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I. INTRODUCTION

Super-resolution fluorescence microscopy is an indispens-
able tool for studying the dynamics of macromolecules in cell
biology. Presently, structured illumination microscopy (SIM)
is the best compromise between high resolution and practical
in-vivo imaging. It allows to improve the lateral resolution
of widefield microscopes beyond the diffraction limit, up to a
super-resolution (SR) factor of two in epi-illumination [1], [2].
SIM consists in recording several low-resolution images of the
biological sample under different positions and orientations of
a known periodic illumination. However, it requires a tight
control of the illumination patterns, which makes it difficult
to image over long period of time and limits its application to
weakly scattering samples [3].

In order to release this major constraint, the principle of
a microscope using totally uncontrolled speckle illuminations
has been proposed [4], [5]. Random illumination microscopy
(RIM) implementation is much simpler than SIM as it does
not require the knowledge of the illuminations. Moreover,
random speckles are intrinsically insensitive to aberrations and
scattering.

In [6], it is shown that the theoretical SR capacity of RIM is
identical to that of SIM. However, the latter study exploits the
statistical covariance matrix of the recorded images, which is
not a realistic scheme in terms of storage and of computing
operations: manipulating images of 1000× 1000 pixels would
generate a covariance matrix of size 1012, which represents
20 To using a usual double precision floating scheme on a
modern computer system.

Second-order statistics being quadratic functions of the
unknown sample, the issue of retrieving spatial frequency
components of the latter from the former belongs to the family
of quadratic inverse problems (QIP) [7]. As a consequence, it
is substantially more difficult to formally characterize the SR
capacity of RIM, compared to SIM.

Some instances of QIP are intensively studied, such as the
phase retrieval problem [8], [9]. In the field of fluorescence
microscopy, characterizing the intrinsic resolution of SOFI is
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also a QIP [10]. However, the latter is a simple one, since it
can be trivially transformed into a linear inverse problem in
the squared density of fluorophores.

In this letter, we prove a new result about RIM that
reconciles the theoretical SR capacity and an affordable com-
putational burden. Indeed, under fairly realistic assumptions,
we mathematically show that the statistical variance of the
recorded images is sufficient to recover an image of the
biological sample with the same SR factor as covariance-based
RIM (and SIM). Let us remark that variance-based RIM has
been already proposed, either for its sectioning properties [11],
or in the context of super-resolution [12]. However, to our best
knowledge, our contribution is the first one to mathematically
characterize the super-resolution property of variance-based
RIM.

In Section II, we introduce a mathematical description of
the image model. For sake of self-consistency, we also recall
known results for covariance-based RIM. Our novel result
concerning variance-based RIM is presented in Section III, and
the proof is postponed in Section III-B. Section IV contains
elements of discussion and perspectives.

II. MATHEMATICAL BACKGROUND AND KNOWN RESULTS

A. Imaging model

For the sake of clarity, we mainly restrict ourselves to the
case of two-dimensional biological samples, and we formulate
the problem in a fully discrete setting, where both the recorded
images and the biological sample are represented on fine grids,
with a sampling rate common to both. RIM images can then
be modelled by:

zm = ym + εm, (1)

with
ym =H (ρ ◦ Im) , (2)

where εm is a random variable modeling an additive noise, ym
is a vectorized image corresponding to the mth illumination
Im, H a convolution matrix corresponding to a convolution
by the the Point Spread Function (PSF) h of the microscope, ρ
the fluorescence density map to recover, and ◦ the Hadamard
(i.e., entrywise, or Schur) matrix product [13, Chapter 5]. The
speckle covariance Cov(Im) = C as well as the noise co-
variance Cov(εm) = Γε are supposed to be known statistics.
The covariance matrix of each zm reads

Γz(ρ) = Γy(ρ) + Γε, (3)

with
Γy(ρ) =HDiag(ρ)CDiag(ρ)Ht. (4)
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The variance identifies with the diagonal of the covariance
matrix vz(ρ) = diag(Γz). The noise covariance function
Γε is assumed to be known. The knowledge of vz is thus
equivalent to that of

vy = diag(Γy). (5)

Hereafter, we refer to vy and Γy as v and Γ, respectively. In
this document, we adopt the standard assumption of a perfect
circular lens. For 2D imaging at the focal plane, the PSF h
is a discretized Airy pattern [14, Sec. 4.4.2], and the optical
transfer function (OTF) h̃ has a frequency cut-off 2NA/λ,
with NA the numerical aperture of the microscope and λ the
emission/excitation wavelength. We further assume that the
illumination of the sample and the collection of the emitted
light is performed through the same optical device. Ignoring
the Stokes-shift, we will assume that H =Ht = C.

Since our goal is to demonstrate a factor two in terms
of super-resolution, the sampling rate of the object must
be at least four times the cutoff frequency imposed by the
PSF. In the rest of this document, we make use of the
following notations: fPSF ≤ 1/4 denotes the normalized cutoff
frequency imposed by the PSF, and

G =
{
ν ∈ Rd, ‖ν‖∞ < 1/2

}
∪
{
n/N,n ∈ Zd

}
denotes the d-dimensional normalized frequency grid limited
by the Nyquist frequency (d = 2 for 2D imaging). Here,
we assume that RIM acquisitions zm are made of N = nd

elements. Then each of them can be decomposed over the
set of discrete frequencies DPSF = D(fPSF), where D(f)
is a generic notation for the “discrete interior” of a ball of
radius f :

D(f) = {ν ∈ G, ‖ν‖ < f}.

B. Covariance-based RIM

In the 2D case, [6] obtains that the knowledge of Γ allows to
retrieve the frequency components of ρ within the ball DSR =
D(2fspec), provided that the speckle illuminations have a cut-
off frequency not larger than that of the PSF, i.e., fspec ≤
fPSF. When fspec = fPSF, we have DSR = D(2fPSF), which
exactly corresponds to an SR factor equal to two.

Proposition 1. Let ρ be any entrywise nonnegative vector
of size N . For any entrywise nonnegative solution q to the
quadratic system Γ(q) = Γ(ρ), the frequency components of
q coincide with that of ρ in DSR.

Proof: The fact that all frequency components in DSR can
be retrieved is based on a unicity argument for the factorization

Γ(ρ) =HDiag(ρ)HDiag(ρ)H (6)

=
√
H
(√
HDiag(ρ)

√
H
)2√

H (7)

and from the fact that the knowledge of
√
HDiag(ρ)

√
H

is equivalent to that of HDiag(ρ)H , which uniquely deter-
mines the spectral components of ρ in DSR.

Moreover, such a result is tight, since the frequency compo-
nents of q outside DSR are not identifiable, according to the
following proposition.

Proposition 2. Let ρ be any vector of size N . Then Γ(ρ+δ) =
Γ(ρ) for any vector δ with no components in DSR.

Proof: For any vector δ with no components in DSR, each
column of matrix Diag(δ)H has no frequency components
in DPSF, so HDiag(δ)H = 0, and therefore, Γ(δ) = 0. As
a consequence,

Γ(ρ+ δ) =HDiag(ρ+ δ)HDiag(ρ+ δ)H

= Γ(ρ) + Γ(δ) +HDiag(ρ)HDiag(δ)H

+HDiag(δ)HDiag(ρ)H

= Γ(ρ).

III. VARIANCE-BASED RIM
A. Super-resolution from variance equations

The quadratic system of Proposition 1 is made of 1
2N(N +

1) real equations, for only M free real-valued variables, where
M stand for the cardinality of DSR. Since M ≤ π

4N in
2D (and M ≤ N is 1D), there is room left for a refined
identifiability result, using a smaller number of equations. In
this vein, Theorem 1 states that the N variance equations are
sufficient to uniquely determine the M frequency components
in DSR, provided that ρ is an entrywise positive vector.

Theorem 1. Let ρ be any entrywise positive vector of size
N . For any entrywise nonnegative solution q to the quadratic
system of N equations v(q) = v(ρ), the frequency compo-
nents of q coincide with that of ρ in DSR, while the frequency
components of q outside DSR remain arbitrary (up to the
nonnegativity constraint on the entries of q).

B. Proof of Theorem 1

Let us define the bilinear vector-valued function:

f(x,y) = diag
(
HDiag(x)HDiag(y)H

)
, (8)

so that v(ρ) = f(ρ,ρ). Each component of f is a symmetric
form, since f(x,y) = f(y,x). Let us define

Mx =HDiag(x)H,

Bx =H ◦Mx,

so that
f(x,y) = Bxy = Byx (9)

according to the matrix identity [15]

diag
(
ADiag(v)Bt

)
= (A ◦B)v = (B ◦A)v.

In particular, for a given object ρ, the (noiseless) data variance
vector (5) is given by f(ρ,ρ) = Bρρ.

Proposition 3. For any two real solutions ρ and q to Eq. (5),
we have ρ− q ∈ Ker(Bρ+q) and ρ+ q ∈ Ker(Bρ−q).

Proof: Indeed,

f(ρ+ q,ρ− q) = f(ρ,ρ)− f(q, q) + f(q,ρ)− f(ρ, q)
= v − v + f(q,ρ)− f(q,ρ)
= 0 (10)
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Combining Equations (9) and (10), we obtain

Bρ+q(ρ− q) = Bρ−q(ρ+ q) = 0,

which proves the assertion.

Proposition 4. For any vector x with positive entries,
Ker(Bx) is the linear span of frequency components outside
DSR.

Proof: Let Kmin = min(x), so that xmin = x − Kmin

is entrywise nonnegative. We have Bx = KminG + Bxmin ,
with G = H2 ◦ H . Matrix G is circulant. It can be seen
as a convolution matrix with a filter g = (h ? h) ◦ h, with
g̃ = (h̃ ◦ h̃) ? h̃ and ? the discrete convolution. Vector g̃ has
nonzero components for all spatial frequencies belonging to
DSR. Moreover, matrix G is obviously nonnegative definite.
Matrix Bxmin

is also nonnegative definite according to the
Schur product Theorem, as the Hadamard product between two
nonnegative definite matrices [13, Theorem 5.2.1]. Therefore,
we have Ker(Bx) = Ker(G) ∩Ker(Bxmin

) ⊂ Ker(G).
Similarly, let Kmax = max(x), so that xmax = Kmax − x

is entrywise nonnegative. We have Bx = KmaxG −Bxmax ,
and Bxmax

and Bx are both nonnegative definite. For all z ∈
Ker(G), z†Bxz = −z†Bxmax

z, where the lhs and the rhs
are nonnegative and nonpositive, respectively. We conclude
that z†Bxz = 0, so Ker(G) ⊂ Ker(Bx), and finally that
Ker(Bx) = Ker(G).

According to Proposition 3, we have ρ− q ∈ Ker(Bρ+q),
where ρ+q is entrywise positive. Therefore, we can conclude
that ρ − q ∈ Ker(G), i.e., that the frequency components
of q coincide with that of ρ in DSR. Moreover, we know
from Proposition 2 that the frequency components of q outside
DSR have no impact on the data covariance, and hence on its
diagonal.

IV. CONCLUSION AND PERSPECTIVES

This paper provides a mathematical proof that the super-
resolution capacity of random illumination microscopy still
holds when only the statistical variance of collected images is
considered instead of the full covariance. Such a theoretical
result meets practical evidences recently obtained concerning
2D variance-based imaging applied to various types of biolog-
ical samples [16].

Several comments can be made about the novel variance-
based result, compared to its covariance-based counterpart:
• Whereas the covariance-based result of Proposition 1

holds if fPSF = fspec, the proof of Theorem 1 is based
on the fact that matrices H and C identify, which is
more stringent. Indeed, we have a small size counter-
example proving that Theorem 1 is no more valid when
H 6= C, even if fPSF = fspec. A perspective could
be to consider short-range correlations in addition to the
variance equations.

• Another difference concerns the fact that strict positivity
of the sample is needed in Theorem 1. However, we have
strong elements showing that this condition could be re-
laxed. However, the maximal number of zero entries still
compatible with provable super-resolution is currently
indeterminate.

• Although we have restricted ourselves to the 2D case,
a formal extension to 3D is straightforward, with the
benefit of an axial super-resolution effect, on top of the
lateral one obtained in 2D. Real-world applications would
consist in considering several focalization depths (either
successively, or jointly using a multifocus system [17]).
For each depth, several speckle illuminations must be
recorded, so that a 3D map of variance can be con-
structed, and a 3D map of fluorescence can be retrieved
on this basis.
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