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TABLE I
EXAMPLE OF AN UNCERTAIN DATABASE

Course Time Lecturer Room Poss(t)

DB Monday, 9 A.M. Ann Aqua α1

IS Monday, 1 P.M. Ann Aqua α1

CS Monday, 1 P.M. Pete Buff α1

CS Tuesday, 2 P.M. Pete Buff α1

AI Tuesday, 4 P.M. Gill Buff α1

AI Wednesday, 3 P.M. Gill Cyan α1

Math Thursday, 4 P M. Mary Lava α3

Logic Thursday, 4 P M. Mary Pink α3

HCI Friday, 9 A.M. Bob Tan α4

OR Friday, 9 A.M. Bob Tan α4

OR Friday, 9 A.M. Jack Tan α4

to a linearly ordered scale S = {α1 , . . . , αn , αn+1} with α1 >
· · · > αn > αn+1 . They may be encoded numerically, e.g.,
α1 = 1, α2 = 0.8,. . ., αn = 0.2, αn+1 = 0, but this is not com-
pulsory. Indeed, a numerical encoding will have no particular
meaning beyond the ordering of the numbers. These levels may
also receive a linguistic reading. We shall come back to that in
the next section.

Clearly, this encoding suggests a layer-based view of the
relation r: We have first the tuples with the highest confidence
level α1 , followed by those with a smaller confidence level (in
the example α3), and so on (in the example, we have a third
layer with level α4). It also implicitly suggests a possibility
distribution over possible database worlds. How this distribution
can be related to the weights αi is discussed in the following.

III. RELATING POSSIBLE DATABASE WORLDS

AND CONFIDENCE IN TUPLES

The problem we are facing is how to relate a possibility
distribution over a power set of tuples to a distribution over a set
of tuples. Although this kind of problem has not been considered
very often, it already received an answer many years ago in [11].
We first recall these results using the motivating example used
at that time [12], namely the representation of an imprecise and
uncertain information about a multiple-valued attribute, here,
the set of languages spoken by a person.

A. Possibility Distribution on a Power Set and Its Upper and
Lower Approximations

For instance, we have the partial information that “John
speaks either English and French, or English and German, and
no other languages.” In that case, it can be described by a two-
valued possibility distribution π defined over the power set 2L

of the set of languages L, namely let A1 = {English,French},
and let A2 = {English,German}; then, we have π(A1) =
π(A2) = 1 and π(Ak ) = 0 for any k �= 1, 2. Clearly, this infor-
mation has an upper approximation by the set of languages pos-
sibly spoken by John, here A+ = {English,French,German},
and the set of languages certainly spoken by John, here
A− = {English} is a lower approximation. Note that this is
only an approximation of the information conveyed by the
original distribution π over 2L, since we have lost the infor-
mation that John speaks (only) two languages. However, the

two approximations are now distributions over L. This is sim-
pler, namely, μA+ (l) = 1 if l ∈ {English,French,German}
and μA+ (l) = 0 otherwise, while μA−(l) = 1 if l = English
and μA−(l) = 0 otherwise.

This can be generalized to multiple-valued possibility distri-
butions [12]. Let π be a mapping from a power set 2L (we keep
the same notation, but L now denotes any set) to a linearly or-
dered scale S, where 1 and 0 continue to denote the top and the
bottom element, respectively. We assume that π is normalized,
i.e., supi∈I π(Ai) = 1 (where I is an index set for the subsets in
2L). The upper and lower approximations of the ill-known set
described by π are defined, respectively, by

μA+ (l) = sup
i:l∈Ai

π(Ai) (1)

μA−(l) = 1 − sup
i:l �∈Ai

π(Ai) = inf
i:l �∈Ai

(1 − π(Ai)) (2)

where the complementation 1 − (·) denotes a mapping from
S = {α1 , . . . , αn , αn+1} with α1 = 1 > · · · > αn > αn+1 =
0 into scale S′ = {β1 , . . . , βn , βn+1} with β1 = 1 > · · · >
βn > βn+1 = 0, such that β1 = 1 − (αn+1), . . ., βi = 1 −
(αn+2−i), . . ., βn+1 = 1 − (α1). When S is a subset of [0, 1],
1 − (·) is just the complementation to 1; otherwise, it is the
order-reversing map of the scale S (for S finite). Since S is a
possibility scale, S ′ is a certainty scale (the distinction between
S and S ′ is important since the duality between possibility and
certainty (necessity) is essential in possibility theory).

Equation (2) means that we are all the more certain that l ∈ L
belongs to the ill-known set A described by π, i.e., μA−(l) is
all the higher, as it is impossible to find an Ai such that l �∈ Ai .
Similarly, it is all the more possible that l ∈ L belongs to the
ill-known set A, i.e., μA+ (l) is all the higher, as there exists an
Ai such that l ∈ Ai having a high possibility level. The quantity
1 − μA+ (l) is called by Yager [13] “rebuff measure,” since it
expresses to what extent l is impossible to be an element of A.

B. Some Linkage With Evidence Theory

The construction made here is reminiscent of Shafer’s [14]
setting for his evidence theory, where he starts with a mass
function m, called “basic probability assignment” defined over
the subsets Ai of some referential, say L, which is such that∑

i m(Ai) = 1. Then, m is nothing but the representation of a
random subset A ofL. Then, a so-called contour function can be
defined as c(l) =

∑
i:l∈Ai

m(Ai), which represents the plausi-
bility that l belongs to A. Due to the probabilistic normalization
of m, note that we also have c(l) = 1 −

∑
i:l �∈Ai

m(Ai). Here,
the construct is similar, except that m is replaced by a possi-
bilistic mass function π, and

∑
is replaced by sup to agree with

the idea of possibility. Such a qualitative counterpart of Shafer
evidence theory was first suggested in [15] (see [16] for recent
developments). Then, the contour function splits into upper and
lower approximation functions, i.e., μA+ and μA− , respectively,
which no longer coincide. Still, the following strong inclusion
of the fuzzy set A− in A+ can be checked:

∀l ∈ L, μA−(l) > 0 ⇒ μA+ (l) = 1.



It can also be observed that if μA− (l) is interpreted as 
the certainty that l belongs to A (the ill-known set repre-
sented by π), namely μA− (l) = cert(l ∈ A), the expected dual-
ity between possibility and certainty holds, namely, μA+ (l) =  
1 − cert(l ∈ A). Indeed, if the ill-known set A is rep-
resented by the possibility distribution {(Ai , π(Ai ))|i ∈ I}
(where I is an index set) over 2L, then its complement A 
should be represented by {(Bi , π(Bi ))|i ∈ I}, where the pos-
sibility distribution π is defined by ∀i ∈ I,  π(Ai) = π(Ai ),

i.e., the possibility degrees are now allocated to the com-
plement subsets. Then, 1 − cert(l ∈ A) = 1 − μ

A
− (l) = 1 −

(1 − supi:l �∈A i 
π(Ai )) = supi:l∈A i 

π(Ai) = μA+ (l).

C. Recovering the Possibility Distribution on the Power Set

We have shown how a normalized possibility distribution
π over 2L induces upper and lower approximation functions
over L for the information conveyed by π. Conversely,
since (A−, A+) is only an approximation of the information
contained in {(Ai, π(Ai))|i ∈ I}, there are several possibility
distributions over 2L in general that agree with (A−, A+) in the
sense of (1) and (2). This can be easily seen using the example
already considered at the beginning of Section III-A. Take again
A− = {English} and A+ = {English, French,German};
other examples of possibility distributions over 2L, dis-
tinct from π, the one already given, are π′({English}) =
π′({English, French}) = π′({English,German}) =
π′({English, French,German}) = 1, while π′(B) = 0
for any other subset B of L, or π′′({English}) =
π′′({English, French,German}) = 1, while π′′(B) = 0
for any other B ⊆ L. Note that π′′ fully differs from π
given in Section III-A. However, it can be shown that there
exists a unique possibility distribution, which is the largest
one in the sense of the fuzzy set inclusion defined on 2L

(π ⊆ π′ ⇐⇒ ∀i ∈ I, π(Ai) ≤ π′(Ai)). This is the least com-
mitted one (since it does not arbitrarily weaken the possibility
level of any subset). This possibility distribution is defined by

π∗(B) = min(inf
l∈B

μA+ (l), inf
l �∈B

(1 − μA−(l))). (3)

This equation is easy to understand, a subset B is all the more
possible, as both all its elements are possible, and no elements
outside B are certain. Entering π∗ in (1) and (2), we recover
μA+ and μA− . In the previous example, it can be checked that
π∗ is nothing but the possibility distribution π′ given above.

D. Application to Layered Databases

We can now apply these results to our original problem. Here,
we consider subsets of tuples t ∈ T ; therefore, these subsets are
in 2T , which plays the role of 2L in the previous sections. The
possibility distribution πr associated with the relation r is now
defined as (denoting B a subset of tuples)

πr (B) = αi if ∃i, B = rαi
;πr (B) = 0 otherwise (4)

where rαi
= {t ∈ r|c(t) ≥ αi} is the cut of level αi of the re-

lation r, and c(t) is the confidence level associated with tuple
t. Thus, the different possible database worlds are precisely
the level cuts of the fuzzy relation induced by the confidence

weights. Any other possible database world that would not
coincide with such level cuts has a possibility level equal to
αn+1 = 0. Note that the level cuts are nested, i.e., rαi

⊆ rαi + 1 ,
and thus, rα1 is included in any possible database world that has
a nonzero possibility level.

Applying (1) and (2) to the distribution defined by (4), we get

c+(t) = sup
t∈rα i

αi = sup
B :t∈B

πr (B) (=αi if t ∈ rαi
but t �∈ rαi−1)

(5)

c−(t) =

{
infB :t �∈B (1 − πr (B)) = α1 = 1, if t ∈ rα1

αn+1 = 0, otherwise.
(6)

This means that with the exception of the tuples that are in
rα1 , which are certainly in the database, the other tuples are
onlypossibly in the database r; the possibility levels c+(t) then
correspond exactly to the confidence levels, i.e., c+(t) = c(t).

Now, applying (3), we get

π∗(B) = min(inf
t∈B

c+(t), inf
t �∈B

(1 − c−(t))). (7)

The distribution π∗ coincides with the original distribution
πr for the subsets corresponding to the level cuts of r,
i.e., ∀B = rα , π∗(B) = πr (B). Indeed, inf t∈rα

c+(t) = α and
inf t �∈B (1 − c−(t)) = 0 for any B that fails to include some t
in rα1 ; otherwise, inf t �∈B (1 − c−(t)) = 1. However, as in the
spoken language example, π∗ is larger than the possibility dis-
tribution we start with, namely here π∗ > πr . Indeed, for any B
that contains rα1 and that is a strict subpart of some level cut
rαk

, which is not itself a level cut of higher level (i.e., B �= rαj

for any 1 ≤ j ≤ k), we have π∗(B) = αk , while πr (B) = 0.
Still, we have

⋃
B :π ∗(B )=α B = rα .

Thus, the distribution πr over 2T can be recovered from the
pair (c+ , c−) of upper and lower contour functions defined on T ,
although πr is smaller than the least committed distribution π∗

on 2T associated with this pair. In the perspective of studying
FDs in an uncertain database, it is natural to work with πr ,
and thus with the level cuts rα , since one should consider the
tuples having a level of possibility at least equal to α altogether
(for each α), which corresponds to the layer-based view of the
relation r introduced at the beginning. Viewed in terms of the
pair (c+ , c−), the relation r has a fully certain subpart, namely
r1 , which gathers all tuples t such that c+(t) = c−(t) = 1, while
the rest of the relation is partitioned into the subsets of tuples t
such that c+(t) = α and c−(t) = 0, for α2 ≤ α ≤ αn .

The αi’s may now receive a proper linguistic counterpart.
Since they are possibility levels, one may interpret them on
a linguistic scale such that (taking, e.g., n = 4) α1 = “fully
possible,” α2 = “quite possible,” α3 = “medium possible,” α4
= “somewhat possible,” α5 = “not at all possible.”

Since a database whose tuples are associated with confidence
levels has now received a clear interpretation in the setting of
possibility theory, we are in a position to study what the concept
of an FD means in this setting. This approach promotes the idea
to keep confidence levels fully qualitative in practice.



IV. POSSIBILISTIC FUNCTIONAL DEPENDENCIES

An FD X → Y , where X and Y are sets of attributes, is a
constraint of the form ∀t, t′ ∈ r, t.X = t′.X ⇒ t.Y = t′.Y . It
is obvious that if an FD holds in a database, it also holds in
any subpart of the original database. Here, our layered set of
tuples results in a nested sequence of possible database worlds.
Therefore, if an FD holds in rαi + 1 , the FD also holds in rαi

.
Conversely, if an FD does not hold in rαi

, then the FD does not
hold in rαi + 1 .

Thus, if we examine the example of Table I, we can check
that CT → R holds everywhere, namely in rα4 , C → L and
RT → C holds in rα3 , and LT → C in rα1 = rα2 only. This
suggests to attach a certainty level to an FD, such that the FD
is all the more certain as it holds in a larger database world
provided that it is possible to some extent.

A. Defining Possibilistic Functional Dependencies

The above discussion leads to the following definition for the
certainty level of an FD

Certr (fd) = 1 − sup{π(rαi
)|fd does not hold in rαi

} (8)

where fd denotes an FD, and we have π(rαi
) = αi . Equation

(8) is nothing but the necessity of the event “fd holds in r” with
respect to the possibility distribution πr , since by definition, the
necessity N(p) of a statement p is equal to 1 − Π(¬p), which
corresponds to 1 minus the possibility, i.e., to the impossibility
of the opposite event “fd does not hold in r.” Thus, if fd fails to
hold in rαi + 1 , but holds in rαi

, Certr (fd) = 1 − π(rαi + 1 ) =
1 − αi+1 = βn+1−i (indeed, the possibility that fd fails is the
greatest possibility to be in a database world where fd fails,
since possibility is maxitive [5], [6]). Thus, Certr (fd) = β1 =
1 − αn+1 = 1 if fd holds for any level cut of r. Note also that
in particular, we get Certr (fd) = 0 if fd fails to hold in rα1 ;
in fact, since the tuples in rα1 are not only fully possible, but
also fully certain, there is no possibility at all that fd holds in
a database world having a nonzero possibility level, and thus,
it is fully certain that fd fails to hold. Besides, in case the
scales S and S ′ are included in [0, 1], we just have Certr (fd) =
1 − αi+1 where now 1 − (·) is the usual complementation to 1,
as soon as fd fails to hold in rαi + 1 , but holds in rαi

. We call a
classical FD associated with a certainty level a possibilistic FD.

Coming back to our example, it can be checked that the set Σ
made up of the previously mentioned FDs associated with their
certainty weights is

Σ = {(CT → R, β1); (C → L, β2); (RT → C, β2);

(LT → C, β3)}.

Then, the following proposition can be stated:

�r (X → Y, c) ⇔ �r1−c
X → Y (9)

where �r (X → Y, c) means that Certr (X → Y ) ≥ c and
where rα denotes the strict α-level cut of r, namely rα =
{t|c(t) > α}. This proposition is easy to prove. First observe
that �r (X → Y, c) entails �r (X → Y, c′) as soon as c ≥ c′. If
Certr (X → Y ) ≥ c, it follows from Definition 8 that X → Y
may be violated at most in r1−c , but certainly not in r1−c .

Conversely, if X → Y holds for any level cut of r of level
strictly greater than 1 − c, Certr (X → Y ) cannot be less than
1 − (1 − c)) = c.

The careful definition of the concept of a possibilistic FD
which is fully justifiable in terms of possibility theory is also of
great potential in database practice. In particular, it allows us to
take full advantage of previous results on classical dependencies,
which we will explore in future work. For example, if a relation
satisfies a classical FD, then that relation can be decomposed
into two of its projections without loss of information [17], [18].
More generally, if a possibilistic relation satisfies a possibilistic
FD with certainty c, then the strict level cut of the possibilistic
relation with level 1 − c can be decomposed into two of their
projections without loss of information.

B. Relation With Possibilistic Propositional Logic

It is well known [19]–[21] that FDs in classical databases
have a simple propositional logic counterpart in terms of Horn
clauses. In fact, the following holds:

�r {A1 , . . . , Ak} → B ⇔ ∀t, t′ ∈ r,�ω{t , t ′}

¬ A′
1 ∨ · · · ∨ ¬A′

k ∨ B′ (10)

where A′
1 , . . . , A

′
k , B′ are propositional variables associated

with attributes A1 , . . . , Ak ,B, respectively, and ω{t,t ′}(A′) =
True if ∀i, t.Ai = t′.Ai and ω{t,t ′}(A′) = False otherwise.
Equation (10) expresses that a given relation satisfies a given
FD if and only if for all pairs of tuples in the relation, the special
truth assignment derived from that pair is a Boolean model for
the propositional Horn clause associated with the FD. Indeed,
(10) can be seen as a semantic justification for the definition of
the special truth assignment ωt,t ′ that assigns to each proposi-
tional variable A′ the value True iff tuples t, t′ have the same
instantiation on attribute A. This semantically relates the iden-
tity of tuples to propositional variable formulas expressing the
counterparts of FDs. Moreover, (10) can be used to prove that a
dependency statement is a consequence of a set of dependency
statements if and only if the corresponding implicational state-
ment is a consequence of the corresponding set of implicational
statements [19].

This result extends to our setting, just as propositional logic
extends to possibilistic logic [22]. Let us first have a brief re-
fresher on possibilistic logic. A (standard) propositional possi-
bilistic logic formula is a pair (p, β), where p is proposition and
β is a certainty level. At the semantic level, it corresponds to the
semantic constraint N(p) ≥ β, where N is a necessity measure,
associated with a possibility distribution π on the set of interpre-
tations Ω in the following way N(p) = infω ��p 1 − π(ω). The
lower the possibility of an interpretation that makes p False,
the higher the necessity degree of p. Therefore, given a formula
(p, β), an interpretation ω that makes p True is possible at the
maximal level in the scale S, say 1, while an interpretation ω that
makes p False is at most possible at level 1 − β. A possibilis-
tic logic knowledge base K is a collection of possibilistic logic
formulas, namely K = {(pi, βi)|i = 1, . . . , n}, whose seman-
tic counterpart is πK (ω) = mini=1,...,n max(1 − βi, [pi ](ω)),
where [p](ω) = 1 if ω � p and where [p](ω) = 0 otherwise.



Then, in possibilistic logic, the following soundness and com-
pleteness theorem holds:

�K (p, β) ⇔ �K (p, β) ⇔ �Kβ
p ⇔ �Kβ

p

where �K (p, β) means ∀ω, πK (ω) ≤ π{(p,β )}(ω), and Kβ =
{pi |(pi, βi) ∈ K and βi ≥ β}. Therefore, the last half of the
above expression reduces to the soundness and completeness
theorem of propositional logic, applied to each level cut of
K, which is an ordinary propositional logic knowledge base.
Finally, �K (p, β) refers to the syntactic part of possibilistic
logic, which relies on the repeated use of the resolution rule
(¬p ∨ q, β), (p ∨ r, γ) � (q ∨ r,min(β, γ)). It is also interest-
ing to notice that, due to the characteristic property of neces-
sity measures, i.e., N(p ∧ q) = min(N(p), N(q)), a possibilis-
tic logic base can be easily put in clausal form.

Thus, we have seen that the semantics for the possi-
bilistic logic formula (p, β) amounts to rank-order inter-
pretations according to the possibility distribution π{(p,β )},
where π{(p,β )}(ω) = 1 if ω � p (i.e., ω makes p True) and
π{(p,β )}(ω) = 1 − β if ω is an interpretation that makes p
False (i.e., ω �� p). Going back to possibilistic FDs, interpre-
tations now refer to pairs of tuples, but one may have a similar
construct. The counterpart of equivalence (10) can be stated in
the following way:

�r({A1 ,. . .,Ak}→B, β)⇔∀t,t′∈ r∗,�π{t , t ′}

(¬A′
1 ∨ · · · ∨ ¬A′

k ∨ B′, β) (11)

where r denotes a possibilistic database (in the sense of this pa-
per), and r∗ is the same database without the levels. The notation
�π{t , t ′} in (11) reminds us that the semantics of a possibilistic
propositional logic base is no longer in terms of truth assignment
as in propositional logic, but in terms of a possibility distribution
induced by the possible failure of the certainty-qualified propo-
sitions in the base, as recalled above; the index {t, t′} points out
that the semantics of propositional variables pertains to pairs of
tuples here. Thus, the possibility distribution π{t,t ′} over logical
interpretations accounts for the possible failure of the FD in the
possibilistic database. Indeed, the distribution π{t,t ′} is defined
in the following way:
1) π{t,t ′}(ω∗

{t,t ′}) = min(α, α′), with c(t) = α, c(t′) = α′, if
(t, t′) violates {A1 , . . . , Ak} → B in rmin(α,α ′) .

2) π{t,t ′}(ω∗
{t,t ′})=0, if (t, t′) satisfies {A1 ,. . ., Ak}→B in r∗.

3) π{t,t ′}(ω) = 1 for all ω �= ω∗
{t,t ′}.

Here, the interpretations ω are the ones induced by the literals
A′

1 , . . . , A
′
k , B′ (where A′

i is True iff t.Ai = t′.Ai , and B′ is
True iff t.B = t′.B), and ω∗

{t,t ′} is the particular interpretation
A′

1 . . . A′
k¬B′ (where A′

1 · · ·A′
k are True and B′ is False)

that falsifies ¬A′
1 ∨ · · · ∨ ¬A′

k ∨ B′.
Proof of (11): Let ϕ = {A1 ,. . ., Ak} → B, and

ϕ′ = ¬A′
1 ∨· · ·∨ ¬A′

k ∨ B′. When (t, t′) violates ϕ it
means that min(α, α′) ≤ 1 − β assuming �r (ϕ, β). Since
π{(ϕ ′,β )}(ω{t,t ′}) = 1 − β and π{(ϕ ′,β )}(ω) = 1 for all ω �=
ω{t,t ′}, it is clear that we have ∀ω, π{t,t ′}(ω) ≤ π{(ϕ ′,β )}(ω).
Conversely, if this later inequality holds, there cannot exist t, t′

such that min(α, α′) > 1 − β, and thus, Certr (ϕ) ≥ β, i.e.,
�r (ϕ, β). Q.E.D.

The above result indicates that Horn clauses in possibilistic
propositional logic are the counterparts of possibilistic FDs, just
as Horn clauses in Boolean propositional logic are the counter-
parts of FDs.

V. RELATED WORK

The literature on FFDs is quite abundant. It is not the place
here to survey it in detail, and some overview papers exist [2],
[3], [23] for the first decade of literature on the topic. We first
briefly mention the main existing types of FFDs and then com-
pare in detail the proposed approach to a somewhat similar
proposal, which originates from a different perspective. In the
second part of this section, we discuss FDs in the context of
the possible world semantics of another type of possibilistic
databases.

A. Fuzzy Functional Dependencies

FFDs may refer to a quite large variety of situations. First, we
may consider classical databases (where one mines FDs with
satisfaction degrees [24], or fuzzy approximate dependencies
[25]), or databases with precise attribute values but weighted
tuples, or databases with fuzzy attribute values, or still fuzzy
similarity-based relational databases (moreover, the database
may have null values [26]). Then, we may either study classical
FDs on weighted tuple databases or on fuzzy attribute value
databases [27] or even fuzzy values with imprecise membership
functions [28], or we may consider FFDs on classical databases
[29] as well as on more general databases allowing for weighted
tuples, fuzzy attribute values, or fuzzy values defined by means
of fuzzy similarity relations [30]–[41]. For instance, the authors
in [36] use fuzzy closeness relations between ill-known attribute
values represented by possibility distributions and relate close-
ness degrees in the condition part of the FD’s to closeness de-
grees in their conclusion part by means of Gödel implication
(i.e., a →G b = 1 if a ≤ b, and a →G b = b otherwise). Such a
generalized view of an FD X → Y may express not only that
equal Y -values follow from equal X-values, but also that close
Y -values follow from close X-values, for different closeness
levels. Such a concern, discussed in [2], has nothing to do with
the possibilistic FD’s discussed here.

FFDs have been also considered in relation with a fuzzy
Entity-Relationship model [42]. FFDs may be stronger or
weaker than classical FDs depending on whether they are adding
further constraints to the one conveyed by a classical FD (such
as ordered FDs that agree with orderings existing in attribute
domains [43], or gradual FDs [44]), or whether they weaken the
constraint associated with a classical FD. Clearly, all these dif-
ferent options may serve different goals [2], which may depart
from the role of classical FDs for database design in classical
databases (such as data summarization [45], building of linguis-
tic summaries [46], or a Bayesian network [47]).

However, in this short note, we are not dealing with any FFDs
of any kind. The proposal made here is motivated by the idea
that FDs may fail to hold in the presence of some tuples in which
we have not full confidence. This might be related to the idea
of partial FDs [48], where FDs hold up to exceptions whose
number may be quantified. However, here, we take advantage



of the confidence levels of the tuples for accommodating the
exceptions. There has been another proposal made more than
two decades ago, by Kiss [4] for dealing with classical FDs in a
weighted tuple database, viewed as a fuzzy relation r. The author
computes the degree of truth with which an FD X → Y holds,
in the following way (where μ denotes membership functions):

Truth(X → Y ) = min
{t,t ′}

(min(μr (t), μr (t′), μ=(t.X, t′.X))

⇒L μ=(t.Y, t′.Y )),

where μ= denotes the exact equality relation, and ⇒L is
Łukasiewicz implication. An easy computation leads to

Truth(X → Y ) = 1 − sup
t,t ′:t.X =t.X and t.Y �=t ′.Y

min(μr (t), μr (t′)).

Reorganizing the weighted tuples into layers of decreasing de-
grees, we see that the above formula coincides with our defini-
tion of Certr (X → Y ), and indeed, X → Y holds in any level
cut rα of r such that α > 1 − Truth(X → Y ). However, this
simple multiple-valued logic view has no clear interpretation
from an uncertainty modeling point of view, while a possible
database world perspective also enables us to get a possibilistic
logic counterpart. Moreover, interestingly enough, the author
wrote about his proposal some years after: “The so-defined
fuzzy relations can be handled mathematically well, but they
have less practical importance” [49]. On the point of usefulness,
we disagree with this view. Indeed, just as possibilistic logic is
a valuable extension of propositional logic, one may expect that
certainty-based FDs with a layer-based view of databases can
help to control the normalization of the decomposition process
of uncertain relations.

B. Functional Dependencies in Possibilistic Databases.
Discussing the Meaning of the Levels

In this short note, we have emphasized the relationship be-
tween the levels attached to the tuples and the associated possi-
bility distribution over possible database worlds. Several authors
have pointed out the interest of seeing a possibilistic database as
a set of classical databases associated with possibility degrees.
When the possibilistic database is a database where attribute val-
ues are fuzzy (i.e., for each tuple and each attribute, we have a
possibility distribution restricting the possible values), the possi-
bility degrees associated with database worlds can be computed
from the possibility degrees attached to the possible attribute
values chosen for building each classical database compatible
with the possibilistic database. One may then precisely define
the possibility degree and the necessity degree with which a
particular FD holds in the possibilistic database [50].

As can be seen, we have not used here this view of a pos-
sibilistic database. However, let us consider the particular case
where all the attribute values of each tuple t would be precise
but uncertain, with the same certainty level βt , which would
correspond to particular possibility distributions equal to 1 for
the precise value, and equal to 1 − βt everywhere else. Then,
the database would contain only certainty-qualified values in
the sense studied in [51] and [52]. Since here the certainty of

all the attribute values is the same for a given tuple, one can
associate this certainty level to the whole tuple (without losing
any information), in agreement with the min-decomposability
of necessity measures. Thus, what is obtained looks a bit like the
possibilistic database considered in this note, except that tuples
are now associated with certainty levels rather with possibility
levels. Therefore, one may wonder, if an approach similar to the
one presented here, but with certainty levels, would not be inter-
esting as well. The answer is negative. This is because as soon
as an FD is violated in r∗ (the database without the certainty
levels here), there would be a fully possible world where the
FD is violated, and then, the FD would have no certainty, and
one cannot reason in a possibilistic logic manner with FDs that
are just possible to some extent. Besides, if we only consider
relations r where the FDs are not violated in r∗, we would be
in a position to associate a certainty level with the FDs, but
it would always be the same, namely the minimal value of all
the certainty values attached to tuples in r, which is not very
interesting. This confirms that the approach taken here with pos-
sibility levels is the right one if one does not want to trivialize
the approach.

VI. CONCLUDING REMARKS

This short note has introduced the notion of possibilistic FDs
based on the idea of a classical database, layered according to
possibility levels attached to tuples, and where the first layer is
the only certain one. We have shown that in such a case, the as-
sociated possibility distribution over possible database worlds is
uniquely determined by the possibility levels attached to tuples,
and vice versa. This has led us to associate certainty levels with
FDs in a natural way. Furthermore, this definition allows us to
extend the well-known propositional logic counterpart of FDs
in the setting of possibilistic logic.

The notion of possibilistic FDs proposed here seems partic-
ularly appealing for use in database practice. Indeed, the lay-
ered view of the database together with the different levels of
certainty of the FDs suggest their use in the control of the de-
composition process of relations in third normal forms, or in
Boyce–Codd normal forms, which can then be layered. The full
investigation of these issues, with the study of the weighted
counterpart of Armstrong’s system of axioms, is the topic of a
companion paper [53] and patent application [54]. Moreover,
possibilistic keys [55] have been investigated as an important
special case of possibilistic FDs and correspond to goal Horn
clauses via (11). Besides, rather than starting with a layered
database, and computing the certainty levels associated with
FDs, one may also think of doing the converse, namely starting
with a set of more or less certain FDs that should hold in a clas-
sical database, and looking for a stratification of the database
which agrees with the certainty levels of the FDs.
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