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Online optimal motion generation with guaranteed safety in shared
workspace

Pu Zheng1, Pierre-Brice Wieber2, Olivier Aycard1

Abstract— With new, safer manipulator robots, the probabil-
ity of serious injury due to collisions with humans remains low
(5%), even at speeds as high as 2 m.s−1. Collisions would better
be avoided nevertheless, because they disrupt the tasks of both
the robot and the human. We propose in this paper to equip
robots with exteroceptive sensors and online motion generation
so that the robot is able to perceive and react to the motion of
the human in order to reduce the occurrence of collisions. It’s
impossible to guarantee that no collision will ever take place
in a partially unknown dynamic environment such as a shared
workspace, but we can guarantee instead that, if a collision
takes place, the robot is at rest at the time of collision, so that
it doesn’t inject its own kinetic energy in the collision. To do
so, we adapt a Model Predictive Control scheme which has
been demonstrated previously with two industrial manipulator
robots avoiding collisions while sharing their workspace. The
proposed control scheme is validated in simulation.

I. INTRODUCTION

New, safer manipulator robots can share their workspace
with humans, thanks to advanced mechanical and control
design that make sure that potential collisions between the
robot and humans result in a low (5%) probability of serious
injury even at speeds as high as 2 m.s−1 [1]. Collisions
would better be avoided nevertheless, not only because of
the remaining risk, however low it is, but also because
each collision disrupts the tasks of both the robot and the
human. We propose in this paper to equip such robots with
exteroceptive sensors and online motion generation so that
the robot is able to perceive and react to the motion of the
human in order to reduce the occurence of collisions and
avoid disrupting their respective tasks. We don’t consider
here physical interactions between the robot and human, such
as a handing an object or holding it together, only situations
where they share the same workspace and have to work
separately with as little interference as possible.

Collision avoidance is classically implemented by restrict-
ing the motion of the robot in the direction of the human,
either with a repulsive potential field [2], damping [3],
momentum limitations [4], control barrier functions [5],
invariance control [6]. All these approaches share two major
problems. The first is that these restrictions are defined arbi-
trarily, only loosely related to the dynamics of the robot, and
generate therefore suboptimal behaviors such as unnecessary
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detours or stops. The second is that they assume that the
proposed restriction can always be enforced and the collision
avoided, which may not be true when multiple constraints are
affecting simultaneously the motion of the robot. In that case,
their behavior is undefined and a collision could happen in
a completely uncontrolled way. It’s impossible to guarantee
that no collision will ever take place in a partially unknown
dynamic environment such as a shared workspace, but we
can guarantee instead that, if a collision takes place, the robot
is at rest at the time of collision, so that it doesn’t inject its
own kinetic energy in the collision [7]. This is called passive
motion safety, and this is what we aim for.

In this paper, we adapt a Model Predictive Control (MPC)
scheme which has been demonstrated previously with two
industrial manipulator robots avoiding collisions while shar-
ing their workspace [8]. But passive motion safety wasn’t
enforced. We propose here to do so by imposing as a terminal
constraint that the robot is always able to stop in the end of
the prediction horizon [9]. This corresponds to making sure
that you can always stop within the limits of where you
can see when driving in a fog. Perception and prediction of
the human motion are naturally crucial and complex issues
in this case. They need a discussion on their own, so we
suppose in this paper that perception of the human motion
is provided.

Concerning the prediction of human motion, we need
conservative, worst-case estimates for effective collision
avoidance. A manipulator robot at full speed (2 m.s−1)
can stop in approximately 0.15 s and 0.15 m [10]. In this
amount of time, a human hand starting from rest can cover
more than 1 m for extreme motions such as boxing [11].
So, if the robot was asked to stop before being punched
by a human, the necessary safety distance would be more
than 1.15 m, which would strongly limit the possibility to
share workspaces. However, human reaching motions are
typically 10 times slower, with maximum speed approxi-
mately 1 m.s−1 and acceleration 5 m.s−2 [12]. We propose
to consider these slower estimates to design the collision
avoidance and passive motion safety capacities of the robot.
If the human happens to move faster and a collision happens
before the robot can stop, we would still benefit from the low
probability of serious injury discussed above [1].

With respect to the ISO Technical Specification 15066
on collaborative robots, our approach combines aspects of
speed and separation monitoring when actively avoiding
collisions, with aspects of power and force limiting if a
collision eventually occurs. The focus of this paper is on
active collision avoidance, while we rely on the manipulator



robot’s mechanical and control design to lower the risk of
injury in case of collision. This latter aspect could be handled
more directly as in [13].

The classical approach to monitor the distance
between a robot and its environment is with the
Gilbert–Johnson–Keerthi distance algorithm, which provides
a pair of closest points between two objects [14]. But
monitoring only a pair of closest points can lead to
catastrophic failures (collisions), since closest points can
change abruptly when objects move [15]. We propose
instead to use the existence of a separating plane between
two objects as evidence that they don’t collide, as this is
immune to changes of closest points [16]. We can actually
impose the existence of separating planes over whole
segments of motion of the two objects instead of individual
positions. This provides continuous-time trajectory safety
over whole intervals of time at very low computational
cost [17].

This paper is organized as follows. We present the general
MPC approach in Section II and emphasize the role of the
terminal constraint to guarantee safety. Collision avoidance
using separating planes is detailed in Section III. Simulations
of the proposed method on a two-link planar robot are
presented in Section IV. Conclusion and future work are
discussed in Section V.

II. A MODEL PREDICTIVE CONTROL APPROACH

Consider the motion of an n link serial manipulator with
joint position q ∈ Rn and piecewise constant acceleration
over periods of time ∆t, represented as a linear discrete time
system

xk+1 = Axk +Buk (1)

where

xk =

[
qk
q̇k

]
∈ R2n, (2)

A =

[
I I∆t
0 I

]
∈ R2n×2n, (3)

B =

[
I ∆t2

2
I∆t

]
∈ R2n×n (4)

with I an n× n identity matrix and uk = q̈k the piecewise
constant acceleration.

The idea of Model Predictive Control is to solve at each
sampling time an optimal control problem over a finite
horizon starting at the current state x0. Consider a control
sequence {u0, u1, . . . uN−1} of length N . A recursive ap-
plication of the linear discrete time system (1) provides the
resulting sequence of states {x1, . . . xN}:
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Fig. 1. Control scheme. The first bloc gives the data about the desired
task and obstacle’s vertices location, then this information plus robot’s data
allows to formulate the cost function and constraint for the second MPC
bloc.

The objective of the MPC scheme is to

minimize
u

N−1∑

k=0

‖xk+1 − xdesk+1‖2Q + ‖uk − udesk ||2R (6a)

subject to ∀ k ∈ {0, . . . N − 1}, u ≤ uk ≤ u, (6b)
∀ k ∈ {1, . . . N}, q ≤ qk ≤ q, (6c)

∀ k ∈ {1, . . . N − 1}, q̇ ≤ q̇k ≤ q̇, (6d)

q̇N = 0 (6e)

with q, q, q̇, q̇, u, u indicating minimum and maximum joint
position, speed and acceleration (we assume that q̇ ≤ 0 ≤ q̇
and u ≤ 0 ≤ u). Here, the objective is to track a desired
joint state trajectory xdesk with acceleration udesk , so this
optimal control problem takes the form of a simple linearly
constrained Quadratic Program (QP) which can be solved
efficiently with off-the-shelf solvers. A straightforward al-
ternative is to consider a desired cartesian motion of the
end effector of the robot, using its forward kinematic model,
but that makes the problem non-linear. In the end, the robot
follows the obtained optimal control sequence until the next
sampling time, and a new optimal control problem is solved.

A key element of this approach is the terminal con-
straint (6e). It may seem unnecessarily constraining the
motion of the robot, but it provides recursive feasibility,
guaranteeing that when the optimal control sequence is
applied to the robot, it always leads to new states of the
robot where the optimal control problem (6) is once again
feasible. This allows guaranteeing that all constraints in (6)
will always be satisfied [18], which is crucial. More precisely,
this terminal constraint imposes that the robot is at rest at
the end of the prediction horizon. When collision avoidance
is introduced in this MPC scheme, this is what provides the
passive motion safety guarantee, making sure that the robot
is able to stop and stay at rest before any collision happens
in the future. This is a central aspect of the approach we
propose.

III. CONTINOUS COLLISION AVOIDANCE

We represent the different parts of the robot and person
as polyhedra with vertices {r1, r2, . . .} and {p1, p2, . . .}
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Fig. 2. If there exists a plane such that all vertices ri of the robot stay
on one side of the plane and all vertices pj of the person stay on the other
side between instants k and k+1, we have evidence that they don’t collide
over this interval of time.

(respectively). As illustrated in Fig. 2, if there exists a plane
defined by a normal vector ak ∈ R3 and a scalar constant
bk ∈ R such that all vertices pj ∈ R3 of the person stay on
one side between instants k and k + 1:

aTk p
j
k ≤ bk, (7a)

aTk p
j
k+1 ≤ bk, (7b)

while all vertices ri ∈ R3 of the robot stay on the other side,
with some additional distance d:

aTk r
i
k ≥ bk + d, (8a)

aTk r
i
k+1 ≥ bk + d, (8b)

then we have evidence that they don’t collide over this
interval of time [17]. These constraints (for all vertices pj and
ri) with decision variables ak and bk can be directly added
for all k ∈ {0, . . . N−1} to the MPC scheme (6), computing
simultaneously the separating planes and the corresponding
collision-free trajectory of the robot. A computationally
more efficient approach is to first compute separating planes
with the robot trajectory obtained at the previous sampling
time, and then, to add only the constraints (8) to the MPC
scheme (6) with the separating planes fixed [16].

1) Compute separating planes: Given the robot trajectory
computed at the previous sampling time and the current
human motion prediction, we can find planes that maximize
the distance d:

maximize
ak, bk, d

d (9)

subject to constraints (7) and (8). If the current human
motion happens to outpace the one previously predicted, it
might not be possible to satisfy the constraints (8) with the
previously computed robot trajectory and a positive distance
d. In that case, we temporarily accept a negative “distance”,
finding the plane (ak, bk) which is closest to separating the
previously computed robot trajectory from the current human

motion prediction. When this plane is used to compute a
new collision-free robot trajectory in the next step, a fixed
positive safety distance dsafe is enforced anew. Note that the
constraints (7) and (8) are linear with respect to ak, bk and
d. For the maximization problem to be well-posed, we also
need to bound the vector ak to a unit norm (‖ak‖ ≤ 1).
This is a nonlinear constraint, but it can be approximated
efficiently with linear constraints [16]:

−




1
1
1


 ≤ ak ≤




1
1
1


 , (10)

1− ε ≤ aTk a
p
k ≤ 1 (11)

where apk is the vector ak computed at the previous sampling
time and ε is a small positive constant. This way, the
maximization (9) turns out to be a standard Linear Program.
We found preferable, however, to smooth the variations of
separating planes, considering instead a regularized objective

minimize
ak, bk, d

−d+ αd2 + β‖ak − apk‖
2 + β|bk − bpk|

2 (12)

with apk, bpk the separating plane obtained at the previous
sampling time and small weights α and β. This results in a
linearly constrained QP, solved efficiently with off-the-shelf
solvers.

2) Compute a collision-free trajectory: We can compute
now a collision-free robot trajectory with the separating
planes computed in the previous step. In the constraints (8),
the positions of all vertices ri depend on the kinematics
of the robot, which is usually a nonlinear function of the
joint position q. We propose to linearize the kinematics of
the robot around the trajectory qpk computed at the previous
sampling time:

∀ k ∈ {1, . . . N}, rik = ri(qk) ≈ ri(qpk) + J(qpk)(qk − qpk)
(13)

with J(qpk) the Jacobian of the kinematics of the robot. This
way, the constraints (8) are turned into linear functions of q
and the MPC scheme (6) with these additional constraints
is kept in the form of a linearly constrained QP, solved
efficiently with off-the-shelf solvers.

If we can’t find a trajectory satisfying these constraints
because the current human motion has outpaced the collision
avoidance capacities of the robot, we can continue with the
trajectory obtained at the previous sampling time. It was
designed to stop gracefully before any collision happens, due
to the terminal constraint (6e), at least with what could be
predicted of the human motion. As long as our prediction
is valid, this allows to enforce passive motion safety. If our
prediction happens to be invalid because the human made
a completely unexpectedly fast motion, we can still count
on the intrinsic mechanical safety of the robot, with low
(5%) probability of serious injury even at speeds as high as
2 m.s−1 [1]

To summarize, for each time interval [k, k + 1], k ∈



{0, . . . N − 1}, we compute separating planes with QPs:

min.
ak, bk, d

− d+ αd2 + β‖ak − a′k‖2 + β|bk − b′k|2 (14a)

s.t. ∀ j, aTk p
j
k ≤ bk, (14b)

∀ j, aTk p
j
k+1 ≤ bk, (14c)

∀ i, aTk rik ≥ bk + d, (14d)

∀ i, aTk rik+1 ≥ bk + d, (14e)

−




1
1
1


 ≤ ak ≤




1
1
1


 , (14f)

1− ε ≤ aTk a
p
k ≤ 1 (14g)

Then, we use these separating planes to compute the
collision-free robot trajectory with a QP:

min.
u

N−1∑

k=0

‖xk+1 − xdesk+1‖2Q + ‖uk − udesk ||2R (15a)

s.t. ∀ k ∈ {0, . . . N − 1}, u ≤ uk ≤ u, (15b)
∀ k ∈ {1, . . . N}, q ≤ qk ≤ q, (15c)

∀ k ∈ {1, . . . N − 1}, q̇ ≤ q̇k ≤ q̇, (15d)

q̇N = 0, (15e)
∀ k ∈ {0, . . . N − 1}, ∀ i,

aTk r
i(qpk) + aTk J(qpk)(qk − qpk) ≥ bk + dsafe ,

(15f)
∀ k ∈ {0, . . . N − 1}, ∀ i,
aTk r

i(qpk+1) + aTk J(qpk+1)(qk+1 − qpk+1) ≥ bk + dsafe
(15g)

where the sequence of states (qk, q̇k) is linearly related to
the control sequence u through (5).

IV. SIMULATION RESULTS

The proposed MPC scheme is implemented on a 7-
DoF manipulator robot, simulated with ROS. Maximum
joint speed and acceleration are respectively π

2 rad.s−1 and
10 rad.s−2. The terminal constraint (6e) imposes that the
robot is at rest at the end of the prediction horizon in order to
provide a passive motion safety guarantee. This manipulator
robot at full speed needs approximately 0.15 s to stop. The
prediction horizon must therefore be longer than that, but
it can’t be much longer since the prediction of the human
motion quickly becomes imprecise [19], [20]. We opt for
a prediction horizon of length 0.25 s, with ∆t = 0.05 s
and N = 5. A human arm is also modeled, as a 10 cm
large, 50 cm long cylinder with a safety distance dsafe =
20 cm. The resulting QPs (14) and (15) are solved with
qpOASES [21], with computation times that easily allow a
sampling frequency above 100 Hz (see Table I).

The original MPC scheme (6) with nonlinear kinematics
of the robot and nonlinear separating planes constraints (7)-
(8) could be solved by iterating the QPs (14) and (15),
following a Sequential QP approach. We can see in Fig. 3
that this typically converges in few iterations, with the
second iteration and subsequent ones making corrections of

Separating Plane Collision-free trajectory
QP (14) QP (15)

Number of variables 5 35
Number of constraints 21 86

Computation time 0.7 ms 6.1 ms

TABLE I
COMPUTATION TIME.

1 2 3 4 5 6 7

j

0.000

0.002

0.004

0.006

0.008

0.010

0.012

1 N

∑
‖x
j
−
x
j
−

1
‖

human close to robot

human far from robot

Fig. 3. Corrections (in meters) in end-effector position when iterating
QPs (14) and (15).

only a few millimeters. This shows that the first iteration
already provides perfectly good approximate solutions. We
will proceed therefore with only one cycle of QPs (14)
and (15) at each sampling period.

In Fig. 4 (a), two green spheres represent alternating
desired positions for the end-effector of the manipulator
robot. In Fig. 4 (b), a human arm covers the left-most goal,
blocking the motion of the robot. The robot maintains as
a result a fixed position at the prescribed safety distance
dsafe = 20 cm. The corresponding separating plane is
represented in dark transparent gray. Once the human arm
moves away, the robot resumes its motion and finally reaches
its goal (Fig. 4 (c)).

When the human arm is not interfering, the robot can
alternate between the two desired positions at a horizontal
speed up to 1 m.s−1 as shown in the first 4 seconds in Fig. 6,
and in Fig. 5 (a) and (b). When the human arm comes in
the way (Fig. 5 (c) and (d)), the robot automatically adapts
its motion to keep executing its task, alternating between
the two desired positions while maintaining the prescribed
safety distance dsafe = 20 cm above the human arm. This
introduces some vertical motion of the end-effector and
results in slower horizontal motion (seconds 4 to 9 in Fig. 6).
When the human arm moves away, the robot resumes its full
speed (Fig. 5 (e) and (f)).

V. CONCLUSION

This paper introduces a Model Predictive Control scheme
to generate online optimal collision-free trajectories in a
workspace shared with a human. The collision avoidance
between the robot and the human is ensured by the existence



(a) (b) (c)

Fig. 4. (a) Two green spheres represent alternating desired positions for the end-effector of the manipulator robot. (b) A human arm covers the left-most
goal, blocking the motion of the robot. The robot maintains as a result a fixed position at the prescribed safety distance dsafe = 20 cm. The corresponding
separating plane is represented in dark transparent gray. (c) Once the human arm moves away, the robot resumes its motion and finally reaches its goal.

(a) (b) (c)

(d) (e) (f)

Fig. 5. (a)-(b) The robot alternates between the two desired positions at full speed when the human arm is not interfering. (c)-(d) When the human arm
comes in the way, the robot automatically adapts its motion to keep executing its task, alternating between the two desired positions while maintaining the
prescribed safety distance dsafe = 20 cm above the human arm. This introduces some vertical motion of the end-effector. (e)-(f) When the human arm
moves away, the robot resumes its full speed.
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Fig. 6. End-effector’s cartesian velocity can be up to 1 m.s−1 when the
human arm is not interfering, as shown in the first 4 seconds. When the
human arm comes in the way, the robot automatically adapts its motion.
This introduces some vertical motion of the end-effector to maintain the
prescribed safety distance and results in slower horizontal motion (seconds
4 to 9). When the human arm moves away, the robot resumes its full speed.

of a separating plane between them. Unlike other methods,
we don’t assume that the collision can always be avoided,
because that’s impossible to guarantee in a partially unknown
dynamic environment such as a shared workspace. We guar-
antee instead that, if a collision can’t be avoided, the robot
is at rest at the time of collision, so that it doesn’t inject
its own kinetic energy in the collision. We propose a linear-
quadratic formulation which provides a working solution just
a few millimeters away from the optimal solution to the
original nonlinear problem, and which can be obtained in
a few milliseconds with an off-the-shelf QP solver.

Our collision avoidance and passive motion safety guaran-
tees rely entirely on being provided an adequate perception
and prediction of the human motion. If these are not accurate,
there is a risk that a collision occurs before the robot manages
to stop. In that case, we rely on the manipulator robot’s
mechanical and control design to lower the risk of injury. Our
next objective is to develop this perception and prediction of
the human motion, based on data fusion from a collection of
3D cameras looking at the shared workspace.
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