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We study the Wasserstein distance W 2 for Gaussian samples. We establish the exact rate of convergence log log n/n of the expected value of the W 2 distance between the empirical and true c.d.f.'s for the normal distribution. We also show that the rate of weak convergence is unexpectedly 1/ √ n in the case of two correlated Gaussian samples.

Introduction

In this article we investigate in details the asymptotic behaviour of the quadratic Wasserstein distance between the empirical cumulative distribution function (c.d.f.) of a sample X 1 , . . . , X n of independent standard Gaussian random variables denoted by F n and the standard normal c.d.f. denoted by Φ. Thus we consider the random variable

W 2 2 (F n , Φ) = 1 0 |F -1 n (u) -Φ -1 (u)| 2 du.
More precisely we are interested in the exact rate of convergence of E W 2 2 (F n , Φ) . Define h(u) = Φ ′ • Φ -1 (u) for u ∈ (0, 1). First note that Corollary 19 in [START_REF] Berthet | Weak convergence of Wasserstein type distances[END_REF] does not apply in this specific case where b = 2, and indeed we almost surely have lim n→+∞ nW 2 2 (F n , Φ) = +∞. Secondly, to our knowledge the most precise result about the behaviour of W 2 (F n , Φ) is given by Theorem 4.6 (ii) in [START_REF] Del Barrio | Asymptotics for L 2 functionals of the empirical quantile process, with applications to tests of fit based on weighted Wasserstein distances[END_REF] which implies, as n → +∞, the convergence in distribution nW 2 2 (F n , Φ) -

1-1/n 1/n u(1 -u) h 2 (u) du → 1 0 B 2 (u) -E B 2 (u) h 2 (u) du, (1) 
where B is a standard Brownian bridge. This is not enough to control nE(W 2 2 (F n , Φ)) since the deterministic centering integral is diverging. In [START_REF] Bobkov | One-dimensional empirical measures, order statistics and Kantorovich transport distances[END_REF] specific bounds on nE(W p p (F n , F )) are given for log-concave distribution F . In the standard Gaussian case Corollary 6.14 of [START_REF] Bobkov | One-dimensional empirical measures, order statistics and Kantorovich transport distances[END_REF] reads

c log log n n E W 2 2 (F n , Φ) C log log n n (2) 
where 0 < c < C < +∞. The main achievement below is to compute the exact asymptotic constant in [START_REF] Berthet | A central limit theorem for Wasserstein type distances between two different real distributions[END_REF]. As far as we know this is the first result of this kind.

In the spirit of [START_REF] Berthet | Weak convergence of Wasserstein type distances[END_REF] we moreover extend the investigations in the one sample case to the two correlated samples case.

More precisely, we study the random quantity W 2 2 (F n , G n ) where F n , G n are the marginal empirical c.d.f. obtained from a n-sample (X i , Y i ) 1 i n of standard Gaussian couples with correlation ρ. If the Gaussian marginals Φ X and Φ Y were not identical the general Theorem 14 in [START_REF] Berthet | A central limit theorem for Wasserstein type distances between two different real distributions[END_REF] would imply the convergence in distribution

√ n W 2 2 (F n , G n ) -W 2 2 (Φ X , Φ Y ) → N 0, σ 2 (Σ) (3) 
where Σ is the covariance matrix of (X 1 , Y 1 ) and σ 2 (Σ) has a closed form expression that explicitly depends on Σ.

In particular, Corollary 18 of [START_REF] Berthet | A central limit theorem for Wasserstein type distances between two different real distributions[END_REF] shows that for two independent samples from two distinct Gaussian distributions

N (ν, ζ 2 ) and N (µ, ξ 2 ) it holds σ 2 (Σ) = 4(ζ 2 + ξ 2 )(ν -µ) 2 + 2(ζ 2 + ξ 2 )(ζ -ξ) 2 .
Surprisingly, the second result below establishes that whenever the marginals are the same, Φ X = Φ Y = Φ, and the samples are not independent, that is ρ = 0, the rate of weak convergence of W 2 2 (F n , G n ) is 1/n and the limiting distribution is a slight variation of the one given at Theorem 11 in [START_REF] Berthet | Weak convergence of Wasserstein type distances[END_REF], even if the sufficient condition of the latter result is not satisfied.

The results

First we provide the limiting constant in (2). Theorem 1. Let F n be the empirical c.d.f. of an i.i.d. standard normal sample of size n and Φ the c.d.f. of the standard normal distribution. Then it holds

lim n→+∞ n log log n E W 2 2 (F n , Φ) = 1, lim n→+∞ n log log n E (W 2 (F n , Φ)) = 1.
Remark 2. This result is consistent with (1) and the fact that, by [START_REF] Bickel | Asymptotic expansions for the power of distribution free tests in the two-sample problem[END_REF], we have

1-1/n 1/n u(1 -u) h 2 (u) du = log log n + log 2 + γ 0 + o(1)
which implies that n log log n W 2 2 (F n , Φ) → 1 in probability. Remark 3. In the case of a sample of unstandardized normal random variables with variance σ 2 the expected W 2distance between the empirical and the true distribution has the same rate as above and limiting constants σ 2 and σ, respectively. Remark 4. If G n is a second empirical c.d.f. independent of F n and build from another sample we see that

E W 2 2 (F n , G n ) = E W 2 2 (F n , Φ) + E W 2 2 (G n , Φ) since E( 1 0 (F -1 n (u) -Φ -1 (u))du) = 0.
Therefore, in this independent case we have

lim n→+∞ n log log n E W 2 2 (F n , G n ) = 2
which is in contrast with the forthcoming dependent sample case.

Second, in the setting of [START_REF] Berthet | A central limit theorem for Wasserstein type distances between two different real distributions[END_REF] and [START_REF] Berthet | Weak convergence of Wasserstein type distances[END_REF] we also get the rate of weak convergence in the two correlated samples case. Theorem 5. Let F n and G n denote the marginal empirical c.d.f. of a size n i.i.d. sample of correlated bivariate standard normal with covariance ρ,

0 < |ρ| < 1. Let C ρ (u, v) = P(X Φ -1 (u), Y Φ -1 (v)), u, v ∈ (0, 1), G(u) = B X (u) h(u) - B Y (u) h(u) , u ∈ (0, 1),
where (B X , B Y ) are two standard Brownian bridges with cross covariance

Cov(B X (u), B Y (v)) = C ρ (u, v) -uv, u, v ∈ (0, 1) .
Then we have the convergence in distribution

nW 2 2 (F n , G n ) → ||G|| 2 2 = 1 0 G(u) 2 du
and the limiting random variable is almost surely finite with finite expectation.

Remark 6. By Theorem 5 it holds √ nW 2 (F n , G n ) → ||G|| 2 with a CLT rate and a non degenerate limiting distribution with finite variance. This was not expected since in the case of two independent samples, that is ρ = 0, it holds

E(||G|| 2 2 ) = 1 0 E(G(u) 2 )du = 2 1 0 u(1 -u) h 2 (u) du = +∞
which proves by Theorem 1.3 of [START_REF] Csörgö | Convergence of integrals of uniform empirical and quantile processes[END_REF] that P(||G|| 2 = +∞) = 1, and is consistent with the similar case where G n is replaced with Φ as shown by Theorem 1.

Remark 7. Theorem 5 is an extension of Theorem 11 in [START_REF] Berthet | Weak convergence of Wasserstein type distances[END_REF] for Gaussian correlated samples that proves that the dependency between two i.i.d. samples expressed through the joint law may influence the rate of convergence of W 2 2 (F n , G n ) if the marginal distributions are the same. In the general CLT formulated at Theorem 14 of [START_REF] Berthet | A central limit theorem for Wasserstein type distances between two different real distributions[END_REF], only the limiting finite variance of

√ n(W 2 2 (F n , G n )-W 2 2 (Φ X , Φ Y ))
was affected by the joint law if the marginal distributions are different, not the rate 1/ √ n as recalled at (3) above.

3 Proofs

Preliminaries

Note that the density quantile function

h(u) = Φ ′ • Φ -1 (u) is symmetric on (0, 1) about u = 1/2. Straightforward computations yield, as x → +∞, ψ(x) = -log(1 -Φ(x)) = x 2 2 + log x + 1 2 log(2π) + O 1 x 2 , ψ -1 (x) = 2 x - 1 2 log x - 1 2 log(2π) - 1 2 log 2 + O log x x .
As a consequence, we have, as u → 1,

Φ -1 (u) = ψ -1 log 1 1 -u = 2 log 1 1 -u - 1 2 log log 1 1 -u - 1 2 log(4π) + O log log (1/(1 -u)) log (1/(1 -u)) , (4) 
and

h(u) = Φ ′ • Φ -1 (u) = √ 2(1 -u) log 1 1 -u 1 + O log log (1/(1 -u)) log (1/(1 -u)) . (5) 
Let us extend the results concerning the first and second moments of the extreme order statistics of a Gaussian sample stated at page 376 in [START_REF] Cramer | Mathematical methods of statistics[END_REF].

Lemma 8. Let Z 1 • • • Z n denote the order statistics of X 1 , ..., X n . Let 1 θ 2 and C > 0. For any k C(log n) θ it holds E (Z n-k ) = 2 log n - log log n + 2(s 1 k+1 -γ 0 ) + log(4π) √ 8 log n + O (log log n) 2 (log n) 3/2 , V (Z n-k ) = π 2 /6 -s 2 k+1 2 log n + O 1 (log n) 2 ,
where, for k > 0,

s 1 k = k j=1 1/j, s 2 k = k j=1 1/j 2 and γ 0 is the Euler constant.
Proof of Lemma 8. Following [START_REF] Cramer | Mathematical methods of statistics[END_REF], let

ξ n-k+1 = n(1 -Φ(Z n-k+1 )) for k 1.
Since the random variables ξ 1 /n < ... < ξ n /n are the order statistics of n independent uniform random variables, we see that ξ n-k+1 has density

f ξ n-k+1 (x) = n -1 k -1 x n k-1 1 - x n n-k 1 [0,n] (x).
Step 1. Write Γ(k) = (k -1)! and observe that

n -1 k -1 1 n k-1 = exp   k-1 j=1 log 1 - j n   1 Γ(k) = 1 + O (log n) 3θ n 1 Γ(k) since we have - k j=1 j n - k j=1 j n 2 k j=1 log 1 - j n - k j=1 j n max 1 k C(log n) θ k j=1 log 1 - j n + k j=1 j n 1 n [C(log n) θ ] j=1 j 2 n = O (log n) 3θ n .
Step 2. For k 1 we have

E (Z n-k+1 ) = E Φ -1 1 - ξ n-k+1 n = (n -1)...(n -k + 1) Γ(k) n 0 x n k-1 1 - x n n-k Φ -1 1 - x n dx = 1 - 1 n ... 1 - k -1 n n 0 x k-1 Γ(k) 1 - x n n-k Φ -1 1 - x n dx = exp - s 1 k n - s 2 k 2n 2 (1 + o(1)) (E 1,n + E 2,n ) where, for p > θ + 1, x(n) = (log n) p and f Γ(k) (x) = x k-1 Γ(k) e -x for x > 0, E 1,n = (1 + o(1)) x(n) 0 Φ -1 1 - x n f Γ(k) (x)dx, E 2,n = n x(n) Φ -1 1 - x n x k-1 Γ(k) 1 - x n n-k dx.
Assume that k C(log n) θ . By (4) it holds, for some K > 0 and all n large enough,

|E 2,n | n x(n) x k-1 1 - x n n-k Φ -1 1 - x n dx K log n n/2 x(n) exp -(n -k) x n + (k -1) log x dx + K n n/2 x k-1 1 - x n n-k log 1 1 -x/n dx K exp -x(n) + C(log n) θ + log log n 2 + C(log n) θ+1 + K n n/2 x k-1 1 - x n n-k-1 dx K exp - (log n) p 2 + Kn k 1 2 n-k-1 K exp (-(1 + o(1))(log n) p ) .

Now turn to

x(n) 0 Φ -1 1 - x n n -1 k -1 x n k-1 1 - x n n-k dx
where, for 0 < x < x(n), we have, by (4),

Φ -1 (1 -x/n) = 2 log (n/x) - 1 2 log log (n/x) - 1 2 log(4π) -O log log (n/x(n)) log (n/x(n)) = 2 log n - 2 log x + log log (n/x) + log(4π) 2 √ 2 log n + O (log log n) 2 (log n) 3/2 (6)
which is integrable near 0 with respect to the above density since

0 < log(log n -log x) = log log n + log 1 - log x log n log log n + log x log n (7) 
and log x, (log x) 2 are integrable with respect to any Gamma distribution. Hence

E 1,n = x(n) 0 2 log n - 2 log x + log log n + log(4π) √ 8 log n + O (log log n + |log x|) 2 (log n) 3/2 f Γ(k) (x)dx = O (log log n) 2 (log n) 3/2 + x(n) 0 2 log n - 2 log x + log log n + log(4π) √ 8 log n f Γ(k) (x)dx = O (log log n) 2 (log n) 3/2 + +∞ 0 2 log n - 2 log x + log log n + log(4π) √ 8 log n f Γ(k) (x)dx since we have x(n) = (log n) p , p > 1 thus, for any s > 1, +∞ x(n) f Γ(k) (x)dx = o 1 n s , +∞ x(n) log xf Γ(k) (x)dx = o 1 n s .
and moreover -see [START_REF] Cramer | Mathematical methods of statistics[END_REF] -it holds

+∞ 0 log x f Γ(k) (x)dx = s 1 k+1
γ 0 , which yields the conclusion. Similar computations give the claimed result for the variance. More precisely in the step 2 when substituing

Φ -1 1 -x n 2 to Φ -1 1 -x
n in E 1,n and E 2,n it again appears that we can only consider integrals up to x(n). Then it remains to compute, by substituing the expression of E(Z n-k ) and using equation ( 6) for Φ -1 1 -x n :

x(n) 0 Φ -1 1 - x n -E(Z n-k ) 2 n -1 k -1 x n k-1 1 - x n n-k dx = x(n) 0 - 2(log x -(s 1 k+1 -γ 0 )) 2 √ 2 log n + -log log (n/x) + log log n 2 √ 2 log n + O (log log n) 2 (log n) 3/2 2 × n -1 k -1 x n k-1 1 - x n n-k dx.
We conclude along the same lines as above by the upper bound [START_REF] Csörgö | Weighted approximations in probability and statistics[END_REF] and the fact that the variance of the logarithm of a variable with distribution Γ(k) is π 2 /6s 2 k+1 .

Proof of Theorem 1

We intend to mimic the sheme of proof worked out in [START_REF] Berthet | A central limit theorem for Wasserstein type distances between two different real distributions[END_REF] and [START_REF] Berthet | Weak convergence of Wasserstein type distances[END_REF] -specialized to the simpler case of the distance between the empirical and true c.d.f.'s instead of two correlated empirical ones. However all arguments have to be reconsidered since the almost sure controls by means of the law of the iterated logarithm and strong approximations can not be turned easily into L 1 controls. Indeed, what happens now is that the main part of the random integral we consider is also built from the extreme parts rather than the inner part only. Moreover, only a very short extreme interval can be neglected and the remainder extreme intervals define a divergent integral to be precisely evaluated as a series. This is why the expectation rate is no more a CLT rate. Note that the log log n in this paper only comes from the primitive of u(1u)/h(u) 2 . Introduce the following decomposition, for C > 0, γ > 1 and 1 < θ 2,

A n = 1 1-1/(n(log n) γ ) Z n -Φ -1 (u) 2 du, B n = 1-1/(n(log n) γ ) 1-1/n Z n -Φ -1 (u) 2 du, C n = 1-1/n 1-[C(log n) θ ]/n F -1 n (u) -Φ -1 (u) 2 du, D n = 1-[C(log n) θ ]/n 1/2 F -1 n (u) -Φ -1 (u) 2 du.
Step 1. We have, for γ > 1,

nA n log log n 2Z 2 n (log n) γ log log n + 2n log log n 1 1-1/(n(log n) γ ) Φ -1 (u) 2 du
where

lim n→+∞ E Z 2 n (log n) γ log log n = 0 and 1 1-1/(n(log n) γ ) Φ -1 (u) 2 du = 1 1-1/(n(log n) γ ) 2 log 1 1 -u (1 + o(1 -u)) 2 du = -2(1 -u) log 1 1 -u 1 1-1/(n(log n) γ ) = O 1 n(log n) γ-1 hence lim n→+∞ nE (A n ) log log n = 0.
Step 2. Notice that for all u ∈ [1 -1/n, 1 -1/(n(log n) γ )], we have

Φ -1 (u) = 2 log n + O log log n √ log n .
Next observe that

E (B n ) = V (Z n ) n 1 - 1 (log n) γ + 1-1/(n(log n) γ ) 1-1/n E (Z n ) -Φ -1 (u) 2 du = O 1 n log n + O (log log n) 2 n log n , hence lim n→+∞ nE (B n ) log log n = 0.
Step 3. Start with

C n = [C(log n) θ ] k=1 1-k/n 1-(k+1)/n Z n-k -Φ -1 (u) 2 du.
Recall that

s 1 k -γ 0 = log k + 1 2k + O 1 k 2 . Now, for 1 k C(log n) θ and u ∈ [1 -(k + 1)/n, 1 -k/n] we have Φ -1 (u) = 2 log (1 -u) - 1 2 log log (1 -u) - 1 2 log(4π) -O log log log n = 2 log n - 2 log k + log log n + log(4π) √ 8 log n + O (log log n) 2 (log n) 3/2 thus, by Lemma 8, we have, uniformly in k, V(Z n-k ) = π 2 /6 -s 2 k+1 2 log n + O 1 (log n) 2 then E Z n-k -Φ -1 (u) 2 = V(Z n-k ) + E(Z n-k ) -Φ -1 (u) 2 = π 2 /6 -s 2 k+1 2 log n + O 1 (log n) 2 + log k -(s 1 k+1 -γ 0 ) √ 2 log n + O (log log n) 2 (log n) 3/2 2 = π 2 /6 -s 2 k+1 2 log n + O 1 (log n) 2 + 1 + O(1/k) 2k √ 2 log n + O (log log n) 2 (log n) 3/2 2 .
As a consequence,

E (C n ) = 1 n [C(log n) θ ] k=1 π 2 /6 -s 2 k+1 2 log n + O 1 n(log n) 2-θ + 1 n [C(log n) θ ] k=1 1 + O(1/k) 2k √ 2 log n + O (log log n) 2 (log n) 3/2 2 = O (log n) θ/2 n log n + 1 n [C(log n) θ ] k=[(log n) θ/2 ] π 2 /6 -s 2 k+1 log n + O 1 n log n + O (log log n) 3 n(log n) 3-θ C(log n) θ n log n +∞ j=[(log n) θ/2 ] 1 j 2 + O (log n) θ/2 n log n = O (log n) θ/2 n log n .
Thus, for any θ 2 we have

lim n→+∞ nE(C n ) log log n = 0.
Step 4. Now we compute the limit of the main deterministic contribution to the main stochastic term D n , namely

D 1,n = 1-[C(log n) θ ]/n 1/2 u(1 -u) h 2 (u) du.
Let v n be such that log v n = (log n) εn , lim n→+∞ ε n = 0, lim n→+∞ ε n log log n = +∞. By using (5) it holds

1 log log n 1-[C(log n) θ ]/n 1-1/vn u(1 -u) h 2 (u) du = 1 + o(1) 2 log log n (log(log n -log( C(log n) θ )) -log log v n ) = 1 + o(1) 2 log log n log (1 + o(1)) log n log v n = 1 + o(1) 2 (1 -ε n ) and 1 log log n 1-1/vn 1/2 u(1 -u) h 2 (u) du 1 + o(1) 2 log log n (log log v n ) = 1 + o(1) 2 ε n . Therefore lim n→+∞ D 1,n log log n = 1 2 . ( 8 
)
Compared with the result of [START_REF] Bickel | Asymptotic expansions for the power of distribution free tests in the two-sample problem[END_REF] recalled at Remark 2 the truncation at level 1/v n instead of 1/n preserves the same first order.

Step 5. To show that E(D n ) behaves as D 1,n + o(1) we proceed as in [START_REF] Berthet | A central limit theorem for Wasserstein type distances between two different real distributions[END_REF] with strong approximation arguments.

First, we substitute the uniform quantile process to the general quantile process with a sharp control of the expectation of the random error terms in the Taylor Lagrange expansion. For short, write

d n = C(log n) θ /n and β X n (u) = √ n(F -1 n (u) -Φ -1 (u)) so that nD n log log n = 1 log log n 1-dn 1/2 (β X n (u)) 2 du.
Defining U i = Φ(X i ) which is uniform on (0, 1) we obviously have U (i) = Φ(X (i) ). Let denote F U n the uniform empirical c.d.f. associated to the U i and define the underlying uniform quantile process to be

β U n (u) = √ n((F U n ) -1 (u) -u) = √ n(Φ(F -1 n (u)) -u).
Thus for all 1/2 u 1d n there exists a random u * such that |u -

u * | β U n (u) / √ n and β X n (u)h(u) = √ n(F -1 n (u) -Φ -1 (u))h(u) = √ n(Φ -1 (Φ(F -1 n (u))) -Φ -1 (u))h(u) = √ n Φ(F -1 n (u)) -u h(u) + h ′ (u * ) 2h 2 (u * ) (Φ(F -1 n (u)) -u) 2 h(u) = β U n (u) + r n (u) with r n (u) = 1 2 √ n β U n (u) 2 h ′ (u * ) h(u * ) h(u) h(u * ) = 1 2 √ n β U n (u) √ 1 -u 2 1 -u 1 -u * (1 -u * ) Φ ′′ (Φ -1 (u * )) Φ ′ 2 (Φ -1 (u * )) h(u) h(u * ) .
We study

nD n log log n = 1 log log n 1-dn 1/2 (β U n (u) + r n (u)) 2 du h(u) 2 .
Since we have

sup 0<u<1 u(1 -u) Φ ′′ (Φ -1 (u)) Φ ′ 2 (Φ -1 (u)) = 1
it holds, by Lemma 6.1.1 in [START_REF] Csörgö | Weighted approximations in probability and statistics[END_REF],

0 h(u) h(u * ) max(u, u * ) min(u, u * ) 1 -min(u, u * ) 1 -max(u, u * ) .
Now we introduce the sequence of events, with 0 < ε < 1,

A n = β U n (u) u(1 -u) (1 -ε) n(1 -u), d n < u < 1 -d n . ( 9 
)
On the event A n we have the following control of u * ,

max(u, u * ) min(u, u * ) 1 -min(u, u * ) 1 -max(u, u * ) 4 ε 2
since, for instance,

0 1 -u 1 -u * 1 + u * -u 1 -u -(u * -u) 1 + β U n (u) √ u(1-u) 1 √ n(1-u) 1 - β U n (u) √ u(1-u) 1 √ n(1-u) 2 ε , 0 u u * = 1 + u -u * u + u * -u 1 + β U n (u) √ u(1-u) 1 √ n(1-u) 1 - β U n (u) √ u(1-u) 1 √ n(1-u) 2 ε ,
and the same holds for the reverse ratios. Hence we have

1 An r n (u) 4 ε 3 √ n β U n (u) √ 1 -u 2 thus E 1-dn 1/2 1 An r n (u) 2 h(u) 2 du 1-dn 1/2 16 ε 6 n(1 -u) E β U n (u) √ 1 -u 4 1 -u h(u) 2 du.
By Lemma 9 below and (8) we have, when θ = 2, sup

1/2<u<1-dn E β U n (u) √ 1 -u 4 = O(1), 1-dn 1/2 1 -u h(u) 2 du = O(log log n). (10) 
It ensues

E 1-dn 1/2 1 An r n (u) 2 h(u) 2 du = O log log n (log n) 2 .
By using the Cauchy-Schwartz inequality we easily get

lim n→+∞ E 1-dn 1/2 1 An β U n (u)r n (u) h(u) 2 du = 0,
since by [START_REF] Ledoux | Probability in Banach spaces[END_REF] we have, again for θ = 2,

1-dn 1/2 E(β U n (u) 2 ) h(u) 2 du = O(log log n).
Step 6. Next we evaluate the probability of the rare event A c n from [START_REF] Del Barrio | Asymptotics for L 2 functionals of the empirical quantile process, with applications to tests of fit based on weighted Wasserstein distances[END_REF]. To this aim we work on the KMT probability space where we can define a sequence B n of standard Brownian bridges approximating the processes β U n in such a way that the error process w n = β U n -B n satisfies, for universal positive constants c 1 , c 2 , c 3 and all x > 0, n 1,

P sup 0<u<1 |w n (u)| > c 1 √ n (x + log n) c 2 exp(-c 3 x). (11) 
Hence we have

P(A c n ) = P ∃u ∈ [1/2, 1 -d n ], β U n (u) u(1 -u) > (1 -ε) n(1 -u) P sup 1/2<u<1-dn β U n (u) u(1 -u) > (1 -ε)(log n) θ/2 P sup 1/2<u<1-dn B n (u) u(1 -u) > 1 -ε 2 (log n) θ/2 . . . • • • ∩ sup 1/2<u<1-dn w n (u) u(1 -u) 1 -ε 2 (log n) θ/2 + P sup 1/2<u<1-dn w n (u) u(1 -u) > (1 -ε) 2 (log n) θ/2 P sup 1/2<u<1-dn B n (u) u(1 -u) > 1 -ε 2 (log n) θ/2 + P sup 1/2<u<1-dn |w n (u)| > √ C 1 -ε 2 (log n) θ √ n .
Recall that 1 < θ 2. By the theorem of Borell-Sudakov (see [START_REF] Borell | The Brunn-Minkowski inequality in Gauss space[END_REF], [START_REF] Ledoux | Probability in Banach spaces[END_REF]) and (11) we obtain, for any γ > 2, the constant C fixed as large as needed and all n large enough,

P(A c n ) exp - (1 -ε) 2 (log n) θ 8 sup 1/2<u<1-dn (Var(B n (u)/ u(1 -u)) ) + c 2 exp -c 3 (log n) θ exp - (1 -ε) 2 8 (log n) θ + c 2 exp -c 3 (log n) θ 1 n γ .
Therefore we get, for any 0 < b < γ/2 -1,

E 1 A c n 1-dn 1/2 n(F -1 n (u) -Φ -1 (u)) 2 du P (A c n ) 2n 1 0 Φ -1 (u) 2 du + 2E 1 A c n nZ 2 n 2nP (A c n ) + P (A c n ) n 2 E (Z 4 n ) = O 1 n b .
Step 7. It remains to study

1 log log n 1-dn 1/2 E(β U n ) 2 du h(u) 2 .
At this stage the approximation bounds play a crucial role and there is no room for relaxing the trimming constraints.

To be more specific the only allowed choice θ 2 is θ = 2. Choose an arbitrarily large constant C > 0. Given any 0 < η < 1, consider the sequence of events

B n = |w n (u)| < η u(1 -u), 1 2 < u < 1 -d n .
By (11), for any k 1 > 0 there exists C = C η > (1 + k 1 /c 3 ) 2 /η 2 > 0 and n 0 > 0 large enough such that for all n > n 0 we have

1 -P (B n ) P sup 1/2<u<1-dn |w n (u)| > η C η n (log n) θ/2 P sup 0<u<1 |w n (u)| > c 1 √ n (η C η -1) log n + log n c 2 exp(-c 3 (η C η -1) log n) 1 n k1 .
Lemma 9. For any p 1 there exist constants C > 0 and κ p such that we have, for

d n = [C (log n) 2 n
] and all n large enough,

sup dn<u<1-dn E |w n (u)| u(1 -u) p < 2η p , sup dn<u<1-dn E |β U n (u)| u(1 -u) p < κ p . Proof of Lemma 9. Start with E |w n (u)| u(1 -u) p η p + E 1 B c n |w n (u)| u(1 -u) p then set, for k 0, F n = B n (u) u(1 -u) < n : d n < u < 1 -d n , F c n ⊂ k∈N F n,k , F n,k = n + k sup 0<u<1 B n (u) u(1 -u) < n + k + 1 .
Since β U n (u)/ u(1u) n for d n < u < 1d n and all n large enough, we have

1 F n,k sup dn<u<1-dn |w n (u)| u(1 -u) 2n + k + 1, 1 Fn sup dn<u<1-dn |w n (u)| u(1 -u) 2n.
By Sudakov-Borell theorem it holds

P (F n,k ) exp -(n + k) 2 /2 whereas P (B c n ) < 1/n k1 . Hence by choosing k 1 > p it holds E 1 B c n |w n (u)| u(1 -u) p k∈N (2n + k + 1) p P (F n,k ) + E (2n) p 1 Fn∩B c n k∈N (2n + k + 1) p exp -(n + k) 2 /2 + (2n) p n k1 = o(1),
which proves the first claimed upper bound. Since

E |B n (u)|/ u(1 -u) p < +∞
doesn't depend on n the second expectation bound follows.

By Lemma 9 we get

1 log log n E 1-dn 1/2 (w n (u)) 2 du h(u) 2 = 1 log log n E   1-dn 1/2 w n (u) u(1 -u) 2 u(1 -u) h(u) 2 du   = O(η 2 )
and, by [START_REF] Csörgö | Convergence of integrals of uniform empirical and quantile processes[END_REF],

1 log log n E 1-dn 1/2 w n (u)B n (u) h(u) 2 du 1 log log n E 1-dn 1/2 w n (u) 2 h(u) 2 du 1 log log n E 1-dn 1/2 (B n (u)) 2 h(u) 2 du = O(η) 1 log log n 1-dn 1/2 u(1 -u) h(u) 2 du.
By choosing η as small as desired, the first assertion of Theorem 1 is proved.

Step 8. The sequence n/ log log nW 2 (F n , Φ) is bounded in L 2 , thus uniformly integrable, and from (1) (see [START_REF] Del Barrio | Asymptotics for L 2 functionals of the empirical quantile process, with applications to tests of fit based on weighted Wasserstein distances[END_REF]) converges in probability to 1. Thus the convergence holds in L 1 , which establishes the second assertion of Theorem 1.

Proof of Theorem 5

In Theorem 11 of [START_REF] Berthet | Weak convergence of Wasserstein type distances[END_REF] we proved that nW

2 2 (F n , G n ) converges in distribution to G 2 2 = 1 0 B X (u) h(u) - B Y (u) h(u) 2 du
under assumptions on the common probability distribution F of the samples ensuring that

√ n(F -1 n (u) -F -1 (u)) and √ n(G -1 n (u) -G -1 (u)
) can be simultaneously approximated on a suitable sub-interval of [0, 1] by B X (u)/h(u) and B Y (u)/h(u) respectively. Here B X (u) and B Y (u) are two standard Brownian bridges coupled to the marginal samples respectively, and are then correlated together as mentionned at Theorem 5 if the two samples are. In [START_REF] Berthet | Weak convergence of Wasserstein type distances[END_REF] the imposed assumptions for the Gaussian approximation concerned the tail of F with respect to the cost function, and the integrability condition

1 0 u(1 -u) h 2 (u) du < +∞
The second term needs more attention. First we choose 0 < α < 1 such that for all v ∈ [1/2, 1-(1-u) α 2 ] we have, for u close to 1 and η arbitrarily small, Φ -1 (v) (α+η)Φ -1 (u) and 1-αρ > 1ρ 2 . We take α < (1-1ρ 2 )/ρ, which is actually less than ρ and we have for u close enough to 1, Φ -1 (v) Φ -1 (1 -(1u) α 2 ) (α + η)Φ -1 (u).

Thus it comes

1-(1-u) α 2 1 2 1 -Φ Φ -1 (u) -ρΦ -1 (v) 1 -ρ 2 dv 1 2 1 -Φ (1 -(α + η)ρ)Φ -1 (u) 1 -ρ 2
that is, up to a logarithmic factor, of order (1u)

(1-(α+η)ρ) 2 1-ρ 2

, with (1-(α+η)ρ) 2

1-ρ 2 > 1 for u close enough to 1.

It remains to study

u 1-(1-u) α 2 1 -Φ Φ -1 (u) -ρΦ -1 (v)
1ρ 2 dv.

Recall that for x > 0, 1 -Φ(x) e -x 2 2 √ 2πx . Thus we have 

u 1-(1-u) α 2 1 -Φ Φ -1 (u) -ρΦ -1 (v) 1 -ρ 2 dv u 1-(1-u) α 2 e -1 2 Φ -1 (u) 2 1-ρ 2 e -1 2 
ρ 2 Φ -1 (v) 2 1-ρ 2 e ρΦ -1 (u)Φ -1 (v) 1-ρ 2 √ 2π Φ -1 (u)-ρΦ -1 (v) √ 1-ρ 2
u -C ρ (u) h 2 (u) = O 1 (1 -u) log 2 ( 1 1-u )
which proves that it is integrable near 1. By symmetry the same holds near 0. We conclude that (u -C ρ (u))/h 2 (u) is integrable on (0, 1).

2 √ 1 2 Φ - 1 (u) 2 √ 1 ρ ( 1 - 1 -ρ 2 )

 21121112 2πΦ -1 (u)(1ρ) Φ -1 (u)-ρΦ -1 (u) Φ -1 (1-(1-u) α 2 )-ρΦ -1 (u) 2πΦ -1 (u)(1ρ) Φ -1 (u)-ρΦ -1 (u) Φ -1 (1-(1-u) α 2 )-ρΦ -1 (u) < ρ and Φ -1 (1 -(1u) α 2 ) (α + η)Φ -1 (u), with η arbitrarily small by choosing u close to 1. Therefore this term is O((1u)/ log(1/(1u))) near 1.Now collecting the previous results, as u → 1 we finally obtain
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was morerover required. Under the latter condition, the expectation of G 2 2 is finite since it is bounded by 4 1 0 u(1u)/h 2 (u)du. Now, this upper bound is appropriated to the independent case whereas in our currently dependent case the sample is Gaussian and

which we shall next prove to be finite if 0 < |ρ| < 1. Then, as the tail conditions of Theorem 11 in [START_REF] Berthet | Weak convergence of Wasserstein type distances[END_REF] are satisfied by the Gaussian distribution F = G = Φ, the weak convergence of nW 2 2 (F n , G n ) is easily established by a straightforward adaptation of the proof of the latter theorem. This long and technical proof is thus omitted. Notice that in the case ρ = 0 we have E( G 2

2 ) = 2 1 0 u(1u)/h 2 (u)du = +∞ and therefore by [START_REF] Csörgö | Convergence of integrals of uniform empirical and quantile processes[END_REF] the random variable G 2 2 = +∞ a.s. and nW 2 2 (F n , G n ) do not weakly converges.

Let us prove that

Notice that for a > 0, as u → 1,

.

First assume that -1 < ρ < 0. It holds

By symmetry the same holds near 0.

Next the case 0 < ρ < 1 near 1 follows from the equality

Then we get, for the first term, the upper bound

that is, up to a logarithmic factor, of order (1u)