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Abstract

We extend the AROW regression algorithm developed by Vaits and Crammer
in [VC11] to handle synchronous mini-batch updates and apply it to stock
return prediction. By design, the model should be more robust to noise and
adapt better to non-stationarity compared to a simple rolling regression. We
empirically show that the new model outperforms more classical approaches by
backtesting a strategy on S&P500 stocks.
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1 Introduction

Financial markets exhibit highly non-stationary behaviors, making it difficult to build
predictive signals that do not decay too rapidly (see [SCSG13, Con01] for empirical
studies of return time series). A standard method for capturing these changes in time
series data consists in using a rolling regression, that is, a linear regression model
trained on a rolling window and kept as static model during a prediction period.
However, the size of historical training data as well as the duration of the prediction
period have a direct impact on the performance of the resulting model: using too
many training data would result in a model that does not react quickly enough to
sudden changes while short training and prediction windows would make the model
unstable (see for instance [IJR17]).

Online learning algorithms are suited to situations where data arrives sequentially.
New information is taken into account by updating the model parameters in a
supervised fashion. More precisely, an online learning algorithm repeats the following
steps indefinitely: receive a new instance xt, make a prediction ŷt, receive the correct
label yt for the instance and update the model accordingly.

In the particular case of regression, online models are also good candidates to handle
the non-stationarity inherent in financial time series while keeping a certain memory
of what has been learnt from the beginning. The recursive least squares (RLS)
algorithm is a well known approach to online linear regression problems (e.g. [SD91]),
yet it updates the model parameters using one sample at a time. However, building
predictive models on stock markets, one should take into account the very low signal
over noise ratio, and one way to do so is to fit a single model for predicting all the
stock returns of a trading universe (hence fitting on much more data). It allows us to
have more training data covering shorter periods, but it comes with the difficulty of
updating the model parameters synchronously with all the data available at a given
time.

In this paper we extend AROW for regression ([VC11]), an algorithm similar to RLS,
in order to take into account a batch of instances for the online update instead of
doing one update per sample. Indeed the latter approach would introduce a spurious
order in information that actually occur synchronously and should be captured as
such. Like RLS (see [Hay96]), AROW suffers logarithmic regret in the stationary
case, but also comes with a bound on regret in the general case. We test it on the
universe of S&P500 stocks on a daily strategy and show it outperforms the rolling
regression on the same set of features in backtest.
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2 Adaptive Weight Regularization

When training online models, we try to find the right balance between reactivity to
new information and accumulation of predictive power over time. For instance, the
family of models introduced in [CDK+06] aggressively update their parameters by
guaranteeing a certain performance on new data (expressed in terms of geometric
margin). But even regularized versions of these algorithms do not take into account
the fact that some features might be less noisy than others. In other words, they are
not suited for cases where we would like updates to be more aggressive on particular
parameters than on the rest of the weight vector.

Subsequent online learning algorithms introduced in [DCP08] and [CKD13] maintain
a Gaussian distribution on weight vectors representing the confidence the model has
in its parameters. From this point of view, the mean (resp. the variance) of the
distribution represents the knowledge (resp. the confidence in the parameters). In
that framework, when receiving new feature vector and target (xt, yt), we would
like the Gaussian parameters to be updated by solving the following optimization
problem:

(µt,Σt) = arg min
µ,Σ

DKL (N (µ,Σ) ∥ N (µt−1,Σt−1))

s.t. Pw∼N (µ,Σ) (` (yt, w⊤
xt) ⩽ ε) ⩾ η

where DKL is the Kullback-Leibler divergence and ` is the classical mean square
loss. The idea behind this optimization is to find the minimal changes in knowledge
and confidence such that minimum regression performance is achieved with a given
probability threshold η.

Although that formulation is tractable (in particular there is an explicit formula for
the KL divergence between two Gaussian distributions), it is not convex in µ and Σ.
With AROW, Vaits and Crammer use a simpler but convex objective ([VC11]):

C(µ,Σ) = DKL(N (µ,Σ) ∥ N (µt−1,Σt−1)) + λ1`(yt, µ⊤
xt) + λ2x

⊤
t Σxt (1)

where λ1 and λ2 are hyperparameters to adjust the tradeoff between the three
components of the objectives. These three components should be understood as
follows:
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1. the parameters should not change much per update;

2. the new model should perform well on the current instance;

3. the uncertainty about the parameters should reduce as we get additional data.

As such, the model is well suited for non-stationary regression. However the updates
only take into account a single instance at the time. Because we want a single model
for all the stocks here, we need to extend this approach to synchronously update the
parameters on all cross-sectional information available at a given time, which is the
purpose of the next section.

3 Synchronous Batch Updates

We now assume that between the updates at times t and t−1, we have K synchronous
instances (xkt , ykt ), k = 1, . . . , K of the features and targets. They correspond to the
observation of a complete universe of stocks at a given time. Applying an AROW
update would introduce a fake order between the instances and potentially hurt the
performance (see Section 5 for more details). In order to take into account all the new
information at once in a single batch, we extend the cost function from equation 1 as
follows:

C(µ,Σ) =DKL(N (µ,Σ) ∥ N (µt−1,Σt−1))

+
λ1
K

K

∑
k=1

` (ykt , µ⊤
x
k
t ) +

λ2
K
x
k
t

⊤
Σxkt .

For simplicity of presentation, we set λ1 = λ2 =
1
2r where r > 0 and R = rK. Using

DKL(N (µ1,Σ1) ∥ N (µ2,Σ2)) =
1
2 log (det Σ2

det Σ1
) + Tr(Σ−1

2 Σ1)

+
1
2(µ2 − µ1)⊤Σ−1

2 (µ2 − µ1) −
d
2 ,

and setting
Xt = [x1

t⋯x
K
t ]⊤ , Yt = [y1

t⋯y
K
t ]⊤ .

4



we get, remembering that ` is the mean square loss,

C(µ,Σ) =1
2 log (det Σt−1

det Σ ) + 1
2 Tr(Σ−1

t−1Σ) + 1
2(µt−1 − µ)⊤Σ−1

t−1(µt−1 − µ)

−
d
2 +

1
2R (∥Yt − µ⊤

Xt∥2
+ Tr(XtΣX

⊤
t )) .

The main result of this article is the following: minimizing the cost function C has an
explicit solution given by

Σt = Σt−1 − Σt−1X
⊤
t (R Idd+XtΣt−1X

⊤
t )

−1
XtΣt−1

µt = µt−1 − Σt−1X
⊤
t (R Idd+XtΣt−1X

⊤
t )

−1 (Xtµt−1 − Yt) .

(2a)

(2b)

From now on we refer to this batch version of AROW as BAROW, and detail the
steps to the solution in the next section.

4 Deriving the Update Formulas

As for AROW, BAROW’s cost function C is convex. To prove 2a and 2b it is thus
enough to look at the critical points of C. We start by computing ∂C/∂Σ and, using
formulas from [PP12] chapter 2, we find

∂C
∂Σ(µ,Σ) = −1

2 (Σ−1
− Σ−1

t−1 −
1
R
X

⊤
t Xt) .

The Kailath variant of the Woodbury identity (see [PP12] chapter 3) yields

(Σ−1
t−1 +

1
R
X

⊤
t Xt)

−1

= Σt−1 − Σt−1X
⊤
t (R Id+XtΣt−1X

⊤
t )

−1
XtΣt−1

and allows us to deduce that ∂C/∂Σ vanishes for

Σ = Σt−1 − Σt−1X
⊤
t (R Id+XtΣt−1X

⊤
t )

−1
XtΣt−1 ,

which is formula 2a.
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Similarly, one finds
∂C
∂µ

(µ,Σ) = Σ−1
t−1(µ − µt−1) +

1
R
(X⊤

t Xtµ −X
⊤
t Yt) ,

so that ∂C/∂µ = 0 if and only if

µ = (Σ−1
t−1 +

1
R
X

⊤
t Xt)

−1

(Σ−1
t−1µt−1 +

1
R
X

⊤
t Yt)

= (Σ−1
t−1 +

1
R
X

⊤
t Xt)

−1

Σ−1
t−1µt−1 +

1
R

(Σ−1
t−1 +

1
R
X

⊤
t Xt)

−1

X
⊤
t Yt .

We deal with the two terms separately. For the first one we use again the Kailath
variant of the Woodbury equality and get

(Σ−1
t−1 +

1
R
X

⊤
t Xt)

−1

Σ−1
t−1µt−1 = (Id−Σt−1X

⊤
t (R Id+XtΣt−1Xt)−1

Xt)µt−1

= µt−1 − Σt−1X
⊤
t (R Id+XtΣt−1Xt)−1

Xtµt−1 .

For the second term, first notice that:

(Σ−1
t−1 +

1
R
X

⊤
t Xt)Σt−1X

⊤
t = (X⊤

t +
1
R
X

⊤
t XtΣt−1X

⊤
t )

=
1
R
X

⊤
t (R Id+XtΣt−1X

⊤
t )

so that
(Σ−1

t−1 +
1
R
X

⊤
t Xt)Σt−1X

⊤
t (R Id+XtΣt−1X

⊤
t )

−1
Yt

is equal to
1
R
X

⊤
t (R Id+XtΣt−1X

⊤
t ) (R Id+XtΣt−1X

⊤
t )

−1
Yt .

Simplifying (R Id+XtΣt−1X
⊤
t ) we get

1
R

(Σ−1
t−1 +

1
R
X

⊤
t Xt)

−1

X
⊤
t Yt = Σt−1X

⊤
t (R Id+XtΣt−1X

⊤
t )

−1
Yt .

Finally, combining the two terms, we get

µ = µt−1 − Σt−1X
⊤
t (R Id+XtΣt−1Xt)−1

Xtµt−1 + Σt−1X
⊤
t (R Id+XtΣt−1X

⊤
t )

−1
Yt

= µt−1 − Σt−1X
⊤
t (R Id+XtΣt−1Xt)−1 (Xtµt−1 − Yt) ,

which was the claimed formula.
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5 Backtesting a Strategy using BAROW

BAROW combines the adaptability of AROW to non-stationary data and the ad-
vantage of taking into account all new information synchronously. We tested the
model against two baselines as return predictor for a trading strategy on the S&P500
universe.

We backtested a long-short strategy taking daily positions proportional to the predic-
tion generated by a regression model on stock returns and showed it outperforms the
following baselines:

1. A rolling regression updated daily and using the past 12 months of data for
training.

2. AROW regression with single instance updates (500 updates per day).

Figure 1 – Estimated Return of each model
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We ran the backtest on 2,250 days from 2011 to 2019, allowing a burn-in period of 12
months for AROW and BAROW before starting to use them as return predictors.
We also tweaked the R hyperparameter on 2010 for AROW and BAROW. To avoid
the strategy having too high sensitivity to market moves, we neutralized daily returns
using a multi-factor model (including beta, volatility and a variety of other indicators,
see [KL15] for a detailed discussion about risk models). These neutralized returns
are the regression targets yt. We used features based on MACD indicators such as
those described in [CNL14].

We estimated daily returns of a strategy taking positions proportional to the pre-
dictions as the cross-sectional correlation between the predictions and the realized
returns, multiplied by the cross-sectional standard deviation of the returns.

As expected, we can see that the baseline using AROW updates stock per stock is
not suited to learn a generic predictor for the universe. Its cumulative return appears
random compared to the two other models. That empirically justifies the batch
update computed in BAROW.

Now if we compare BAROW to the rolling linear regression, we directly see that
performances drift away from each other. BAROW significantly outperforms the
baselines, illustrating the benefits of online learning models for non-stationary data.

model Return Sharpe MaxDD Calmar
AROW 0.5% 0.1 -3.02% 0.18
Linear 31.3% 4.0 -0.58% 53.6

BAROW 38.1% 5.1 -0.61% 62.2

Table 1 – Performance statistics of each model

We provide some usual performance statistics in table 1. Specifically, we report
the total return over the period, the Sharpe ratio of expected return (Sharpe), the
maximum drawdown (MaxDD), and the Calmar ratio (Calmar, defined as return
over the period divided by MaxDD). One should be aware that using such short
targets to predict induces a very high turnover in the portfolio, resulting in lower net
performance after transaction costs are applied.
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6 Discussion

Our BAROW algorithm outperformed its baseline in a backtest, yet the question
of how Σ impacts the model updates remains. The model forces Σ to converge,
causing the model to be less and less able to adapt quickly. That trade-off between
adaptability and robustness might not be the right one in volatility periods when one
could require more dynamic updates. One way to address it is to schedule reset of
the covariance matrix as experimented in [VC11]. In our case it might be beneficial
to reset the covariance matrix conditionally on any market event we consider as a
trigger for more dynamic updates.

The outperformance of BAROW vs its baseline and the adaptability/robustness
trade-off mentioned above could both be further analyzed by increasing the backtest
frequency (e.g. 1-min bars). A higher frequency would likely enable shorter training
and prediction windows, hereby enhancing the potential overperformance of BAROW
vs the linear baseline.

Also, the backtest results described above are a mere sum of single-stock returns and
do not include any form of risk management at the overall portfolio level, which could
further enhance the risk-adjusted performance of each approach.

Finally, it is worth pointing out that BAROW results are significantly impacted by
the method used to neutralize returns that serve as the regression target. Usual
standardization methods have exhibited periods of higher correlation of residuals in
recent years. These likely stem from stakeholders relying on similar risk models and
an ever-spreading use of machine learning type of strategies.
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