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A contribution to the determinization of max-plus automata *

It is a well known fact that not all max-plus automata can be determinized, i.e. transformed into deterministic max-plus automata with the same behavior. A classical sequentialization procedure, extended in the literature to max-plus automata, succeeds in computing an equivalent deterministic max-plus automaton for important subclasses of max-plus automata. This procedure is based on the normalization of state vectors in order to detect and merge states which have similar future behavior. In this paper, a novel and weaker condition is proposed that still guarantees this property. This allows for a considerable improvement of the existing determinization procedure, because it terminates for a larger class of max-plus automata.

Introduction

Weighted automata (also known as automata with multiplicities) generalize finite state automata by adding weights to their transitions. Such a weight (multiplicity) allows for instance to model time (duration) associated to a transition or a probability of its occurrence. The weights have values taken from a semiring, and automata with multiplicities from a semiring have been thoroughly studied in the last fifty years by computer scientists [START_REF] Droste | Handbook of Weighted Automata[END_REF]. They find their applications in various domains such as natural language processing (speech recognition), digital image compression [8, Part IV], discrete-event systems (DES) [START_REF] Gaubert | Performance Evaluation of (max,+) Automata[END_REF][START_REF] Lahaye | Supervisory control of (max,+) automata: extensions towards applications[END_REF]. In this paper we consider automata with multiplicities belonging to the semiring (R ∪ {-∞}, max, +), which are known as max-plus automata.

It is well known that most of algorithmic properties of finite automata do not extend to automata with multiplicities. For instance, language inclusion corresponding to inequalities between behaviors (formal power series, also known as weighted languages) of automata with multiplicities is undecidable for max-plus automata and min-plus automata [START_REF] Krob | The equality problem for rational series with multiplicities in the tropical semiring is undecidable[END_REF]. A considerable research effort has been put on working with subclasses for which this fundamental problem becomes decidable. This includes a class of deterministic max-plus automata (also called sequential) for which the underlying Boolean automaton (i.e. without considering the weights) is deterministic. This has motivated the study of determinization problem for max-plus automata, i.e. transformation into a deterministic max-plus automaton with the same behavior.

In the field of DES, another motivation for determinization of max-plus automata stems from their application in control of timed DES. The results of [START_REF] Lombardy | Series which are both max-plus and min-plus rational are unambiguous[END_REF] and [START_REF] Lahaye | Supervisory control of (max,+) automata: extensions towards applications[END_REF] show that for control problems the use of nondeterministic max-plus automata is very limited, because rational (finite state) controllers can only be obtained for plants modeled by unambiguous max-plus automata and deterministic max-plus automata form an important subclass of unambiguous max-plus automata.

Despite the fact that not all max-plus automata can be determinized (see e.g. [18]), the determinization procedure of [START_REF] Gaubert | Performance Evaluation of (max,+) Automata[END_REF][START_REF] Mohri | Finite-state transducers in language and speech processing[END_REF] based on normalization still terminates for important subclasses reported in [START_REF] Kirsten | A burnside approach to the termination of Mohri's algorithm for polynomially ambiguous min-plus-automata[END_REF]. In the latter reference, it is also shown that determinization of max-plus automata is decidable for polynomially ambiguous (concept recalled in the paper) max-plus automata, while the decidability status of determinization problem remains still open for general max-plus automata.

Contribution This contribution is an extension of conference papers [START_REF] Lahaye | Amélioration de la procédure de déterminisation des automates (max,+)[END_REF][START_REF] Lahaye | Contribution à la déterminisation des automates maxplus[END_REF]. The guiding idea is to find a weaker condition for detection of states that can be merged during the determinization procedure of [START_REF] Gaubert | Performance Evaluation of (max,+) Automata[END_REF][START_REF] Mohri | Finite-state transducers in language and speech processing[END_REF]. This amounts to enlarging the class of max-plus automata for which this procedure terminates, i.e. succeeds in computing a deterministic max-plus automaton with the same behavior.

We first propose a weaker condition to detect states which have similar future behavior. We show that this condition can be formulated as an inequality problem between behaviors of two customized max-plus automata. Using recent advancements from the literature based on the (stronger but checkable in polynomial time) concept of simulation relation, we then deduce an effective condition for merging states during the determinization. This improves the procedure, which now terminates for a larger class of max-plus automata.

Finally, we propose a generalization of the concept of (bi)simulation, which helps to even more improve the determinization technique.

We note at this point that another improvement of the determinization procedure of [START_REF] Gaubert | Performance Evaluation of (max,+) Automata[END_REF][START_REF] Mohri | Finite-state transducers in language and speech processing[END_REF] has been proposed in [START_REF] Gaubert | Asymptotic analysis of heaps of pieces and application to timed Petri nets[END_REF], but with a different approach. Finally, a method of approximate determinization, first proposed in [START_REF] Aminof | Rigorous approximated determinization of weighted automata[END_REF], can be applied if there does not exist an equivalent deterministic max-plus automaton or if it is just too big. More recently, in [START_REF] Filiot | On delay and regret determinization of max-plus automata[END_REF], the authors have proposed to compute a deterministic max-plus automaton with a behavior that differs from the behavior of the original (non deterministic) max-plus automaton by a value called regret.

Organization of the paper In the next section, preliminary results with necessary algebraic tools and concepts are recalled. In section 3, the existing determinization procedure for max-plus automata is presented and discussed on several examples. Our contribution is given in sections 4 and 5. In section 4, we present and investigate a new condition to identify states that can be merged in the determinization procedure. In section 5 we propose an improved procedure for determinization of max-plus automata based on the new condition from section 4. Conclusions together with hints on future developments are given in section 6.

Preliminaries

Some necessary notations, concepts and results are briefly recalled in this section. The reader is invited to consult, for example, references [START_REF] Baccelli | Synchronization and Linearity[END_REF][START_REF] Sakarovitch | Elements of Automata Theory[END_REF][START_REF] Droste | Handbook of Weighted Automata[END_REF][START_REF] Gaubert | Performance Evaluation of (max,+) Automata[END_REF] for more exhaustive presentations about max-plus algebra and weighted automata.

The set R ∪ {-∞} equipped with the maximum operation playing the role of addition and with the usual addition as multiplication is an idempotent semiring, denoted R max and often called max-plus algebra. The addition ⊕ (resp., the multiplication ⊗) has a null element ε = -∞ (resp., a unit element e = 0). For x ∈ R max and x ̸ = ε, we denote x -1 the inverse of x, that is the unique element from R max such that x -1 ⊗x = x⊗x -1 = e, namely x -1 is equal to -x. In the following, the multiplicative symbol ⊗ might be omitted if there is no ambiguity. The set of n×n matrices with coefficients in R max , endowed with the matrix addition and multiplication conventionally defined from ⊕ and ⊗, is also an idempotent semiring, denoted R n×n max . The null element for the addition is the matrix exclusively composed of ε (= -∞) and also denoted ε. We denote I n the identity element of the multiplication, which is the matrix with e (= 0) on the diagonal and ε (= -∞) elsewhere. The symbol A k stands for the k-th max-algebraic power of a square matrix A. To be rigorous, note that operations with matrices of appropriate sizes require to embed these matrices in a semiring of square matrices. For example, the multiplication A ⊗ B with A ∈ R m×n max , B ∈ R n×p max and n ≥ m, n ≥ p requires to embed A and B in R n×n max by adding n -m lines (resp. n-p columns) full of ε in A (resp. in B). To lighten the presentation, this construction is often omitted in the following (without affecting the results), and the coefficients equal to ε in the matrices will be replaced by '•'.

If Σ is a finite set (alphabet), the free monoid on Σ is defined as the set Σ * of finite words (or strings) with letters in Σ. A word w ∈ Σ * can be written as a sequence w = a 1 a 2 . . . a p with a 1 , a 2 , . . ., a p ∈ Σ and p a natural number (w is the concatenation of a 1 , a 2 , . . ., a p ). The empty word is denoted by ϵ. A word u is said to be a prefix of w if there exists a word v such that w = uv. We denote Prefix(w) the set of prefixes of w and by |w| the length of w. We denote < the strict hierarchical order on Σ * (also called strict military order, and based on length of words and lexicographic order for equal length). Then, we have ϵ < a < b < aa < ab < ba < bb < aaa < . . .. Definition 1 (Max-plus automaton) A max-plus automaton G over an alphabet Σ is a tuple (Q, α, µ, β) where Q is a non-empty finite set of states;

α ∈ R 1×|Q| max ; µ : Σ * → R |Q|×|Q| max
is a morphism specified by the family of matrices µ(a) ∈ R |Q|×|Q| max , a ∈ Σ, and for a string w = a 1 a 2 . . . a n , we have

µ(w) = µ(a 1 a 2 . . . a n ) = µ(a 1 ) ⊗ µ(a 2 ) ⊗ . . . ⊗ µ(a n ); β ∈ R |Q|×1 max .
Equivalently G can be defined by the tuple

(Q, Q i , Q f , σ, t, ρ), in which Q i (resp. Q f ) denotes the set of initial (resp. final) states, t : Q × Σ × Q → R max is the transition function, σ : Q i → R max
is the function of initial weights and ρ : Q f → R max is the function of final weights:

Q i ≜ {q ∈ Q : α q ̸ = ε}; Q f ≜ {q ∈ Q : β q ̸ = ε}; q i ∈ Q i , σ(q i ) ≜ α qi ; q, q ′ ∈ Q, t(q, a, q ′ ) ≜ µ(a) qq ′ ; q f ∈ Q f , ρ(q f ) ≜ β q f .
A graphical representation can be associated to a max-plus automaton (which is then seen as a valued multigraph):

to each state q ∈ Q corresponds a node; an arrow exists from state q to state q ′ if there exists a letter a ∈ Σ such that µ(a) qq ′ ̸ = ε and it is then labeled a/µ(a) qq ′ ; an input arrow (without starting node) indicates an initial state (i.e., if α qi ̸ = ε) and it is labeled by α qi (as an abbreviation of ϵ/α qi ); an output arrow (without ending node) indicates a final state q f (i.e., if β q f ̸ = ε) and it is labeled by β q f (as an abbreviation of ϵ/β q f ).

A coefficient µ(a) qq ′ ̸ = ε means that, from state q, the occurrence of letter a causes a state transition to state q ′ . In a max-plus automaton, weight [µ(a)] qq ′ is usually interpreted as the duration associated to event labeled by a (namely, the activation time of event a before it can occur).

If µ(a) qq ′ ̸ = ε, then we denote by (q, a, q ′ ) the corresponding transition in G. Let m > 0 and a sequence of transitions π = (q 0 , a 1 , q 1 )(q 1 , a 2 , q 2 ) . . . (q m-1 , a m , q m ). We call π a path from q 0 to q m and we denote σ(π) the product ⊗ of the weights on π, that is

σ(π) = i=1,...,m t(q i-1 , a i , q i ) = i=1,...,m µ(a i ) qi-1,qi .
Let p, q ∈ Q and w ∈ Σ * . We denote by p w ⇝ q the set of paths from p to q which are labeled by w. We have:

µ(a 1 a 2 . . . a m ) q0qm = π∈q0 a 1 ...am ⇝ qm σ(π) . (1) 
In the following, we will intensively use notation x (to refer to the state vector of the automaton) defined from µ and α (the vector of initial weights, see Def. 1) as follows

x : Σ * → R 1×Q max w → x(w) = αµ(w).
(

) 2 
Note that x is the solution of the following set of equations (which can be seen as a state-space representation with recurrence on words):

x(ϵ) = α x(wa) = x(w)µ(a) (3) 
We also denote

x(w) = q∈Q x(w) q , ᾱ = q∈Q α q . ( 4 
)
Definition 2 (Behavior of a max-plus automaton) A max-plus automaton G recognizes the map:

y : Σ * → R max w → y(w) = x(w)β . (5) 
The map y is often referred to as the behavior of G. For w ∈ Σ * , if y(w) ̸ = ε then w is said to be recognized by G.

We denote R(w) the set of reachable states for w: R(w) ≜ {q ∈ Q|x(w) q ̸ = ε}.

Definition 3 (Equivalent max-plus automata) Two max-plus automata are equivalent if they have the same behavior.

Definition 4 (Deterministic max-plus automaton) A max-plus automaton is said to be deterministic if it has a unique initial state (there is a unique q ∈ Q such that α q ̸ = ε, equivalently, Q i is a singleton); from each state, no two state transitions share the same event label (for all a ∈ A each line of µ(a) contains at most one element not equal to ε).

For deterministic max-plus automata, ∀q, q ′ ∈ Q, w ∈ Σ * , q w ⇝ q ′ is the empty set or a singleton. For (q 0 , a 1 , q 1 )(q 1 , a 2 , q 2 ) . . . (q m-1 , a m , q m ) the unique path recognizing a 1 a 2 . . . a m from q 0 to q m , Equation ( 1) is then reduced to

µ(a 1 a 2 . . . a m ) q0,qm = i=1,...,m µ(a i ) qi-1,qi = i=1,...,m t(q i-1 , a i , q i ).
Then, with q 0 the initial state, there exists q m ∈ Q f such that:

y(a 1 a 2 . . . a m ) = α q0 ⊗   i=1,...,m µ(a i ) qi-1,qi   ⊗ β qm = σ q0 ⊗   i=1,...,m t(q i-1 , a i , q i )   ⊗ ρ(q m ). ( 6 
)
3 Determinization of max-plus automata

One is interested in determinization of max-plus automata, that is, in a procedure which transforms a given maxplus automaton G into an equivalent deterministic max-plus automaton G ′ if it exists. In this section, a wellknown procedure is first recalled. It is introduced by Stéphane Gaubert in [10, §VIII] and called determinization via normalization, with some refinements in [START_REF] Gaubert | Asymptotic analysis of heaps of pieces and application to timed Petri nets[END_REF]. A similar algorithm was presented in [START_REF] Mohri | Finite-state transducers in language and speech processing[END_REF] by Mehryar Mohri. Such a procedure is also presented in [18, §2.2.2] as a specialization of a general sequentialisation procedure. This procedure, together with subsequent results, is briefly introduced in this section.

For λ ∈ R max \ {ε}, the binary relation

λ ≃ from R n max to R n max is defined by: x 1 λ ≃ x 2 ⇐⇒ x 1 = λx 2 . ( 7 
)
Considering a max-plus automaton G = (Q, α, µ, β) and v, w ∈ Σ * such that:

x(w) λ ≃ x(v), (8) 
then we have ∀u ∈ Σ * y(wu) = x(wu

)β = x(w)µ(u)β = λx(v)µ(u)β = λy(vu). (9) 
In other words, if x(w) λ ≃ x(v), then the behavior for any future evolution after w can be deduced from the behavior for the same evolution after v with a λ-shift. The following determinization-procedure builds a deterministic max-plus automaton G ′ whose states are labeled by words recognized by G. Two words w and v such that x(w) λ ≃ x(v) then correspond to states in G ′ that are merged while leading to a same behavior, that is an equivalent max-plus automaton.

Procedure 1, if it terminates, builds a deterministic automaton

G ′ = (Q ′ , q ′ i , Q ′ f , σ ′ , t ′ , ρ ′ ) equivalent to G = (Q, α, µ, β) possibly nondeterministic.
Procedure 1 Procedure for the determinization of max-plus automata

1: 2: Q j ← {ϵ}, Q j+1 ← ∅, q ′ i ← {ϵ}, Q ′ ← {ϵ}, σ ′ (ϵ) = ᾱ ▷ initialization 3: if y(ϵ) ̸ = ε then ▷ ϵ is recognized by G 4: Q ′ f = {ϵ} ▷ state labeled by ϵ is final 5: ρ ′ (ϵ) = x(ϵ) -1 ⊗ y(ϵ)
▷ final weight associated with ϵ 6: else 7:

Q ′ f = ∅ 8: end if 9: while Q j ̸ = ∅ do 10: for all w ∈ Q j , a ∈ Σ such that R(wa) ̸ = ∅ do 11:
if ∃v ∈ Q ′ such that x(wa) λ ≃ x(v) then ▷ behaviors following wa and v are similar according to (9)

12: t ′ (w, a, v) = x(w) -1 ⊗ x(wa)
▷ defines a state-transition to v 13: else 14:

Q ′ ← Q ′ {wa} ▷ adds new state wa in Q ′ 15:
t ′ (w, a, wa) = x(w) -1 ⊗ x(wa) ▷ defines a state-transition to wa 16:

Q j+1 ← Q j+1 {wa} 17:
if y(wa) ̸ = ε then ▷ wa is recognized by G 18: 

Q ′ f = Q ′ f ∪ {wa} ▷ state
Q j ← Q j+1 24:
Q j+1 ← ∅ 25: end while Example 1 Let us consider the nondeterministic max-plus automaton G 1 in Figure 1. Let us detail how the procedure operates to build deterministic max-plus automaton G ′ 1 (depicted in Figure 2) equivalent to G 1 . Since x(ϵ) = 1 0 and y(ϵ) = 0, the initialization (l. 2-8) leads to

Q ′ = {ϵ}, q ′ i = {ϵ}, σ ′ (ϵ) = 1, Q ′ f = {ϵ}, ρ ′ (ϵ) = -1 ⊗ 0 = -1.
At first evaluation of while-condition l.9, we have Q j = {ϵ}. At third evaluation of while-condition l.9, Q j is empty and the procedure terminates. 

⋄

To the best of our knowledge, the clones property defined in [START_REF] Kirsten | A burnside approach to the termination of Mohri's algorithm for polynomially ambiguous min-plus-automata[END_REF] is the condition which best characterizes max-plus automata that can be determinized using Procedure 1. Let u, v ∈ Σ * be such that R(uv) = R(u), we denote R(u, v) the subset of R(u) corresponding to states from which the circuits labeled by v have maximum weights, that is 1 q ∈ Q is said to be accessible if there exists w ∈ Σ * and q i ∈ Q i such that |q i w ⇝ q| ≥ 1. q is said to be co-accessible if there exists w ∈ Σ * and q f ∈ Q f such that |q w ⇝ q f | ≥ 1. If all its states are accessible and co-accessible, then G is said to be trim. 2 If, for all w ∈ Σ * , there exists a polynomial function P : N → N, such that there is at most

R(u, v) ≜ {p ∈ R(u) | µ(v) pp = q∈R(u) µ(v) qq }. ( 10 
) Definition 5 (Clones property) Let u, v ∈ Σ * . A state q ∈ R(u) is called a clone for v if µ(v) qq ̸ = ε implies that there exists p ∈ R(u, v) such that µ(v) pq ̸ = ε. A max-plus automaton G has the clones property if ∀u ∈ Σ * , ∀q ∈ R(u), q is a clone for all v ∈ Σ * such that R(uv) = R(u).
P (|w|) paths in Q i w ⇝ Q f ,
then G is said to be polynomially ambiguous.

3 A max-plus automaton is polynomially ambiguous iff for all q ∈ Q and for all w ∈ Σ * , there is at most one path in q w ⇝ q (see [START_REF] Kirsten | A burnside approach to the termination of Mohri's algorithm for polynomially ambiguous min-plus-automata[END_REF]). ). Yet, it can be checked that for all k ≥ 1 and u ∈ Σ * we have y(a k+1 u) = 4 ⊗ y(a k u). It shows that relation λ ≃ is a condition sometimes too strong to check if two states can be merged into Procedure 1. We next propose a condition weaker than λ ≃ to detect states that can be merged. It allows us to modify the procedure in Section 5 so that it terminates for more max-plus automata. ⋄

New condition to detect mergeable states

In this section a new condition is presented to identify states that can be merged in the determinization procedure. Let v, w ∈ Σ * . For λ ∈ R max \ {ε}, we denote:

Q(λ, v, w) = {q ∈ R(w) ∩ R(v) | x(w) q = λx(v) q } (11) 
and the binary relation

λ ∼ from R n max to R n max is defined by x(w) λ ∼ x(v) ⇐⇒ ∀u ∈ Σ * , ∃q v ∈ Q(λ, v, w) : y(vu) = x(v) qv (µ(u)β) qv , (12) 
∃q w ∈ Q(λ, v, w) : y(wu) = x(w) qw (µ(u)β) qw . (13) 
Remark 5 a) Since x(w) and x(v) are finite-dimensional vectors, there exist a finite number of candidates λ to define Q(λ, v, w).

b) If v ∈ Prefix(w), then condition ( 13) is useless since ( 12) =⇒ [START_REF] Krob | The equality problem for rational series with multiplicities in the tropical semiring is undecidable[END_REF].

⋄ Lemma 1 We have: x(w) λ ∼ x(v) =⇒ y(wu) = λy(vu), ∀u ∈ Σ * .
Proof. Let us assume x(w) λ ∼ x(v). For all u ∈ Σ * there exists q w ∈ Q(λ, v, w) such that y(wu) = q∈Q x(w) q (µ(u)β) q = x(w) qw (µ(u)β) qw .

(according to (13)) In other words, x(w) qw (µ(u)β) qw is equal to the sum (maximum) q∈Q x(w) q (µ(u)β) q and

x(w) qw (µ(u)β) qw ≥ x(w) q (µ(u)β) q , ∀q ∈ Q.

We have

y(wu) = x(w) qw (µ(u)β) qw ≥ x(w) q (µ(u)β) q , ∀q ∈ Q(λ, v, w) (according to (14)) = λx(v) q (µ(u)β) q , ∀q ∈ Q(λ, v, w) (according to Def. ( 11 
)) =⇒ y(wu) ≥ λx(v) qv (µ(u)β) qv = λy(vu).
(according to ( 12))

In a symmetric manner, we can show that y(vu) ≥ λ -1 y(wu) and we can conclude that y(wu) = λy(vu). ⋄ Lemma 2 We have:

x(w) λ ≃ x(v) =⇒ x(w) λ ∼ x(v).
Proof. Let λ ∈ R max \ {ε} and assume that x(w) λ ≃ x(v). Then, x(w) = λx(v) and we have Q(λ, v, w) = R(w) = R(v). Since ∀u ∈ Σ * , ∃q ∈ R(v) : y(vu) = x(v) q (µ(u)β) q and ∃q ′ ∈ R(w) : y(wu) = x(w) q ′ (µ(u)β) q ′ the conditions (12-13) are satisfied (i.e. x(w)

λ ∼ x(v)) if x(w) λ ≃ x(v).
⋄

Lemma 1 shows that relation λ ∼ characterizes states that can be merged in the determinization procedure. Lemma 2 emphasizes that this condition is weaker than the condition used so far in the literature. However, the next example illustrates that the relation λ ∼ is not necessary for mergeable states.

Example 8 Consider max-plus automaton G 3 in Figure 4. We have for all k ≥ 0 y(ac k ) = 0, y(bc k ) = 0 and y(au) = 0 ⊗ y(bu), ∀u ∈ Σ * , which indicates that vectors x(a) and x(b) can be merged in the determinization procedure. Unfortunately, ∼ fails in detecting that these states can be merged. However, it should be noted that this failure does not necessarily mean that determinization fails. In fact, we can check that x(ac) 0 ∼ x(ac 2 ) and x(bc) 0 ∼ x(bc 2 ) and the modified procedure proposed in next section terminates for G 3 , i.e. succeeds in building a deterministic automaton equivalent to G 3 . In this case, the fact that λ ∼ is not necessary for merging states during determinization leads in a number of states larger than needed in the resulting deterministic automaton. ⋄ Relation λ ∼ cannot be put in practice since it requires to check conditions ( 12) and ( 13) for an infinite number of words u ∈ Σ * . In the next section, we specify an effective condition which is sufficient for relation λ ∼. It is then proposed to use this condition in Procedure 1 so that it can succeed for more max-plus automata.

x(a) = • 0 • • , x(b) = • • • 0 which means that for w = b, v = a we have Q(0, a, b) = ∅,

Contribution to determinization of max-plus automata

In this section we will first characterize the relation λ ∼ and then provide an effective (but stronger) condition for merging two states in Procedure 1.

Effective condition for merging states

We show here that λ ∼ is equivalent to the inequality between behaviors of some customized max-plus automata. This allows us to use recent results from the literature to get an effective condition weaker than λ ≃.

Notation 9 : Let G = (Q, α, µ, β) be a max-plus automaton, x(v) its state-vector for v ∈ Σ * and

Q ⊆ Q. We denote x Q (v) (resp. x Q (v)) defined by x Q (v) p = x(v) p if p ∈ Q, ε otherwise, resp. x Q (v) p = x(v) p if p ∈ R(v) \ Q, ε otherwise, ( 15 
)
the vector x(v) "restricted" to states in

Q (resp. R(v) \ Q). We denote G Q,v (resp. G Q,v ) the automaton defined from G by G Q,v = (Q, x Q (v), µ, β), resp. G Q,v = (Q, x Q (v), µ, β) (16) 
and y Q,v (resp. y Q,v ) its behavior. ⋄

Remark 10

The definition of G Q,v and G Q,v echoes the definition of automata on the quotient of a language (see for example [20, Chap. I, sec. 3.3.a]). ⋄ Lemma 3 We have :

x(w) λ ∼ x(v) ⇐⇒ ∀u ∈ Σ * , y Q(λ,v,w),v (u) ≤ y Q(λ,v,w),v (u) and y Q(λ,v,w),w (u) ≤ y Q(λ,v,w),w (u). Proof. We have ∀u ∈ Σ * , y(vu) = y Q(λ,v,w),v (u) ⊕ y Q(λ,v,w),v (u), hence y Q(λ,v,w),v (u) ≤ y Q(λ,v,w),v (u) ⇐⇒ y(vu) = y Q(λ,v,w),v (u) ⇐⇒ ∃q ∈ Q(λ, v, w) : y(vu) = x(v) q (µ(u)β) q , that is y Q(λ,v,w),v (u) ≤ y Q(λ,v,w),v (u) ⇐⇒ (12).
In a similar manner, we have y Q(λ,v,w),w (u) ≤ y Q(λ,v,w),w (u) ⇐⇒ [START_REF] Krob | The equality problem for rational series with multiplicities in the tropical semiring is undecidable[END_REF]. ⋄ Lemma 3 points out that we have x(w) λ ∼ x(v) if, and only if, the behavior of the automaton built from G while replacing the initial weights vector α with x Q(λ,v,w) (v) (resp., x Q(λ,v,w) (w)) is greater than that of the automaton obtained with x Q(λ,v,w) (v) (resp., x Q(λ,v,w) (w)) as initial weights vector. It is well known that the problem of behavior comparison for automata with weights in an idempotent semiring is undecidable in the general case [START_REF] Krob | The equality problem for rational series with multiplicities in the tropical semiring is undecidable[END_REF] (in [START_REF] Daviaud | Comparison of max-plus automata and joint spectral radius of tropical matrices[END_REF] undecidability is proved for some specific subclasses). In spite of this difficulty there exist several approaches providing partial answers to this comparison problem. We focus on a recent contribution [START_REF] Damljanović | Bisimulations for weighted automata over an additively idempotent semiring[END_REF] proposing a generalization of the (bi)simulation concept to weighted automata. Useful results from this article are now briefly reminded while adapting presentation and notations to our context.

Definition 6 Let G 1 = (Q, α 1 , µ, β) and G 2 = (Q, α 2 ,
µ, β) be two max-plus automata (that differ only in initial weights vectors) with behaviors denoted y 1 and y 2 . A boolean matrix B ∈ {e, ε} |Q|×|Q| is called a simulation between G 1 and G 2 if

α 1 ≤ α 2 ⊗ B (17) 
B ⊗ µ(a) ≤ µ(a) ⊗ B, ∀a ∈ Σ (18) B ⊗ β ≤ β (19) 
We denote

G 1 B ∼ G 2 if there exists a simulation B between G 1 and G 2 .
The existence of a simulation between G 1 and G 2 ensures that for all path (q 1 0 , a 1 , q 1 1 ) (q 1 1 , a 2 , q 1 2 ) . . .

(q 1 m-1 , a m , q 1 m ), m ≥ 1, in G 1 , there exists a path (q 2 0 , a 1 , q 2 1 ) (q 2 1 , a 2 , q 2 2 ) . . . (q 2 m-1 , a m , q 2 m ) in G 2 such that [α 1 ] q 1 0 ≤ [α 2 ] q 2 0 , [µ(a)] q 1 i-1 ,q 1 i ≤ [µ(a)] q 2 i-1 ,q 2 i for i = 1, . . . , m, and [β] q 1 m ≤ [β] q 2 m .
In other words, for all word u accepted by G 1 , there exists in G 2 a path labeled by u where the successive transition-weights are all greater than the corresponding transition-weights in G 1 . We can then guess that G 1 -behavior is smaller than G 2 -behavior, and Theorem 12 derives quite directly from the definition of B (cf. [START_REF] Damljanović | Bisimulations for weighted automata over an additively idempotent semiring[END_REF]Th.4.1]).

Theorem 12

We have:

G 1 B ∼ G 2 =⇒ y 1 (u) ≤ y 2 (u), ∀u ∈ Σ * .
Let us emphasize that the authors provide in [START_REF] Damljanović | Bisimulations for weighted automata over an additively idempotent semiring[END_REF] an algorithm having polynomial complexity to check the existence of a simulation between G 1 and G 2 and to compute the greatest matrix B. Here, we refer to Th. 5.4 and Alg. 5.5 in [START_REF] Damljanović | Bisimulations for weighted automata over an additively idempotent semiring[END_REF], where the authors define a (weakly) decreasing and finite length sequence of boolean matrices whose fix-point coincides with the greatest matrix B. An effective condition to check if x(w) and x(v) are mergeable can then be derived from lemma 3.

Corollary 1 We have: G Q(λ,v,w),v B ∼ G Q(λ,v,w),v and G Q(λ,v,w),w B ∼ G Q(λ,v,w),w =⇒ x(w) λ ∼ x(v).

Improved procedure for determinization

Corollary 1 and Lemma 1 show that condition G Q(λ,v,w),v B ∼ G Q(λ,v,w),v and G Q(λ,v,w),w B ∼ G Q(λ,v,
w),w is sufficient to detect if two states can be merged. In addition, this condition is effective. It is then natural to modify Procedure 1 by replacing l.11 with:

11 : if ∃v < w such that G Q(λ,v,w),v B ∼ G Q(λ,v,w),v and G Q(λ,v,w),w B ∼ G Q(λ,v,w),w then
At this stage, it is worth noticing the next result.

Lemma 4

We have:

x(w) λ ≃ x(v) =⇒ G Q(λ,v,w),v B ∼ G Q(λ,v,w),v and G Q(λ,v,w),w B ∼ G Q(λ,v,w),w .
Proof. Let us assume that x(w) λ ≃ x(v). We then have Q(λ, v, w) = R(v) = R(w) and vectors x Q(λ,v,w) (v) and x Q(λ,v,w) (w) defined by [START_REF] Lahaye | Supervisory control of (max,+) automata: extensions towards applications[END_REF] are null vectors (full of ε). This means that G Q(λ,v,w),v and G Q(λ,v,w),w have null initial-weights vectors and there exists a boolean matrix B satisfying [START_REF] Lombardy | Series which are both max-plus and min-plus rational are unambiguous[END_REF](18)[START_REF] Mohri | Finite-state transducers in language and speech processing[END_REF] 

(B = I |Q| is an obvious solution), i.e. G Q(λ,v,w),v B ∼ G Q(λ,v,w),v and G Q(λ,v,w),w B ∼ G Q(λ,v,w),w .
⋄ Lemma 4 indicates that the effective condition detects at least all the states that are mergeable according to λ ≃, and the modified procedure then succeeds in determinizing the max-plus automata that can be processed by the original procedure. Next example shows that there are max-plus automata for which the modified procedure succeeds whereas Procedure 1 fails in building equivalent deterministic automata.

Example 14 Consider again max-plus automaton G 2 in Figure 3. In Example 4, we have discussed why Procedure 1 does not terminate in this case. On the contrary, the modified procedure terminates and builds G ′ 2 depicted in Figure 5, which is deterministic and equivalent to G 2 . In particular, let us emphasize that x(a) = 3 4

x(aa) = 5 8 .

For λ = 4, w = aa, v = a, we then have Q(λ, v, w) = {1}, and there exists a simulation between G Q(λ,v,w),v and G Q(λ,v,w),v (as well as between G Q(λ,v,w),w and G Q(λ,v,w),w ). In fact, it can be checked that matrix The new condition for l. 11 is then true and the corresponding states are merged by the modified determinizationprocedure (when they are not with the original ones). ⋄

B = 0 • 0 0 satisfies (17) for α 1 = x Q(λ,v,w) (v) = 3 • and α 2 = x Q(λ,v,w) (v) = • 4 (as well as for α 1 = x Q(λ,v,w) (w) = 5 • and α 2 = x Q(λ,v,w) (w) = • 8 ), ( 18 
) for µ(a) = 2 1 • 4 , µ(b) = • • • 1 ,
Example 15 Let us consider now the nondeterministic max-plus automaton G 4 in Figure 6. The modified procedure does not succeed for this example, yet G 4 can be determinized. This is due to the fact that there is no simulation between the automaton having only state 0 as initial state and the automaton with state 3 as unique initial state. In fact, the circuit labeled by ab on state 0 contains transition (0, a, 1) whose weight is greater than the weight of transition (3, a, 4) in the only circuit labeled by ab on state 3. Hence, the new condition for line 11 is always false for w equal to (ab) k , k ≥ 1. Here, the existence of a simulation is a too strong condition to be able to conclude that the behavior with only 0 as initial state is smaller than the behavior with 3 as only initial state (which is yet an obvious fact). Next subsection proposes another improvement of the determinization procedure making it possible to manage this situation. ⋄

A new improvement

Instead of seeking a Boolean matrix B (with coefficients in {ε, e}) satisfying [START_REF] Lombardy | Series which are both max-plus and min-plus rational are unambiguous[END_REF](18)[START_REF] Mohri | Finite-state transducers in language and speech processing[END_REF], we propose to consider the existence of a matrix S with coefficients in R max satisfying similar properties, that is

α 1 ≤ α 2 ⊗ S (20) S ⊗ µ(a) ≤ µ(a) ⊗ S, ∀a ∈ Σ (21) S ⊗ β ≤ β (22) 
Let us mention that analogous considerations appear in [START_REF] Béal | Conjugacy and equivalence of weighted automata and functional transducers[END_REF] to study conjugacy of weighted automata. Using similar arguments as for the proof of [START_REF] Damljanović | Bisimulations for weighted automata over an additively idempotent semiring[END_REF]Th.4.1], it can be shown that the existence of such a matrix S is sufficient to compare the behaviors of G 1 and G 2 .

Lemma 5

We have:

∃S ∈ R |Q|×|Q| max satisfying (20)-(22) =⇒ y 1 (u) ≤ y 2 (u), ∀u ∈ Σ * . Proof. Assume S ∈ R |Q|×|Q| max
satisfying ( 20)-( 22). For all w = a 1 a 2 . . . a n ∈ Σ * we have:

y 1 (w) = α 1 µ(a 1 ) . . . µ(a n )β ≤ α 2 Sµ(a 1 ) . . . µ(a n )β (using (20)) ≤ α 2 µ(a 1 )S . . . µ(a n )β (using (21)) . . . ≤ α 2 µ(a 1 ) . . . µ(a n )Sβ (using (21)) ≤ α 2 µ(a 1 ) . . . µ(a n )β (using (22)) = y 2 (w)

⋄

Let us emphasize the obvious fact that the existence of simulation implies existence of a real matrix S satisfying [START_REF] Sakarovitch | Elements of Automata Theory[END_REF](21)(22). Proof. The Boolean matrix can be clearly considered as a real (max-plus) matrix. ⋄

As we have shown above that the existence of a matrix S satisfying [START_REF] Sakarovitch | Elements of Automata Theory[END_REF](21)(22) is also sufficient to compare behaviors, hence this constitutes a weaker sufficient condition than simulation for this property. The remainder of this section discusses and sketches an approach for checking the existence of a matrix S fulfilling (20-22).

Lemma 6

The set of solutions of inequalities (20-22) is a tropical polyhedron.

Proof. Any tropical polyhedron can be seen as the set of solutions of inequality

Ax ⊕ c ≤ Bx ⊕ d (23) 
where A, B ∈ R m×n max and c, d ∈ R n max with n, m ∈ N (see [START_REF] Akian | Tropical polyhedra are equivalent to mean payoff games[END_REF][START_REF] Xavier Allamigeon | Computing the vertices of tropical polyhedra using directed hypergraphs[END_REF]). To complete the proof, we then have to show that inequalities [START_REF] Sakarovitch | Elements of Automata Theory[END_REF](21)(22) We next propose for each inequality (20-22) a formulation similar to (23):

For α 1 ∈ R 1×|Q| max , define c 0 ∈ R |Q| 2 max by c 0 ≜ [α 1 ] 1 [α 1 ] 2 . . . [α 1 ] |Q| ε ε . . . ε T , then inequality (20) is equivalent to c 0 ≤ B 0 x (25) 
where 

B 0 ∈ R |Q| 2 ×|Q| 2 max , B 0 ≜     E 1 E 2 . . . E |Q| ε     with E i ∈ R |Q|×|Q| max , i = 1, 2, . . . , |Q|, defined by E i ≜      [α 2 ] i ε [α 2 ] i . . . ε [α 2 ] i      . For µ(a) ∈ R |Q|×|Q| max , define A(a) ∈ R |Q| 2 ×|Q| 2 max by A(a) ≜      µ(a) T ε µ(a) T . . . ε µ(a) T      , then
where

A 1 ∈ R |Q| 2 ×|Q| 2 max , A 1 ≜ G ε with G ∈ R |Q|×|Q| 2 max , defined by G ≜      β T ε β T . . . ε β T     
.

Finally, we can argue that the set of inequalities [START_REF] Sakarovitch | Elements of Automata Theory[END_REF](21)(22) for Σ = {a 1 , a 2 , . . . , a |Σ| } is equivalent to (23) with

A ∈ R (|Σ|+2)|Q| 2 ×|Q| 2 max , A ≜        ε A(a 1 )
. . .

A(a |Σ| ) A 1        , c ∈ R (|Σ|+2)|Q| 2 max , c ≜        c 0 ε ε . . . ε        , B ∈ R (|Σ|+2)|Q| 2 ×|Q| 2 max , B ≜        B 0 B(a 1 )
. . .

B(a |Σ| ) ε        , d ∈ R (|Σ|+2)|Q| 2 max , d ≜        ε ε . . . ε d 1        . ⋄
From Lemma 6, it follows that there exists S satisfying [START_REF] Sakarovitch | Elements of Automata Theory[END_REF](21)(22) if, and only if, the corresponding tropical polyhedron is non-empty. In [START_REF] Akian | Tropical polyhedra are equivalent to mean payoff games[END_REF], it has been shown that checking the emptyness of a tropical polyhedron is equivalent to solving a mean payoff game, a problem for which several combinatorial algorithms have been proposed (including pseudo-polynomial algorithms). In addition, the double description method in [START_REF] Xavier Allamigeon | Computing the vertices of tropical polyhedra using directed hypergraphs[END_REF] can be used to compute the generators (extreme points and extreme rays) of a non-empty polyhedron. As a consequence, this provides an effective condition to check if two states are mergeable, which is weaker than the ones given in Corollary 1.

Example 19 Consider again the nondeterministic max-plus automaton G 4 depicted in Figure 6 with

α 1 = 1 • • • • , α 2 = • • • 0 • .
It can be checked that the following matrix S satisfies (20-22), i.e. the associated tropical polyhedron is nonempty:

S =       0 • • -2 • • 0 -2 • -4 • 0 0 • -2 0 • • 0 • • 2 2 • 0       .
For this example, this can be used in combination of the modified procedure for determinization to succeed in finding a deterministic max-plus automaton equivalent to G 4 . ⋄

Conclusion

We have proposed a new condition to identify mergeable states within the determinization-procedure for maxplus automata. This allows the procedure to terminate more often. Future investigations will focus on the identification and the characterization of the class(es) of max-plus automata for which the modified determinization procedure terminates. It is hoped that, doing this, some elements to compare our approach with other determinization improvements (such as in [START_REF] Gaubert | Asymptotic analysis of heaps of pieces and application to timed Petri nets[END_REF]) will be given.

4 ≃ 2 ≃ 1 ≃

 421 Since x(ϵ) = 1 0 and x(a) = 5 2 , x(b) = • 1 , for variable 'wa' equal to a and b the if-condition l.11 is false, then: states a and b are added into Q ′ ; state-transitions t ′ (ϵ, a, a) = 4 and t ′ (ϵ, b, b) = 0 are defined; since y(a) = 2 and y(b) = 1, the if-condition l.17 is true, and states a and b are then added into Q ′ f with ρ ′ (a) = -3 and ρ ′ (b) = 0 as final weights. Since x(aa) = 9 6 , x(ab) = • 3 , x(ba) = • 3 and x(bb) = • 2 , we have x(aa) x(b) and x(bb) x(b) (the if-condition l.11 is true for these four cases), and state-transitions t ′ (a, a, a) = 4, t ′ (a, b, b) = -2, t ′ (b, a, b) = 2 and t ′ (b, b, b) = 1 are then defined.

Figure 1 :

 1 Figure 1: Nondeterministic max-plus automaton G 1 .

Figure 2 :

 2 Figure 2: Deterministic max-plus automaton G ′ 1 , equivalent to G 1 , obtained as output of Procedure 1.

Theorem 2 (Example 3

 23 [12, th. 3.4]) Let G a trim 1 and polynomially ambiguous 2 max-plus automaton. Procedure 1 terminates for G iff G has the clones property. Max-plus automaton G 1 in Figure1is polynomially ambiguous 3 and has the clones property. ⋄ Example 4 Max-plus automaton G 2 in Figure 3 is polynomially ambiguous but does not have the clones property, because state 0 is not a clone for a. Indeed, µ(a) 0,0 = 2 ̸ = r∈R(a) µ(a) rr = 4 = µ(a) 1,1 and µ(a) 1,0 = ε. It is illustrative to explain why Procedure 1 does not terminate for this example. With G 2 , we have for k ≥ 1, x(a k ) = 2 × k + 1 4 × k and x(v) 0 = ε for all word v including letter b. Then, it should be clear that for all k ≥ 1, there does not exist i ≤ k and λ such that x(a k ) λ ≃ x(a i ) and there does not exist v < a k and λ such x(a k ) λ ≃ x(v). The condition at l.11 in Procedure 1 is then false for w = a k and a new

Figure 3 :

 3 Figure 3: Nondeterministic max-plus automaton G 2 .

Figure 4 :

 4 Figure 4: Nondeterministic max-plus automaton G 3 .

  and x(w) 0 ∼ x(v) is not satisfied. More generally, there does not exist any λ such that x(b) λ ∼ x(a) and λ

Figure 5 :

 5 Figure 5: Deterministic max-plus automaton G ′ 2 , equivalent to G 2 , obtained with the modified procedure.

Figure 6 :

 6 Figure 6: Nondeterministic max-plus automaton G 4 for which the modified procedure does not terminate.

Corollary 2 G 1 B∼ G 2

 212 If then there exists real matrix S satisfying (20)-(22).

  can be rewritten in an inequality (23). For S ∈ R |Q|×|Q| max , we first define x ∈ R |Q| 2 max by x ≜ S 11 S 12 . . . S 1,|Q| S 21 S 22 . . . S 2,|Q| . . . S |Q|,|Q| T (24)

  |Q|,1 F |Q|,2 . . . F |Q|,|Q| , with F ij , i, j = 1, . . . , |Q|, defined by F ij ≜ ≜ β 1 β 2 . . . β |Q| ε ε . . . ε T , then inequality (22) is equivalent to A 1 x ≤ d 1

				|Q| 2 ×|Q| 2 max	,							
	B(a) ≜	    	F 11 F 21 . . .	F 12 F 22 . . .	. . . F 1,|Q| . . . F 2,|Q| . . . . . .	    	    	µ(a) ij	µ(a) ij	. . .	ε	     .
								ε			µ(a) ij	
	For β ∈ R	|Q| max , define d 1 ∈ R |Q| 2 max by							
					d 1							

inequality (21) is equivalent to A(a)x ≤ B(a)x

(26)

where B(a) ∈ R F
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