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Introduction

Let (S n ) be a standard random walk in R d . The center of mass G n of S n is defined by

(1.1) G n = 1 n n k=1 S k .
The question of the asymptotic behavior of G n was first raised by Paul Erdös. Very recently, Lo and Wade [START_REF] Lo | On the centre of mass of a random walk[END_REF] extended the results of Grill [START_REF] Grill | On the average of a random walk[END_REF] by studying the asymptotic behavior of (G n ). More precisely, let S n = X 1 + • • • + X n where the increments (X n ) are independent and identically distributed square integrable random vectors of R d with mean µ and covariance matrix Γ. They proved the strong law of large numbers

(1.2) lim n→∞ 1 n G n = 1 2 µ a.s.
together with the asymptotic normality,

(1.3) 1 √ n G n - n 2 µ L -→ N 0, 1 3 Γ .
Curiously, no other references are available on the asymptotic behavior of the center of mass. The proofs of many results on G n rely on independence and exchangeability of the increments of the walk. For example, one can observe that (1.4)

G n = 1 n n k=1 S k = 1 n n k=1 n -k + 1 X k
shares the same distribution as

Σ n = 1 n n k=1 kX k .
A natural question concerns the asymptotic behavior of G n in other situations where the increments of the walk are not independent and not identically distributed. Moreover, geometrical features of the random walk paths of (S n ) is a subject of ongoing interest. For example, the convex hull C n = Conv(S 1 , . . . , S n ) of the n first steps of (S n ) have recently received renewed attention [START_REF] Kabluchko | Convex hulls of random walks, hyperplane arrangements, and Weyl chambers[END_REF], [START_REF] Vysotsky | Convex hulls of multidimensional random walks[END_REF]. More particularly, for the random walk in R 2 , the strong law of large numbers and the asymptotic normality of the perimeter and the diameter of C n were established in [START_REF] Mcredmond | The convex hull of a planar random walk: perimeter, diameter, and shape[END_REF], [START_REF] Wade | Convex hulls of planar random walks with drift[END_REF].

In this paper, we investigate the asymptotic behavior of the center of mass of the multidimensional elephant random walk. It is a fascinating discrete-time random walk on Z d where d ≥ 1, which has a complete memory of its whole history. The increments depend on all the past of the walk and they are not exchangeable. The elephant random walk (ERW) was introduced by Schütz and Trimper [START_REF] Schütz | Elephants can always remember: Exact long-range memory effects in a non-markovian random walk[END_REF] in the early 2000s, in order to investigate how long-range memory affects the random walk and induces a crossover from a diffusive to superdiffusive behavior. It was referred to as the ERW in allusion to the traditional saying that elephants can always remember where they have been before. The elephant starts at the origin at time zero, S 0 = 0. At time n = 1, the elephant moves in one of the 2d directions with the same probability 1/(2d). Afterwards, at time n + 1, the elephant chooses uniformly at random an integer k among the previous times 1, . . . , n. Then, it moves exactly in the same direction as that of time k with probability p or in one of the 2d-1 remaining directions with the same probability (1-p)/(2d-1), where the parameter p ∈ [0, 1] stands for the memory parameter of the ERW [START_REF] Bercu | On the multi-dimensional elephant random walk[END_REF]. One can observe that the special case p = 1/(2d) reduces back to the simple random walk on Z d . Therefore, the position of the elephant at time n + 1 is given by

(1.5) S n+1 = S n + X n+1
where X n+1 is the (n + 1)-th increment of the random walk. The ERW shows three differents regimes depending on the location of its memory parameter p with respect to the critical value p d lying between 1/(2d) and 3/4, (1.6)

p d = 2d + 1 4d .
A wide literature is now available on the ERW in dimension d = 1 where p d = 3/4. A strong law of large numbers and a central limit theorem for the position S n , properly normalized, were established in the diffusive regime p < 3/4 and the critical regime p = 3/4, see [START_REF] Baur | Elephant random walks and their connection to Pólya-type urns[END_REF], [START_REF] Coletti | Central limit theorem and related results for the elephant random walk[END_REF], [START_REF] Coletti | A strong invariance principle for the elephant random walk[END_REF], [START_REF] Schütz | Elephants can always remember: Exact long-range memory effects in a non-markovian random walk[END_REF] and the recent contributions [START_REF] Bercu | Hypergeometric identities arising from the elephant random walk[END_REF], [START_REF] Bertoin | Scaling exponents of step-reinforced random walks[END_REF], [START_REF] Businger | The shark random swim (Lévy flight with memory)[END_REF], [START_REF] Coletti | Asymptotic analysis of the elephant random walk[END_REF], [START_REF] Fan | Some limit theorems for the elephant random walk[END_REF], [START_REF] Miyazaki | Limit theorems for the 'laziest' minimal random walk model of elephant type[END_REF], [START_REF] Vázquez | On the almost sure central limit theorem for the elephant random walk[END_REF]. The superdiffusive regime p > 3/4 is much harder to handle. Bercu [START_REF] Bercu | A martingale approach for the elephant random walk[END_REF] proved that the limit of the position of the ERW is not Gaussian. Quite recently, Kubota and Takei [START_REF] Kubota | Gaussian fluctuation for superdiffusive elephant random walks[END_REF] showed that the fluctuation of the ERW around its limit in the superdiffusive regime is Gaussian. Finally, Bercu and Laulin in [START_REF] Bercu | On the multi-dimensional elephant random walk[END_REF] extended all the results of [START_REF] Bercu | A martingale approach for the elephant random walk[END_REF] to the multi-dimensional ERW where d ≥ 1.

Our strategy for proving asymptotic results for the center of mass of the elephant random walk (CMERW) is as follows. On the one hand, the behavior of position S n is closely related to that of the sequence (M n ) defined, for all n ≥ 0, by M n = a n S n with a 1 = 1 and, for all n ≥ 2,

(1.7)

a n = n-1 k=1 k k + a = Γ(a + 1)Γ(n) Γ(n + a)
where Γ stands for the Euler Gamma function and a is the fundamental parameter of the ERW defined by

(1.8) a = 2dp -1 2d -1 .
We assume throughout all the paper that a > -1 inasmuch as a = -1 only appears in the singular case where d = 1 and p = 0. It follows from the very definition of the ERW that at any time n ≥ 1,

(1.9) E [X n+1 |F n ] = pI d - 1 -p 2d -1 I d 1 n n k=1 X k = 1 n 2dp -1 2d -1 S n = a n S n a.s.
Hence, we obtain from (1.5) and (1.9) that for any n ≥ 1,

(1.10)

E [S n+1 |F n ] = 1 + a n S n a.s.
Therefore, we deduce from (1.7) and (1.10) that

(1.11) E [M n+1 |F n ] = a n+1 1 + a n S n = a n S n = M n a.s.
It means that (M n ) is a locally square-integrable martingale adapted to the filtration (F n ) where F n = σ(X 1 , . . . , X n ). It can be rewritten [4, page 7] in the additive form (1.12)

M n = n k=1 a k ε k
where ε 1 = S 1 and, for all n ≥ 2,

(1.13)

ε n = S n - a n-1 a n S n-1 = S n -1 + a n -1 S n-1 .
On the other hand, an analogue of equation (1.4) is given by

G n = 1 n n k=1 S k = 1 n n k=1 1 a k M k = 1 n n k=1 1 a k k =1 a ε = 1 n n k=1 a k ε k n =k 1 a , = 1 n n k=1 a k (b n -b k-1 )ε k (1.14)
where the sequence (b n ) is given by b 0 = 0 and, for all n ≥ 1,

(1.15) b n = n k=1 1 a k .
In the particular case of the simple random walk on Z d , one can notice that a = 0 so a n = 1/n and b n = n(n + 1)/2. Hereafter, denoting (1.16)

N n = n k=1 a k b k-1 ε k , it is straightforward to see that E [N n+1 |F n ] = N n a.s. since E [ε n+1 |F n ] = 0. Hence, (N n )
is also a locally square-integrable martingale adapted to the filtration (F n ). We deduce from (1.14) that (1.17)

G n = 1 n (b n M n -N n ).
Relation (1.17) allows us to establish the asymptotic behavior of the CMERW via an extensive use of the strong law of large numbers and the central limit theorem for multidimensional martingales [START_REF] Chaabane | Théorèmes limites avec poids pour les martingales vectorielles[END_REF], [START_REF] Duflo | Random iterative models[END_REF], [START_REF] Hall | Martingale limit theory and its application[END_REF], [START_REF] Touati | Sur la convergence en loi fonctionnelle de suites de semimartingales vers un mélange de mouvements browniens[END_REF].

The paper is organized as follows. The main results are given in Section 2. We first investigate the diffusive regime p < p d and we establish the almost sure convergence, the law of iterated logarithm and the quadratic strong law for the CMERW. The asymptotic normality of the CMERW, properly normalized, is also provided. Next, we prove similar results in the critical regime p = p d . Finally, we establish a strong limit theorem in the superdiffusive regime p > p d . Our martingale approach is described in Section 3 while all technical proofs are postponed to Appendices A, B and C.

Main results

2.1. The diffusive regime. Our first result deals with the strong law of large numbers for the CMERW in the diffusive regime where 0 ≤ p < p d . The following strong law for the CMERW will be deduced as a simple consequence of the strong law for (S n ). We recall that we assume a > -1 as a = -1 only occurs in the singular case where d = 1 and p = 0.

Theorem 2.1. We have the almost sure convergence

(2.1) lim n→∞ 1 n G n = 0 a.s.
More precisely, for any α > 1/2, The almost sure rates of convergence for CMERW are as follows.

(2.2) lim n→∞ 1 n α G n = 0 a.s.
Theorem 2.2. We have the quadratic strong law

(2.3) lim n→∞ 1 log n n k=1 1 k 2 G k G T k = 2 3(1 -2a)(2 -a)d I d a.s.
where I d stands for the identity matrix of order d. In particular,

(2.4) lim n→∞ 1 log n n k=1 G k 2 k 2 = 2 3(1 -2a)(2 -a)
a.s.

Moreover, we also have the upper-bound in the law of iterated logarithm

(2.5) lim sup n→∞ G n 2 2n log log n ≤ √ 3 + √ 1 -2a 2 3(a + 1) 2 (1 -2a)d a.s.
Remark 2.1. The law of iterated logarithm for G n involves the difference between b n M n and N n both satisfying a law of iterated logarithm with the same speed. It is not possible to make the addition of the two limits superior. Consequently, we were only able to obtain an upper-bound in (2.5). However, it is worth saying that for the simple random walk on Z d for which a = 0, Strassen's invariance principle [START_REF] Strassen | An invariance principle for the law of the iterated logarithm[END_REF] implies that

lim sup n→∞ G n 2 2n log log n = 1 3d a.s.
which is not very far from the upper-bound (1 + √ 3) 2 /(3d) given in (2.5).

We are now interested in the asymptotic normality of the CMERW.

Theorem 2.3. We have the joint asymptotic normality

(2.6) 1 √ n S n G n L -→ N 0, Γ d
where Γ d stands for the covariance matrix

Γ d = 1 (1 -2a)d 1 1 (2-a) 1 (2-a) 2 3(2-a) ⊗ I d .
In particular,

(2.7) 1 √ n G n L -→ N 0, 2 3(1 -2a)(2 -a)d I d .
Remark 2.2. One can observe from Theorem 3.3 in [START_REF] Bercu | On the multi-dimensional elephant random walk[END_REF] that the ratio of the asymptotic variances between the CMERW and the ERW is given by

R(a) = 2 3(2 -a) .
In the diffusive regime, this ratio lies between 2/9 and 4/9 and it is always smaller than 1, as one can see in Figure 1. Moreover, in the special case where the elephant moves in one of the 2d directions with the same probability p = 1/(2d) < p d , it follows from (1.8) that the fundamental parameter a = 0. Consequently, we deduce from (2.7) that

1 √ n G n L -→ N 0, 1 3d I d .
We find again the asymptotic normality (1.3) where the mean value µ = 0 and the covariance matrix Γ = 1 d I d . An alternative approach to prove the asymptotic normality (2.7) via a functional central limit theorem for the multi-dimensional ERW can be found in [START_REF] Bertenghi | Functional limit theorems for the multi-dimensional elephant random walk[END_REF]. One can observe from Theorem 1 in [1] that (2.7) also holds in the singular case a = -1 which only appears when d = 1 and p = 0. The almost sure rates of convergence for the CMERW are as follows.

Theorem 2.5. We have the quadratic strong law

(2.10) lim n→∞ 1 log log n n k=2 1 (k log k) 2 G k G T k = 4 9d I d a.s.
In particular,

(2.11) lim n→∞ 1 log log n n k=2 G k 2 (k log k) 2 = 4 9
a.s.

Moreover, we also have the law of iterated logarithm

(2.12) lim sup n→∞ G n 2 2n log n log log log n = 4 9d a.s.
Our next result concerns the asymptotic normality of the CMERW.

Theorem 2.6. We have the joint asymptotic normality

(2.13) 1 √ n S n G n L -→ N 0, Σ d
where Σ d stands for the covariance matrix

Σ d = 1 d 1 2 3 2 3 4 9 ⊗ I d .
In particular,

(2.14) 1 √ n log n G n L -→ N 0, 4 9d I d .
Remark 2.3. In the critical regime, the ratio of the asymptotic variances between the CMERW and the ERW is 4/9.

2.3. The superdiffusive regime. Finally, we focus our attention on the superdiffusive regime where p > p d . The almost sure convergence of (S n ), properly normalized by n a , yields the following strong limit theorem for the CMERW.

Theorem 2.7. We have the almost sure convergence

(2.15) lim n→∞ 1 n a G n = G a.s.
where the limiting value G is a non-degenerate random vector of R d . Moreover, we also have the mean square convergence

(2.16) lim n→∞ E 1 n a G n -G 2 = 0.
Remark 2.4. The expected value of G is zero and its covariance matrix is given by

E GG T = 1 d(a + 1) 2 (2a -1) 2 Γ(2a -1) I d .
The distribution of G is far from being known. 

A multi-dimensional martingale approach

We already saw from (1.17) that the CMERW can be rewritten as

G n = 1 n (b n M n -N n ).
In order to investigate the asymptotic behavior of (G n ), we introduce the multi-dimensional martingale (M n ) defined by

(3.1) M n = M n N n
where (M n ) and (N n ) are the two locally square-integrable martingales given by (1.12) and (1.16). The main difficulty we face here is that the predictable quadratic variation of (M n ) and (N n ) increase to infinity with two different speeds. A matrix normalization is necessary to establish the asymptotic behavior of the CMERW. Let (V n ) be the sequence of positive definite diagonal matrices of order 2d given by

(3.2) V n = 1 n √ n b n 0 0 1 ⊗ I d
where A ⊗ B stands for the Kronecker product of the matrices A and B.

Lemma 3.1. The sequence (M n ) is a locally square-integrable martingale of R 2d . Its predictable quadratic variation M n satisfies in the diffusive regime where a < 1/2,

(3.3) lim n→∞ V n M n V T n = V a.s.
where the limiting matrix V is given by

(3.4) V = 1 d(a + 1) 2 1 1-2a 1 2-a 1 2-a 1 3 ⊗ I d .
Remark 3.1. Via the same lines as in the proof of Lemma 3.1, we find that in the critical regime a = 1/2, the sequence of normalization matrices (V n ) has to be replaced by

(3.5) W n = 1 n √ n log n b n 0 0 1 ⊗ I d .
Moreover, the limiting matrix in (3.3) must be changed by

(3.6) W = 4 9d 1 0 0 0 ⊗ I d .
Proof. The increments of the ERW are bounded by 1, that is for any time n ≥ 1, X n = 1. Hence, it follows from (1.5) that S n ≤ n and G n ≤ n which imply that M n ≤ na n and N n ≤ na n b n + n 2 . We already saw in Section 1 that (M n ) is a locally squareintegrable martingale. Denote ∆M n = M n -M n-1 , and similarly for other processes. It follows from (1.12), (1.13) and (1.16) that the predictable quadratic variation associated with (M n ) is the square matrix of order 2d given, for all n ≥ 1, by

(3.7) M n = n k=1 E ∆M k ∆N k ∆M k ∆N k T F k-1 = n k=1 a 2 k 1 b k-1 b k-1 b 2 k-1 ⊗ E ε k ε T k F k-1 .
Moreover, we deduce from formulas (A.7) and (B.3) in [START_REF] Bercu | On the multi-dimensional elephant random walk[END_REF] that for all n ≥ 1,

(3.8) E ε n+1 ε T n+1 |F n = 1 d I d + a 1 n Σ n - 1 d I d - a n 2 S n S T n a.s.
where Σ n is a random positive definite matrix of order d satisfying (3.9) lim n→∞

1 n Σ n = 1 d I d a.s.
Consequently, we obtain from (3.7) together with (3.8) that

(3.10) M n = 1 d n k=1 a 2 k 1 b k-1 b k-1 b 2 k-1 ⊗ I d + a n-1 k=1 a 2 k+1 1 b k b k b 2 k ⊗ 1 k Σ k - 1 d I d -ξ n
where

ξ n = a 2 n-1 k=1 a k+1 k 2 1 b k b k b 2 k ⊗ S k S T k .
According to Theorem 3.1 in [START_REF] Bercu | On the multi-dimensional elephant random walk[END_REF], the remainder ξ n plays a negligible role as

(3.11) lim n→∞ S n n = 0 a.s.
Hereafter, it is not hard to see that

V n n k=1 a 2 k 1 b k-1 b k-1 b 2 k-1 ⊗ I d V T n = 1 n 3 b 2 n n k=1 a 2 k b n n k=1 a 2 k b k-1 b n n k=1 a 2 k b k-1 n k=1 a 2 k b 2 k-1 ⊗ I d .
Furthermore, from a well-known property of the Euler Gamma function, we have

(3.12) lim n→∞ Γ(n + a) Γ(n)n a = 1.
Hence, we obtain from (1.7), (1.15) and (3.12) that (3.13) lim n→∞ n a a n = Γ(a + 1) and lim

n→∞ b n n a+1 = 1 Γ(a + 2)
.

Consequently, as soon as a < 1/2, we immediately find from (3.13) that

lim n→∞ b 2 n n 3 n k=1 a 2 k = 1 (1 -2a)(a + 1) 2 , lim n→∞ b n n 3 n k=1 a 2 k b k-1 = 1 (2 -a)(a + 1) 2 , lim n→∞ 1 n 3 n k=1 a 2 k b 2 k-1 = 1 3(a + 1) 2 .
Therefore, (3.14) lim

n→∞ V n n k=1 a 2 k 1 b k-1 b k-1 b 2 k-1 ⊗ I d V T n = 1 (a + 1) 2 1 1-2a 1 2-a 1 2-a 1 3 ⊗ I d .
Finally, it follows from the combinaison of (3.9), (3.10), (3.11) and (3.14) that (3.15) lim

n→∞ V n M n V T n = 1 d(a + 1) 2 1 1-2a 1 2-a 1 2-a 1 3 ⊗ I d . a.s.
which is exactly what we wanted to prove.

Proof of Theorem 2.2. Our goal is to check that all the hypotheses of Theorem A.2 are satisfied. Thanks to Lemma 3.1, hypothesis (H.1) holds almost surely. In order to verify that Lindeberg's condition (H.2) is satisfied, we have from (3.1) together with (1.12), (1.16) and V n given by (3.2) that for all 1 ≤ k ≤ n

V n ∆M k = a k n √ n b n ε k b k-1 ε k , which implies that (B.2) V n ∆M k 2 ≤ 2a 2 k b 2 n n 3 ε k 2 .
Consequently, we obtain that for all ε > 0,

n k=1 E V n ∆M k 2 I { Vn∆M k >ε} F k-1 ≤ 1 ε 2 n k=1 E V n ∆M k 4 F k-1 , ≤ 4b 4 n ε 2 n 6 n k=1 a 4 k E ε k 4 F k-1 , ≤ 4b 4 n ε 2 n 6 sup 1≤k≤n E ε k 4 F k-1 n k=1 a 4 k . (B.3)
However, it follows from the right-hand side of formula (4.11) in [START_REF] Bercu | On the multi-dimensional elephant random walk[END_REF] that

(B.4) sup 1≤k≤n E ε k 4 F k-1 ≤ 4 3 a.s. 
Therefore, we infer from (B.3) that for all ε > 0, (B.5) Consequently, (B.5) together with (B.6) ensure that Lindeberg's condition (H.2) holds almost surely, that is for all ε > 0,

n k=1 E V n ∆M k 2 I { Vn∆M k >ε} F k-1 ≤ 16 
(B.7) lim n→∞ n k=1 E V n ∆M k 2 I { Vn∆M k >ε} F k-1 = 0 a.s.
We will now check that condition (H.3) is satisfied in the special case β = 2, that is

(B.8) ∞ n=1 1 log(det V -1 n ) 2 2 E V n ∆M n 4 F n-1 < ∞ a.s. We have from (3.2) that (B.9) det V -1 n = n 3/2 b n d .
Hence, we find from (3.13) and (B.9) that

(B.10) lim n→∞ log(det V -1 n ) 2 log n = d(1 -2a).
Consequently, we can replace log(det V -1 n ) 2 by log n in (B.8). Hereafter, we obtain from (B.2) and (B.4) that Therefore, (B.11) together with (B.12) immediately lead to (B.8). We are now in a position to apply the quadratic strong law given by Theorem A.2. We have from (A.2) and (B.10) that (B. [START_REF] Fan | Some limit theorems for the elephant random walk[END_REF] lim

∞ n=2 1 (log n) 2 E V n ∆M n 4 F n-1 = O ∞ n=1 1 (log n) 2 a 4 n b 4 n n 6 E ε n 4 F n-1 , = O ∞ n=1 1 (log n) 2
n→∞ 1 log n n k=1 (det V k ) 2 -(det V k+1 ) 2 (det V k ) 2 V k M k M T k V T k = d(1 -2a)V a.s.
where the limiting matrix V is given by (3.4). However, it follows from (1.14), (3.1) and (3.2) that

(B.14) 1 √ n G n = v T V n M n where v = 1 -1 ⊗ I d .
Consequently, we deduce from (B. 

(det V k ) 2 -(det V k+1 ) 2 (det V k ) 2 1 k G k G T k = d(1 -2a)v T V v a.s.
Furthermore, we obtain from (B.9) and (3.13) that

lim n→∞ n (det V n ) 2 -(det V n+1 ) 2 (det V n ) 2 = d(1 -2a).
Hence, (B.15) clearly leads to convergence (2.3), (B. [START_REF] Kabluchko | Convex hulls of random walks, hyperplane arrangements, and Weyl chambers[END_REF])

lim n→∞ 1 log n n k=1 1 k 2 G k G T k = v T V v = 2 3(1 -2a)(2 -a)d I d a.s.
By taking the trace on both sides of (B.16), we also obtain that (B.17) lim

n→∞ 1 log n n k=1 G k 2 k 2 = 2 3(1 -2a)(2 -a)
a.s.

Finally, we shall proceed to the proof of the upper-bound (2.5) in the law of iterated logarithm. Denote (B.18)

τ n = n k=1 a 2 k b 2 k-1 .
We already saw from (B.12) that a Consequently, we deduce from the law of iterated logarithm for martingales due to Stout [START_REF] Stout | Maximal inequalities and the law of the iterated logarithm[END_REF], see also Corollary 6.4.25 in [START_REF] Duflo | Random iterative models[END_REF], that (N n ) satisfies for any vector u ∈ R d , lim sup 

1/2 1 n u, b n M n -N n ≤ lim sup n→∞ 1 2n log log n 1/2 1 n u, b n M n + lim sup n→∞ 1 2n log log n 1/2 1 n u, -N n ≤ lim sup n→∞ 1 2n log log n 1/2 1 n u, b n M n -lim inf n→∞ 1 2n log log n 1/2 1 n u, N n ≤ u √ d(a + 1) 1 √ 1 -2a + 1 √ 3 a.s. (B.23)
By the same token, we also find that for any vector 

u of R d , lim inf n→∞ 1 2n log log n 1/2 u, G n = lim inf n→∞ 1 2n log log n 1/2 1 n u, b n M n -N n ≥ - u √ d(a + 1) 1 √ 1 -2a + 1 √ 3 
S n √ n(log n) α = 0 a.s.
Hence, we obtain (2.9) using once again Toeplitz lemma.

Proof of Theorem 2.5. The proof of the quadratic strong law (2.10) is left to the reader as it follows essentially the same lines as that of (2.3). The only minor change is that the matrix V n has to be replaced by the matrix W n defined in (3.6). We shall now proceed to the proof of the law of iterated logarithm given by (2.12). On the one hand, it follows from (B.21) with a = 1/2 that for any vector u ∈ R d , lim sup where the limiting value L is a non-degenerate random vector of R d . Hence, (B.29) together with the Toeplitz lemma imply (2.15) where the limiting value

G = 1 a + 1 L.
Moreover, we have from (1.17) that

E 1 n a G n -G 2 = E 1 n a+1 (b n M n -N n ) -G 2 , ≤ 2E a n b n n a+1 S n -G 2 + 2E 1 n a+1 N n 2 .
On the one hand, we already saw from (3.13) that lim n→∞ a n b n n = 1 a + 1 .
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 1 Figure 1. The 2-dimensional ERW in blue, the CMERW in black and the convex hull in red, for n = 10 6 steps and a diffusive memory parameter p = 1/2.
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 2 The critical regime. Hereafter, we investigate the critical regime where the memory parameter p = p d . Theorem 2.4. We have the almost sure convergence(2.8) lim n→∞ 1 √ n log n G n = 0 a.s.More precisely, for any α > 1n) α G n = 0 a.s.
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 2 Figure 2. The 2-dimensional ERW in blue, the CMERW in black and the convex hull in red, for n = 10 6 steps and a critical memory parameter p = 5/8.
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 3 Figure 3. The 2-dimensional ERW in blue, the CMERW in black and the convex hull in red, for n = 10 6 steps and a superdiffusive memory parameter p = 3/4.
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  τ n is equivalent to n 3 /3(a + 1) 2 , (B.20) immediately lead to lim sup was already shown by formula (5.17) in[START_REF] Bercu | On the multi-dimensional elephant random walk[END_REF] that for any vector u ∈ R d , deduce from (1.17) and (3.13) together with (B.21) and (B.22) that for any vector u of R d ,

n 2 2nn 2 2n log n log log log n ≥ lim sup n→∞ u, G n 2 2n log n log log log n = 4 B. 3 .

 22243 hand, we obtain from the law of iterated logarithm for S n given in Theorem 3.5 of[START_REF] Bercu | On the multi-dimensional elephant random walk[END_REF] that for any vector u ∈ R d , lim sup n→∞ 1 2n log n log log log n clearly deduce from (B.27) that for any vector u ∈ R d , taking all rational points on the unit sphere S d-1 in R d , the bound in (B.28) holds simultaneously for all of them, which implies that lim sup n→∞ G log n log log log n ≤ sup u∈Q d ∩S d-1 lim sup n→∞ u, G n 2 2n log n log log log n = 4 9d a.s. In addition, for any single u ∈ S d-1 , we also obtain the reverse inequality lim sup n→∞ G to (2.12) which achieves the proof of Theorem 2.5. The superdiffusive regime. Proof of Theorem 2.7. It follows from Theorem 3.7 in [4] that (B.29) lim n→∞ 1 n a S n = L a.s.

  Finally, by taking all rational points on the unit sphere S d-1 in R d , the bound in (B.[START_REF] Vázquez | On the almost sure central limit theorem for the elephant random walk[END_REF] holds simultaneously for all of them, which implies that

	One can observe that the upper-bound in (B.25) is close to the optimal bound
				(vu) T V vu =	2 u 2 3(1 -2a)(2 -a)d	.
	lim sup n→∞	G n 2n log log n 2	≤ sup u∈Q d ∩S d-1 lim sup n→∞	u, G n 2n log log n 2	≤	√ 3(a + 1) 2 (1 -2a)d 3 + √ 2 1 -2a	a.s.
	completing the proof of Theorem 2.2.						
	B.2. The critical regime.								
	Proof of Theorem 2.4. We have from Theorem 3.4 in [4] that
	(B.26)			lim n→∞	√	1 n log n	S n = 0		a.s.
	Hence, (2.8) clearly follows from (B.26) together with the Toeplitz lemma. Moreover, we
	also have from Remark 3.3 in [4] that for any α > 1/2,		
				lim n→∞								
	(B.24)												a.s.
	Consequently, we obtain from (B.23) and (B.24) that for any vector u of R d ,
	(B.25)	lim sup n→∞	1 2n log log n	u, G n	2 ≤	u 2 d(a + 1) 2	√	1 1 -2a	+	1 √ 3	2	a.s.
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Appendix A. Two non-standard results on martingales

The proofs of our main results rely on two non-standard central limit theorem and quadratic strong law for multi-dimensional martingales. A simplified version of Theorem 1 of Touati [START_REF] Touati | Sur la convergence en loi fonctionnelle de suites de semimartingales vers un mélange de mouvements browniens[END_REF] is as follows.

Theorem A.1. Let (M n ) be a locally square-integrable martingale of R δ adapted to a filtration (F n ), with predictable quadratic variation M n . Let (V n ) be a sequence of nonrandom square matrices of order δ such that V n decreases to 0 as n goes to infinity. Assume that there exists a symmetric and positive semi-definite matrix V such that

Moreover, assume that Lindeberg's condition is satisfied, that is for all ε > 0, (H.2)

where ∆M n = M n -M n-1 . Then, we have the asymptotic normality

The quadratic strong law requires more restrictive assumptions. The following result is a simplified version of Theorem 2.1 of Chaabane and Maaouia [START_REF] Chaabane | Théorèmes limites avec poids pour les martingales vectorielles[END_REF] where the normalization matrices (V n ) are diagonal.

Theorem A.2. Let (M n ) be a locally square-integrable martingale of R δ adapted to a filtration (F n ), with predictable quadratic variation M n . Let (V n ) be a sequence of nonrandom positive definite diagonal matrices of order δ such that its diagonal terms decrease to zero at polynomial rates. Assume that (H.1) and (H.2) hold almost surely. Moreover, suppose that there exists β ∈]1, 2] such that

Then, we have the quadratic strong law 

Consequently, we obtain that

The asymptotic covariance matrix Γ d = U T V U where V is given by (3.4). It clearly leads to (2.6) as Proof of Theorem 2.6. The proof follows exactly the same lines as that of Theorem 2.3 replacing V n by W n . The details are left to the reader.