Improving MT coherence through text- level processing of input texts: the COMTIS project. Session 6 - Translation and Natural Language Processing - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

Improving MT coherence through text- level processing of input texts: the COMTIS project. Session 6 - Translation and Natural Language Processing

Bruno Cartoni
  • Fonction : Auteur
  • PersonId : 863017
Andrea Gesmundo
  • Fonction : Auteur
James Henderson
  • Fonction : Auteur
Cristina Grisot
  • Fonction : Auteur
Paola Merlo
  • Fonction : Auteur
Thomas Meyer

Résumé

This paper presents an ongoing research project, started in March 2010 and sponsored by the Swiss National Science Foundation, which aims at improving machine translation output in terms of textual coherence. Coherence in text is mainly due to inter-sentential dependencies. Statistical Machine Translation (SMT) systems, currently sentence-based, often fail to translate these dependencies correctly. Within the COMTIS project, state-of-the-art linguistics research and Natural Language Processing (NLP) techniques are combined to identify and to label inter-sentential dependencies that can be learned by SMT system in the training phase.

Mots clés

Fichier principal
Vignette du fichier
Tralogy_S6_A1_Cartoni.pdf (1.54 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02495992 , version 1 (02-03-2020)

Identifiants

  • HAL Id : hal-02495992 , version 1

Citer

Andrei Popescu-Belis, Bruno Cartoni, Andrea Gesmundo, James Henderson, Cristina Grisot, et al.. Improving MT coherence through text- level processing of input texts: the COMTIS project. Session 6 - Translation and Natural Language Processing. Tralogy I. Métiers et technologies de la traduction : quelles convergences pour l'avenir ?, Mar 2011, Paris, France. 14p. ⟨hal-02495992⟩
30 Consultations
37 Téléchargements

Partager

More