than f (u, v) in the sense that the following inequalities are satised

(1 -v) u ≤ f (u, v)(1 -v) u ≤ g(u, v)(1 -v) u ≤ 1 -uv.
In this paper we deduce from this variant of Bernoulli inequality new bounds to the ratio functions cosh x/ cos x as well as bounds for sinh x/ sin x, improving some of those established in the literature.

New variant of Bernoulli inequality

In [START_REF] Chesneau | Some new bounds for ratio functions of trigonometric and hyperbolic functions[END_REF] the authors proved the following which gives a renement of the standard Bernoulli inequality Proposition For u, v ∈ (0, 1) we have

1 -uv ≥ f (u, v)(1 -v) u where f (u, v) denotes the function f (u, v) = 1 + uv (1 + v) u ≥ 1
This proposition may be improved thanks to the following which allows us to derive a function g(u, v) nest than f (u, v).

Proposition 1-1 For u, v ∈ (0, 1) the following inequalities hold

log ( 1 + uv 1 -uv ) ≤ 2uv(1 -u 2 ) + u 3 log ( 1 + v 1 -v ) ≤ u log ( 1 + v 1 -v ) .
Proof We will use the logarithmic series expansion. For u, v ∈ (0, 1) we may write

log ( 1 + uv 1 -uv ) = 2 ∑ k≥1 (uv) 2k-1 2k -1 = 2uv + 2[ (uv) 3 3 + (uv) 5 5 + ...]
For u, v ∈ (0, 1) and k ≥ 2, we have u 2k-1 ≤ u 3 . Therefore

2 ∑ k≥1 (uv) 2k-1 2k -1 ≤ 2uv + 2u 3 [ v 3 3 + v 5 5 + ...] = 2uv + 2u 3 [-v + v + v 3 3 + v 5 5 + ...] = 2uv + u 3 [-2v + 2 ∑ k≥1 v 2k-1 2k -1 ] = 2uv + u 3 [-2v + log ( 1 + v 1 -v ) ].
We thus obtain the left inequality

log ( 1 + uv 1 -uv ) ≤ 2uv(1 -u 2 ) + u 3 log ( 1 + v 1 -v ) .
To prove the right inequality it suces to remark that for v ∈ (0, 1) the well known inequality

2v ≤ log ( 1 + v 1 -v ) implies in multiplying by u -u 3 ≥ 0 2v(u -u 3 ) ≤ (u -u 3 ) log ( 1 + v 1 -v ) which also implies 2v(u -u 3 ) -(u -u 3 ) log ( 1 + v 1 -v ) ≤ 0. Therefore 2v(u -u 3 ) + u 3 log ( 1 + v 1 -v ) ≤ u log ( 1 + v 1 -v ) .
As a corollary we deduce the following which improves the above Proposition 1

Corollary 1-2 For u, v ∈ (0, 1) the function f (u, v) dened above veries the following inequalities

1 ≤ f (u, v) = 1 + uv (1 + v) u ≤ g(u, v) ≤ 1 -uv (1 -v) u
where

g(u, v) = e [2uv(1-u 2 )] 1 -uv (1 -v) u [ 1 + v 1 -v ] [u 3 -u] = [ e 2v ( 1 -v 1 + v ) ] (u-u 3 ) 1 -uv (1 -v) u .
Proof From Proposition 1-1 composing by the exponential function we then obtain

1 + uv (1 -uv) ≤ e [2uv(1-u 2 )] ( 1 + v 1 -v ) u 3 ≤ ( 1 + v 1 -v ) u
which implies

( 1 + uv 1 -uv ) ( 1 -v 1 + v ) u ≤ e [2uv(1-u 2 )] ( 1 + v 1 -v ) [u 3 -u] ≤ 1.
Thus

f (u, v) = 1 + uv (1 + v) u ≤ e [2uv(1-u 2 )] 1 -uv (1 -v) u [ 1 + v 1 -v ] [u 3 -u] ≤ 1 -uv (1 -v) u .
We then have for u, v ∈ (0, 1) the inequalities

(1 -v) u ≤ f (u, v)(1 -v) u ≤ g(u, v)(1 -v) u ≤ 1 -uv.
2 Some new bounds for ratio functions

In this section we will apply result of Corollary 1-2 in order to determine bounds for ratios of functions sine and cosine. We will show that these bounds are sharp. We think it is possible to apply it in other similar situations.

The following result proposes an exponential upper bound for the ratio function cosh(x)/ cos(x) better than the one proposed by [START_REF] Chesneau | Some new bounds for ratio functions of trigonometric and hyperbolic functions[END_REF]Proposition 2].

Proposition 2-1 For x, α ∈ (0, π/2) the following inequalities holds

cosh(x) cos(x) ≤ e α 2 [ cos(α) cosh(α) ] ( x 2 α 2 -x 6 α 6 ) ≤ [ cosh(α) cos(α) ] x 2 α 2
Proof We will use innite products for expressions of cosh(x) and cos(x).

For x ∈ IR one has

cos(x) = ∏ k≥1 [1 -( 2x π(2k -1) ) 2 ], cosh(x) = ∏ k≥1 [1 + ( 2x π(2k -1) ) 2 ].
Then the ratio can be expressed

cosh(x) cos(x) = ∏ k≥1 [1 + ( 2x π(2k-1) ) 2 ] [1 -( 2x π(2k-1) ) 2 ]
. which may also be written for α ∈ (0, π/2)

cosh(x) cos(x) = ∏ k≥1 [1 + ( 2α π(2k-1) ) 2 ] x 2 α 2 [1 -( 2α π(2k-1) ) 2 ] x 2 α 2 .
Moreover, it follows from Corollary 1-2 for u, v ∈ (0, 1)

1 + uv 1 -uv = f (u, v) (1 + v) u 1 -uv ≤ g(u, v) (1 + v) u 1 -uv = [ e 2v ( 1 -v 1 + v ) ] (u-u 3 ) ≤ ( 1 + v 1 -v ) u . Thus, for u = x 2 α 2 and v = ( 2α π(2k-1) ) 2 one obtains cosh(x) cos(x) = ∏ k≥1 [ 1 + ( 2α π(2k-1) ) 2 ] x 2 α 2 [ 1 -( 2α π(2k-1) ) 2 ] x 2 α 2 ≤ ∏ k≥1 [ e 2v ( 1 -v 1 + v ) ] (u-u 3 ) cosh(x) cos(x) ≤ ∏ k≥1   e 2( 2α 2k-1 ) 2   1 -( 2α π(2k-1) ) 2 1 + ( 2α π(2k-1) ) 2     ( x 2 α 2 -( x 2 α 2 ) 3 )
Therefore since

∑ k≥1 1 (2k-1) 2 = π 2 8 one gets cosh(x) cos(x) ≤ e 2 ∑ k≥1 ( 2α π(2k-1) ) 2 ∏ k≥1   1 -( 2α π(2k-1) ) 2 1 + ( 2α π(2k-1) ) 2   ( x 2 α 2 -( x 2 α 2 ) 3 ) cosh(x) cos(x) ≤ e α 2 [ cos(α) cosh(α) ] ( x 2 α 2 -x 6 α 6 ) ≤ [ cosh(α) cos(α) ] x 2 α 2 .
This proves the inequality.

Moreover, the right inequality is derived from Corollaries 1-3.

Turn now to the bounds for ratio of sine and hyperbolic sine functions. The following result proposes an exponential upper bound for the ratio function sinh(x)/ sin(x) better than the one proposed by [START_REF] Chesneau | Some new bounds for ratio functions of trigonometric and hyperbolic functions[END_REF]Proposition 4]. sin(α) sinh(α)

] ( x 2 α 2 -( x 2 α 2 ) 3 ) ≤ [ sinh(α) sin(α) ] ( x 2 α 2 )
.

Proof We will use innite products for expressions of sinh(x)/x and sin(x)/x. For x ∈ IR one has

sin(x) x = ∏ k≥1 (1 - x 2 π 2 k 2 ), sinh(x) x = ∏ k≥1 (1 + x 2 π 2 k 2 ).
Then the ratio can be expressed in the simple following form

sinh(x) sin(x) = ∏ k≥1 [1 + ( x πk ) 2 ] [1 -( x πk ) 2 ]
. which may also be written for α ∈ (0, π/2)

sinh(x) sin(x) = ∏ k≥1 [1 + ( α πk ) 2 ( x α ) 2 ] [1 -( α πk ) 2 ( x α ) 2 ]
.

Then it follows from Corollary 1-2 for u, v ∈ (0, 1)

1 + uv 1 -uv = f (u, v) (1 + v) u 1 -uv ≤ g(u, v) (1 + v) u 1 -uv = [ e 2v ( 1 -v 1 + v ) ] (u-u 3 ) ≤ ( 1 + v 1 -v ) u .
Thus, for u = x 2 α 2 and v = ( α πk ) 2 we have

sinh(x) sin(x) = ∏ k≥1 [1 + ( α πk ) 2 ( x α ) 2 ] [1 -( α πk ) 2 ( x α ) 2 ] ≤ ∏ k≥1 [ e 2v ( 1 -v 1 + v ) ] (u-u 3 ) sinh(x) sin(x) ≤ ∏ k≥1 [ e 2( α πk ) 2 ( 1 -( α πk ) 2 1 + ( α πk ) 2 )] ( x 2 α 2 -( x 2 α 2 ) 3 ) Since ∑ k≥1 1 k 2 = π 2 4 then we have sinh(x) sin(x) ≤ [ e α 2 3 sin(α) sinh(α) ] ( x 2 α 2 -( x 2 α 2 ) 3 )
.

This proves the inequality. Moreover, the right inequality is derived from Corollaries 1-3.

Using these corollaries it is possible to prove other similar results as it will be done by the following.

Proposition 2-3 For x ∈ (0, π/2) the following inequalities hold

cosh(x) cos(x) ≤ [ e ( 8x 2 π 2 ) ( π 2 -4x 2 π 2 + 4x 2 )] π 2 8 (1-π 4 120 ) ≤ ( π 2 + 4x 2 π 2 -4x 2 ) π 2 8
Proof We will use again innite products for expressions of cosh(x) and cos(x). For x ∈ IR one has the ratio

cosh(x) cos(x) = ∏ k≥1 [1 + ( 2x π(2k-1) ) 2 ] [1 -( 2x π(2k-1) ) 2 ]
.

Thus, for u = 1 (2k-1) 2 and v = ( 2x π ) 2 we have by Corollary 1-2

1 + uv 1 -uv ≤ [ e 2v ( 1 -v 1 + v ) ] (u-u 3 ) ≤ ( 1 + v 1 -v ) u . cosh(x) cos(x) = ∏ k≥1 1 + uv 1 -uv ≤ [ e 2( 2x π ) 2 ( 1 -( 2x π ) 2 1 + ( 2x π ) 2 )] ( 1 (2k-1) 2 -( 1 (2k-1) 2 ) 3 ) ≤ ∏ k≥1 ( 1 + ( 2x π ) 2 1 -( 2x π ) 2 ) 1 (2k-1) 2 . cosh(x) cos(x) ≤ [ e 2( 2x π ) 2 ( π 2 -4x 2 π 2 + 4x 2 )] ∑ k≥1 ( 1 (2k-1) 2 -( 1 (2k-1) 2 ) 3 ) ≤ ( π + 4x 2 π -4x 2 ) ∑ k≥1 1 (2k-1) 2 .
We then deduce the left inequality since

∑ k≥1   1 (2k -1) 2 - ( 1 (2k -1) 2 ) 3   = π 2 8 - π 6 960 = π 2 8 (1 - π 4 120 
).

We may prove by the same way the analog for the ratio sinh(x) sin(x)

Proposition 2-4 For x ∈ (0, π/2) the following inequalities hold

sinh(x) sin(x) ≤ [ e ( 2x 2 π 2 ) π 2 -x 2 π 2 + x 2 ] ( π 2 6 -π 6 945 ) ≤ ( π 2 + x 2 π 2 -x 2 ) π 2 6
Proof We use again innite products for expressions of sinh(x) and sin(x). For x ∈ IR one has the ratio

sinh(x) sin(x) = ∏ k≥1 [1 + ( x πk ) 2 ] [1 -( x πk ) 2 ]
.

Thus, for u = 1 k 2 and v = ( x π ) 2 we have by Corollary 1-2

1 + uv 1 -uv ≤ [ e 2v ( 1 -v 1 + v ) ] (u-u 3 ) ≤ ( 1 + v 1 -v ) u . sinh(x) sin(x) = ∏ k≥1 1 + uv 1 -uv ≤ [ e 2( x π ) 2 ( 1 -( x π ) 2 1 + ( x π ) 2 )] ( 1 k 2 -( 1 k 2 ) 3 ) ≤ ( 1 + ( x π ) 2 1 -( x π ) 2 ) 1 k 2 . sinh(x) sin(x) ≤ [ e 2( 2x π ) 2 ( π 2 -x 2 π 2 + x 2 )] ∑ k≥1 ( 1 k 2 -( 1 k 2 ) 3 ) ≤ ( π + x 2 π -x 2 ) ∑ k≥1 1 (2k-1) 2
We then deduce the left inequality since

∑ k≥1 ( 1 k 2 - ( 1 k 2 ) 3 ) = π 2 6 - π 6 945 .
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