
HAL Id: hal-02495726
https://hal.science/hal-02495726

Submitted on 2 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximating lower-star persistence via 2D
combinatorial map simplification

Guillaume Damiand, Eduardo Paluzo-Hidalgo, Ryan Slechta, Rocio
Gonzalez-Diaz

To cite this version:
Guillaume Damiand, Eduardo Paluzo-Hidalgo, Ryan Slechta, Rocio Gonzalez-Diaz. Approximating
lower-star persistence via 2D combinatorial map simplification. Pattern Recognition Letters, 2020,
131, pp.314-321. �10.1016/j.patrec.2020.01.018�. �hal-02495726�

https://hal.science/hal-02495726
https://hal.archives-ouvertes.fr

Approximating Lower-Star Persistence via 2D Combinatorial Map Simplification

Guillaume Damianda,∗, Eduardo Paluzo-Hidalgob, Ryan Slechtac, Rocio Gonzalez-Diazb

aCNRS, LIRIS, UMR5205, Université de Lyon, 69622 Lyon, France
bUniversidad de Sevilla, Dpto. de Matemática Aplicada I, S-41012, Spain

cDepartment of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA

Abstract

Filtration simplification consists of simplifying a given filtration while simultaneously controlling the perturbation in the associated
persistence diagrams. In this paper, we propose a filtration simplification algorithm for orientable 2-dimensional (2D) manifolds
with or without boundary (meshes) represented by 2D combinatorial maps. Given a lower-star filtration of the mesh, faces are added
into contiguous clusters according to a “height” function and a parameter ε. Faces in the same cluster are merged into a single face,
resulting in a lower resolution mesh and a simpler filtration. We prove that the parameter ε bounds the perturbation in the original
persistence diagrams, and we provide experiments demonstrating the computational advantages of the simplification process.

Keywords: Persistent homology computation; 2D combinatorial map; mesh simplification.

1. Introduction

Topological data analysis (TDA) is a relatively new subfield
of computer science. One of the most useful tools in TDA is
persistent homology, which is an algebraic method for associ-
ating topological features with discrete data. In particular, per-
sistent homology requires two crucial components: (1) a cell
complex denoted K to structure the data; and (2) a filtration, or
a nested sequence of indexed subcomplexes where the initial
complex is the empty complex and the terminating complex is
K. See Dey et al. (1999); Bern et al. (1999); Carlsson (1999) for
initial reports and Edelsbrunner and Harer (2010) for a modern
exposition of the field.

Much work has been done to simplify complexes and filtra-
tions in order to quickly compute persistence. In Günther et al.
(2012), the authors proposed an efficient algorithm that com-
putes persistent homology for 3D gray-scale images by first
obtaining the Morse-Smale complex, which is much smaller
than the input complex K but contains all necessary informa-
tion. The authors first computed a combinatorial gradient vec-
tor field using an algorithm from Robins et al. (2011), which
induces a Morse-Smale complex. The persistence given by this
new complex is then exactly the same as that given by the input
complex. More recently, in Boissonnat et al. (2018), the authors
first simplify a filtration of an arbitrary simplicial complex with
“strong collapses”. The persistence associated with the reduced
filtration is then the same as the original one.

Unlike the previous approaches, we approximate the persis-
tence given by a filtration associated with some 2D mesh (i.e. a

∗Corresponding author: Tel.: +33-472-431-434; fax: +33-472-431-536;
Email addresses: guillaume.damiand@liris.cnrs.fr (Guillaume

Damiand), epaluzo@us.es (Eduardo Paluzo-Hidalgo),
slechta.3@osu.edu (Ryan Slechta), rogodi@us.es (Rocio
Gonzalez-Diaz)

piecewise-linear orientable 2D manifold with or without bound-
ary) within a user specified tolerance ε. This is accomplished
by merging faces in the mesh that meet a criterion. Other au-
thors have taken similar approaches. In Botnan and Spreemann
(2015), the authors gave two different approaches for approx-
imating Čech persistence by building an approximation to the
Čech filtration. In Dey and Slechta (2018), the authors devel-
oped a notion of (p, ε)-admissible, where upon contracting a
(p, ε)-admissible edge in some complex K, the difference in p-
dimensional persistence diagrams given by the initial and the
simplified filtration is bounded above by ε. We attain a simi-
lar goal: upon merging clusters of faces which meet our crite-
rion, called ε-permissible, the difference in the 0-, 1-, and 2-
dimensional persistence diagrams given by the lower-star filtra-
tion on the initial and “merged” meshes is bounded by ε.

In Damiand and Gonzalez-Diaz (2016), the authors proposed
an efficient algorithm for computing the homology of meshes
represented by 2D combinatorial maps, thereby avoiding the
time-consuming step of constructing and modifying boundaries
and coboundaries of cells. The process consists of merging
faces if they share a common edge, guaranteeing that the struc-
ture of the combinatorial map and the homology of the mesh is
preserved throughout the process.

This paper extends the work in Damiand and Gonzalez-Diaz
(2016) and Damiand and Gonzalez-Diaz (2019) by giving an
algorithm to approximate the lower-star persistent homology of
meshes within a specified tolerance ε. First, faces are grouped
into clusters according to the parameter ε. Faces in the same
cluster are subsequently merged. In Damiand and Gonzalez-
Diaz (2019), cluster membership was determined by a distance
between faces, and there was no theoretical guarantee that per-
sistence diagrams corresponding to the initial and simplified fil-
trations were “close.” In this paper, membership is determined
by the faces’ “height”, and as our main contribution, we provide
such a guarantee in Section 4. Experiments in Section 5 demon-

f3

1e

4e

5e

f2
2e

3e

f4

v2

v1

f1

v3

6e

7e

(a)

4

5

1
2

3

6

11

12

9

8

10

7

13

16

17

14

15

18

20

19

(b)

Figure 1: (a) Example of a mesh with 5 faces (the four faces incident to vertex
v1, and a “degenerate” face bounded twice by edge e7), 14 edges (e6 is dangling,
e7 is isolated, {e1, e2, e3, e4} are inner edges and the rest are border edges) and
12 vertices. (b) The corresponding 2-map has 20 darts. Images taken from
Damiand and Gonzalez-Diaz (2016).

strate the utility of our approach, and we conclude with a brief
discussion of possible directions for future work in Section 6.

2. Preliminary Notions

In this section we review combinatorial maps and persistent
homology.

2.1. 2D combinatorial maps
Roughly speaking, a 2D combinatorial map (Lienhardt

(1994); Damiand and Lienhardt (2014)), called a 2-map, is a
representation of a mesh (see Fig. 1). A mesh M is a 3-tuple
(V, E, F) where V is a set of vertices or 0-cells, E is a set of
edges or 1-cells, and F is a set of faces or 2-cells.

Cells are in relation together. Two cells are said to be incident
if one cell belongs to the boundary of the other. Two i-cells are
adjacent if there exists a (i−1)-cell incident to both. Two i-cells
are neighbors if they are both in the boundary of an (i + 1)-cell.

Some cells with specific properties are identified. An edge
is dangling if it is incident to a vertex which is incident to no
other edge. An edge is isolated if it has no adjacent edge. An
edge is inner if it is incident to two different faces. An edge is
a border if it is contained in the boundary of the mesh.

A 2D combinatorial map (or simply, a 2-map) is a 3-tuple
(D, β1, β2) where D is a finite set of darts and β1 and β2 are
one-to-one mappings D onto D, and β2 = β−1

2 .
Meshes can be represented by 2-maps as follows. A dart d

represents an orientation of an edge; β1(d) is the dart following
d and belonging to the same face as d; β2(d) denotes the oppo-
site orientation of d. In Fig. 1(b), darts 8 and 11 represent the
two possible orientations of a single edge, so β2(8) = 11 and
β2(11) = 8.

A dart belongs to exactly one vertex, one edge and one face,
and thus each cell of the mesh is described by a set of darts
in the 2-map. For example, in Fig. 1(b), vertex v1 is described
by the set of darts {2, 5, 8, 12}. Even isolated edges (like e7 in
Fig. 1(a)) belong to a degenerate face (which is why there are
5 faces in Fig. 1(a)). Inner, dangling, and isolated edges are
described always by two darts d1, d2. They can be detected in
a 2-map thanks to particular configurations of darts and β links
(for example an edge {d1, d2} is isolated if β1(β1(d1)) = d1).

A border edge is described by one dart d (like dart 16 in
Fig. 1(b)). In such a case, β2(d) = ∅ and β2 is a partial bijection.

2.2. Persistent Homology

In this subsection we review persistent homology, an impor-
tant tool used to assign structure to discrete data. We assume
that the reader has some knowledge of homology (for a refer-
ence, see Hatcher (2002)). For additional information on persis-
tent homology, we encourage the reader to consult Edelsbrun-
ner and Harer (2010).

Persistent homology captures the topological changes occur-
ring in a growing sequence of meshes M1 ⊆ M2 ⊆ . . . ⊆ Mn =

M, called a filtration. As one progresses through the filtration,
homology classes of different dimensions may appear (be born)
and disappear (die). Some homology classes may be present in
Mα as α→ ∞. Such classes give the homology of M.

Filtrations are frequently constructed on a mesh M via a real-
valued function h on the vertices of M. One such example is the
lower-star filtration {Mα}α∈R where a cell σ is in Mα if for all
vertices v which are incident to σ, h(v) ≤ α. Intuitively, this
filtration corresponds to taking sublevel sets of M under h.

If a homology class is born at Mi and dies entering M j then
j − i is the persistence of the homology class. If it is born at Mi

but never dies then its persistence is set to infinity. Intuitively,
homology classes with low persistence are topological noise
and the ones that persist correspond to features of the mesh.

The information obtained when computing persistent homol-
ogy of a filtration can be summarized by a set of persistence
diagrams, each of which is a multi-set of (birth, death) pairs
in the extended real plane, where each pair represents the birth
and death of a homology class. For a filtrationM := {Mα}α∈A,
there is a persistence diagram for each dimension p denoted
Dgmp(M). As expected, Dgmp(M) contains persistence infor-
mation for p-dimensional homology classes. In addition, all
points on the diagonal given by y = x are considered to be
in each persistence diagram with infinite multiplicity. This en-
ables comparing diagrams with a different number of homology
classes with positive persistence. One of the most popular tools
for comparing persistence diagrams is the bottleneck distance.

Definition 1. The bottleneck distance between two persistence
diagrams Dgmp(A) and Dgmp(B) is

db(Dgmp(A),Dgmp(B)) := inf
ψ∈Ψ

sup
a∈Dgmp(A)

||a − ψ(a)||∞

where Ψ is the set of bijections from Dgmp(A) to Dgm(B).

From now on, by abuse of notation, we use M to denote a
mesh, the 2-map representing the mesh, or the filtration con-
sidered on the mesh. In this paper, persistence diagrams are
computed via Algorithm 1, which is a modification of the in-
cremental algorithm given in Gonzalez-Diaz and Real (2005).
Given a mesh and an ordering of its cells, Algorithm 1 computes
a 3-tuple (M,H, f) where M is the given mesh represented by a
2-map; H is the set of surviving cells; and f is a map from the
k-cells in M to a sum of surviving cells. For a k-cell σ, ∂(σ)
denotes the set of (k − 1)-cells in its boundary. Algorithm 1
guarantees that the set of all the surviving k-cells (for a fixed
k), together with the disjoint union of sets operation +, forms
the group Ck(H) which is isomorphic to Hk(M). In addition,

2

Algorithm 1: Computing persistent homology (Algo-
rithm 2 of Gonzalez-Diaz and Real (2005)).
Input: An ordering of the cells of M: {σ1, . . . , σm}.
Output: Persistent homology of M with respect to such
ordering.

Initialize H ← ∅ and f (σi)← 0, for 1 ≤ i ≤ m.
for i = 1 to m do

if f∂(σi) = 0 then
f (σi)← σi;
H ← H ∪ {σi} (a new homology class was born);

if f∂(σi) , 0 then
Let σ j ∈ f∂(σi), j = max{index(µ) : µ ∈ f∂(σi)};
H ← H \ {σ j} (an old homology class died);
foreach x ∈ M such that σ j ∈ f (x) do

f (x)← f (x) + f∂(σi).

the map f : Ck(M) → Ck(H) satisfies the property that if
a, b ∈ Ck(M) are two homologous k-cycles then f (a) = f (b).

Let Mσi denote the set of cells {σ1, . . . , σi} considered in the
ith step of Algorithm 1. Note that σi belongs to a k-cycle c in
Ck(Mσi) if and only if f ◦∂(σi) = 0. Consequently, if f ◦∂(σi) =

0 then a new homology class was born (represented by c) and
σi is added to H. Otherwise, if f ◦ ∂(σi) , 0, then a homology
class died, and an element of f ◦ ∂(σ) ⊆ H is removed from H.
The element removed from H is the “youngest” one: argmax{
index(µ) : µ ∈ f ◦ ∂(σi) }, where index(µ) denotes the position
of the cell µ in the ordered list of cells {σ1, . . . , σm}.

The authors in Gonzalez-Diaz et al. (2011) subsequently es-
tablished a correspondence between the incremental algorithm
for computing AT-models given in Gonzalez-Diaz and Real
(2005) and the one for computing persistent homology in Edels-
brunner and Harer (2010). The complexity of Algorithm 1 is
O(m3), m being the number of cells in M.

3. Approximating Persistence

We now move to describing our procedure for approximating
the persistence diagram of the lower-star filtration of a mesh M.
The procedure follows three main steps: (1) simplification of
the 2-map according to a parameter ε; (2) computation of the
lower-star filtration of the simplified mesh; (3) computation of
persistent homology of the given filtration.

In step 1, we simplify the input 2-map by merging faces.
When two faces are merged, the number of cells in the 2-map is
reduced, and hence the lower-star filtration corresponding to the
reduced 2-map contains fewer cells. By merging several faces,
we hope to drastically reduce the number of cells in the reduced
filtration to accelerate the runtime for computing persistence in
step 3. Note that since the initial and reduced filtrations are dif-
ferent, the persistence is almost certainly different. To ensure
that the bottleneck distance between persistence diagrams cor-
responding to the initial and reduced filtrations is within a user
specified tolerance ε, we will require merged faces to satisfy a
particular condition.

We pay particular attention to step 1. In this step, the 2-map is
simplified by dispatching the faces into clusters subject to some
constraints according to the parameter ε. Note that since h is
only defined on the vertex set of M, the index at which a face
enters the lower-star filtration is precisely the maximum height
value of a constituent vertex. Hence, for face σ, we use the
notation maxh(σ) := max{h(v) | v is a vertex of σ} to denote the
height, while minh(σ) is defined as expected. We will ensure
that all clusters of size greater than 1 are ε-permissible.

Definition 2. A cluster of faces C = {σ1, . . . , σm} is ε-
permissible if maxh(C) − minh(C) ≤ ε where maxh(C) =

maxσ∈C{maxh(σ)} (analogously for minh).

Algorithm 2: Finding ε-permissible clusters
Input: A 2-map M; a parameter ε
Output: A set of ε-permissible clusters Λ = {C1, . . . ,Cn}.

k ← 1;
foreach face σ of M not yet assigned in a cluster do

add a new cluster Ck to Λ;
add σ into Ck;
Τ← all faces adjacent to σ;
while Τ is non empty do

τ← one face in Τ;
remove τ from Τ;
if τ is not yet assigned in a cluster and
max{maxh(τ),maxh(Ck)} −
min{minh(τ),minh(Ck)} ≤ ε then

add τ in Ck;
add all faces adjacent to τ into Τ;

k ← k + 1;

We partition M into ε-permissible clusters via Algorithm 2.
The first face of each cluster is chosen arbitrarily, and the
rest are added using neighborhood relations satisfying ε-
permissibility. If σ is not yet assigned into a cluster, we cre-
ate a new cluster Ck and assign σ to Ck. Then, while Ck is ε-
permissible, Ck is grown by progressively adding faces which
are adjacent to the cluster. Each cluster is associated with a
value corresponding to the minimum minh of all faces in the
cluster and a value corresponding to the maximum maxh of all
faces in the cluster, which makes it easy to check if adding a
new face would violate the ε-permissible condition.

We repeat this process until each face is assigned into a clus-
ter. After dispatching all of the faces to clusters, we apply Al-
gorithm 3 which simplifies the 2-map by merging each clus-
ter. The simplification process is depicted in Fig. 2. Critically,
the result of merging faces via Algorithm 3 always results in
a topological disk with a connected boundary. The complexity
of Algorithm 3 is O(nα(n)), where n being the number of darts
in the 2-map and α(n) is the slow growing inverse Ackermann
function (cf. Damiand et al. (2006); Damiand and Gonzalez-
Diaz (2016) for more details). Note that since α(n) ≤ 5 for all
practical purposes, Algorithm 3 is functionally linear.

Once the mesh is simplified, the only remaining steps are
3

f1

1e

f2

2e

f3

3e

(a) (b)

(c) (d)

Figure 2: (a) A cluster composed of three faces with three highlighted inner
edges (e1, e2, and e3). (b) The corresponding combinatorial map. (c) The inner
edges e1 has been removed. (d) The inner edge e2 has been removed. In this
last case, e3 is no longer an inner edge, and hence is not removed by cluster
merging.

Algorithm 3: Simplification of a cluster.
Input: A 2-map K representing the cluster.
Output: The simplified 2-map corresponding to K.

foreach edge e of K do
if e is an inner edge then remove e;
else

while e is dangling do
e′ ← one edge adjacent to e;
remove e; e← e′.

to compute the lower-star filtration of the simplified mesh, and
then to compute the persistent homology using Algorithm 1.

The complexity of the whole process is O(n + O(m3)), n be-
ing the number of darts of the given 2-map, and m being the
number of cells in the simplified 2-map. This shows the inter-
est of simplifying the 2-map before computing the persistent
homology.

4. Persistence Diagram Stability

Let M be a polygonal mesh represented as a 2-map, and
let M′ denote the mesh obtained by merging clusters as ex-
plained in Section 3. In this section, we move to showing
that merging ε-permissible clusters bounds the perturbation in
the persistence diagrams associated with the lower-star filtra-
tion. Throughout this section, we will use Dgmp(M) to denote
the p-dimensional persistence diagram given by the lower-star
filtration of M. We will also use the notation Mα to denote
{σ ∈ M | maxh(σ) ≤ α}. In the interest of simplicity, we abuse
notation and do not distinguish between vertices in M and M′.
If v is a vertex in M′, then there is a natural corresponding ver-
tex in M. We will use v to refer to both of these vertices. Like-
wise for edges and faces. In addition, we will assume that there
is a total order≺ on the simplices in M which respects the height
function h and dimension. That is, for σ, τ ∈ M, if h(σ) < h(τ),
then σ ≺ τ. Similarly, if h(σ) = h(τ) and dim(σ) < dim(τ),
then σ ≺ τ. Hence, for each set of simplices in M, there exists
a unique minimal simplex. This total order allows us to con-
sider all those simplices in M which precede simplex σ under
≺. We denote such a set as M≺σ.

Lemma 1. Let u, v ∈ M be vertices which are also in M′, where
M′ is obtained by merging a collection of ε-permissible clus-
ters. If u and v are in the same connected component in Ma,
then u and v are in the same connected component in M′a+ε .

Proof. Note that clusters are merged into a single face which is
homeomorphic to a disk. Hence, if u and v are connected in Ma

by a path of edges which includes edges that are removed by
cluster merging, then the segment of edges between two ver-
tices on the boundary of a cluster can be replaced by instead
traversing the boundary of the cluster. If w is a vertex removed
by cluster merging and which is also the face of an edge that
connected u and v, then all edges e on the boundary of the clus-
ter containing w must have height h(e) ≤ h(w) + ε ≤ a + ε.
Hence, there is a path between u and v in M′a+ε .

Theorem 1. If M′ is obtained from M by merging a collection
of ε-permissible clusters, then db(Dgm0(M),Dgm0(M′)) ≤ ε.

Proof. We proceed by constructing a matching γ :
Dgm0(M) → Dgm0(M′). Consider (b, d) ∈ Dgm0(M). The
point (b, d) corresponds to the lifetime of some homology class
created by vertex v ∈ M. We use the notation [v]M to refer to
the set of vertices in M which are in the same connected com-
ponent as v prior to the introduction of the edge which kills
the homology class created by v at index d (if there is such an
edge). If d = ∞, then [v]M refers to those vertices in the same

4

w r3 v’v r1r2r u u’
w r3 v’ r1r2 u’

Md+

M’d+
Figure 3: Let (b, d) correspond to the lifetime of [v]M , which in Md is combined
in the same class as u, where h(u) ≤ h(v). We assume that this happens upon
the introduction of vertex r, where d = h(r) < h(r1), h(r2), h(r3), and by ε-
permissibility, h(r1), h(r2) ≤ h(r) + ε. In addition, we let h(w) < h(v). In M′,
v′ and u′ (resp. v′ and w) are in the same connected component following the
introduction of the vertex r1 (resp. r3). Hence, if h(r1) < h(r3), and h(u′) <
h(v′), then γ(b, d) = (h(v′), h(r1)). Similarly, if h(r1) < h(r3) but h(v′) < h(u′),
then γ(b, d) = (h(u′), h(r1)). If h(r3) < h(r1) and h(w) < h(v′), then [v′]M′ is
absorbed by [w]M′ and not [u′]M′ . Then, γ(b, d) = (h(v′), h(r3)). In all cases,
||γ(b, d) − (b, d)||∞ ≤ ε.

connected component as v in M. For v′ ∈ M′, we define [v′]M′

in an analogous way.
In order to define γ, we consider two cases. First, we assume

that d is finite. In this case, the homology class [v]M dies when
an edge e is introduced to Md such that the vertices v and u are in
the same connected component, where u ≺ v. We associate with
v, u a unique vertex in M′, denoted v′, u′. In particular, we let v′

denote the minimal vertex in [v]M ∩ M′ under ≺. If there is no
such v′, then [v]M only includes vertices which are removed via
face merging. Hence, [v]M dies when an edge e = {w0,w1} joins
the connected component containing v with the one containing
u. In particular, both w0 and w1 must be in the cluster containing
v, as if w1 is not in the cluster, then w0 must be on the boundary
of the cluster containing v which would imply that v′ exists.
Ergo, by ε-permissibility, h(v) = b ≤ h(e) = d ≤ h(v) + ε.
Hence, we let γ(b, d) =

(
b+d

2 , b+d
2

)
, which satisfies ||γ(b, d) −

(b, d)||∞ = max
{∣∣∣ b−d

2 − b
∣∣∣ , ∣∣∣d − b−d

2

∣∣∣} = max
{∣∣∣−b−d

2

∣∣∣ , ∣∣∣ d−b
2

∣∣∣} =(
d−b

2

)
≤ ε/2.

We let u′ be the minimal element in the set [u]M ∩M≺e ∩M′.
If u′ does not exist, then when [u]M merges with [v]M , the con-
nected component [u]M contains only vertices which are re-
moved during cluster merging. By identical reasoning as in the
case where v′ was undefined, the connected component [v]M

must contain a vertex w which is in the same cluster as u.
Hence, as [u]M is joined to [v]M upon the introduction of an
edge e in Md, where e is in the cluster containing u, it follows
that h(u) ≤ h(e) ≤ h(u) + ε by ε-permissibility. Therefore, as
h(v) ≤ h(e), it follows that h(e) − h(v) = d − b ≤ ε. Hence, we
let γ(b, d) =

(
b+d

2 , b+d
2

)
, which we have already shown to satisfy

||γ(b, d) − (b, d)||∞ ≤ ε/2.
Hence, we assume that both u′ and v′ exist. By Lemma 1,

the vertices u′, v′ are in the same connected component in M′d′ ,
d′ ≤ d + ε. It follows that d ≤ d′, else u and v would be in the

same connected component prior to Md. Note that u′, v′ satisfy
h(u) ≤ h(u′) ≤ h(u) + ε and h(v) ≤ h(v′) ≤ h(v) + ε. This
is because if u is not removed, then u′ = u and h(u) = h(u′).
If u is removed and u′ exists, then the connected component
containing u prior to joining with v must contain some vertex
w on the boundary of the merged cluster, which satisfies h(u) ≤
h(w) ≤ h(u) + ε, and since h(u) ≤ h(u′) ≤ h(w), it follows that
h(u) ≤ h(u′) ≤ h(u) + ε. The same reasoning applies to v, v′.

Now, we consider two subcases. First, we assume that the
class [v′]M′ merges into some other class [w]M′ in subcomplex
M′D where d ≤ D ≤ d′ ≤ d + ε. In such a case, we let γ(b, d) =

(h(v′),D). Since b ≤ h(v′) ≤ b + ε, and d ≤ D ≤ d + ε, it
follows that ||γ(b, d) − (b, d)||∞ ≤ ε. Second, we assume that
there exists no such D. However, in M′d′ , v′ and u′ are in the
same connected component, so it follows that [u′]M′ merges
into [v′]M′ . Since by assumption h(u) ≤ h(v) and h(v′) ≤ h(u′),
and we have shown that h(u) ≤ h(u′) ≤ h(u) + ε, it follows that
h(u) ≤ h(v) ≤ h(v′) ≤ h(u′) ≤ h(u) + ε, which implies that
0 ≤ h(u′) − h(v) ≤ ε. Hence, we let γ(b, d) = (h(u′), d′) which
satisfies ||γ(b, d) − (b, d)||∞ ≤ ε. These subcases are illustrated
in Fig. 3.

In the second case, we assume d = ∞. In M′, it follows that
v′ creates a class [v′]M′ with lifetime (h(v′),∞). We let γ(b, d) =

(h(v′),∞). We have established that either h(v′) = h(v) or 0 ≤
h(v′)−h(v) ≤ ε. If we have the former, then ||γ(b, d)−(b, d)||∞ =

0. In the event of the later, it follows that ||γ(b, d)− (b, d)||∞ ≤ ε.
We now prove that γ is a matching. When d is finite, if

γ(b1, d1) = γ(b2, d2) = (b′, d′), then (b′, d′) has multiplicity
at least 2. Otherwise, a single class was killed twice, which is
a contradiction. In the case where d is infinite, each connected
component in M corresponds to a unique connected component
in M′, so γ must be one-to-one.

To see that γ is onto, first note that every point with infi-
nite persistence is the image of a point with infinite persis-
tence, as cluster merging does not destroy connected compo-
nents. Second, all (b′, d′) ∈ M′, d′ < ∞ correspond to the life-
time of some class created by vertex v′ denoted [v′]M′ which is
killed when it merges with some class created by u′ denoted as
[u′]M′ . Likewise, [u′]M and [v′]M must merge in M at subcom-
plex Md. Hence, if [u′]M is the class that dies when merging
with [v′]M , and (b, d) corresponds to the lifetime of [u′]M , then
γ(b, d) = (b′, d′). Similarly for if [v′]M dies. Hence, γ is onto.

Thus, γ is a matching where ||γ(b, d) − (b, d)||∞ ≤ ε for all
(b, d) ∈ Dgm0(M). Ergo, db(Dgm0(M),Dgm0(M′)) ≤ ε.

Although we could have attempted to give a proof using clas-
sical results from Cohen-Steiner et al. (2007); Chazal et al.
(2016) related to stability of persistence diagrams, we preferred
to provide a constructive proof giving the explicit matching be-
tween the points in the respective diagrams.

Theorem 2. If M′ is obtained by merging a collection of ε-
permissible clusters, then db(Dgm1(M),Dgm1(M′)) ≤ ε.

Proof. Analogously to the proof of Theorem 1: if an edge e
creates a 1-cycle π =

∑
i ei, then we use [π]M to refer to the cy-

cle class containing π. As in the 0-dimensional case, π′ refers
5

#0-cells #1-cells #2-cells #H0 #H1 #H2
Blade 882,954 2,648,082 1,765,388 295 330 295
DrumDancer 1,335,436 4,006,302 2,670,868 1 0 1
Neptune 2,003,932 6,011,808 4,007,872 1 6 1
HappyBuddha 543,652 1,631,574 1,087,716 1 208 1
Iphigenia 351,750 1,055,268 703,512 1 8 1
ThaiStatue 4,999,996 15,000,000 10,000,000 1 6 1

Figure 4: Example of one mesh used in our experiments: the HappyBudda mesh. The table gives the number of i-cells, #i-cells, for the six meshes used, and the
number of Hi generators, #Hi, for i = 0, 1, 2.

to the representative cycle of [π]M that is created at the low-
est height value and for which none of the edges are removed
when clusters are merged. The matching γ is constructed in the
same way as the 0-dimensional case: the points corresponding
to those classes for which a representative cycle is contained en-
tirely in a cluster and for which the persistence is less than ε are
paired with the diagonal, points corresponding to those cycles
with lifetimes with infinite persistence are paired with canonical
choice, and points with finite persistence which do not satisfy
the first case are either paired with the diagonal or with the point
corresponding to [π′]M′ , or, in the event that [π′]M′ kills [ρ′]M′

where [ρ]M kills [π]M , then the point corresponding to [π]M is
paired with the point corresponding to [ρ′]M′ .

The only substantive difference is that in the 0-dimensional
case, if [u]M and [v]M merge in Md, then [u]M′ and [v]M′ merge
at Md′ where d′ satisfies d ≤ d′ ≤ d + ε. In the 1-dimensional
case, if [π]M and [ρ]M merge in Md, then [π′]M′ and [ρ′]M′

merge in M′d′ where d − ε ≤ d′ ≤ d, as merged faces take the
maximum value of the remaining vertices. But this still permits
||γ(b, d) − (b, d)||∞ ≤ ε. The function γ is then a matching by
the same reasoning.

Theorem 3. If M′ is obtained by merging a collection of ε-
permissible clusters, then db(Dgm2(M),Dgm2(M′)) ≤ ε.

Proof. This proof follows analogously to the proof of Theorem
1, except the only case that needs to be considered in when
d = ∞. Since cluster merging does not destroy 2-cycles or 2-
classes, then for each (b, d) ∈ Dgm2(M) there is a canonical
choice of a point (b′, d′) ∈ Dgm2(M′), where b − ε ≤ b′ ≤ b
and d = d′ = ∞. Hence, ||γ(b, d) − (b, d)||∞ ≤ ε.

5. Experiments

We have implemented our algorithm for lower-star filtration
simplification by using the CGAL implementation of combi-
natorial maps (see Damiand (2011)) and an additional layer,
called linear cell complex, which represents the geometry. All
experiments were run on an Intel R©i7-4790 CPU, 4 cores @
3.60GHz with 32 GB RAM. All the computation times given
here are averages of 10 consecutive runs on the same mesh.

(a) ε = 0.002. (b) ε = 0.02.

Figure 5: Effect of the ε parameter on the size of the different clusters for the
HappyBuddha mesh, zoomed in on the head.

5.1. 3D Meshes
In our first experiment, we tested our algorithm on six

meshes1, one of which is shown in Fig. 4. The sizes of
the meshes range between 703, 512 and 10, 000, 000 faces.
All these meshes have only one connected component, except
Blade which has 295 connected components because of many
small isolated closed meshes within the blade.

Our experiments are performed with various values of ε. For
each mesh, we computed the height of the mesh α (i.e. the max-
imal height minus the minimal one), and let ε = (Φ · α)/100,
Φ being a percentage (0 ≤ Φ ≤ 100). We start with Φ = 0.32,
and ran five experiments where, with each additional experi-
ment, Φ is doubled. We also computed the persistence diagrams
corresponding to the lower-star filtration induced by the height
value on the vertices of the original mesh (without simplifica-
tion). Note that as Φ increases, ε increases too. The average
number of faces in a single cluster increases and thus the com-
binatorial map becomes more and more simplified. This tends
to correspond to a rise in the bottleneck distance between the
persistence diagrams corresponding to the simplified mesh and
the original mesh, displayed in Table 1(a).

We can see an illustration of the effect of the ε parameter on
the size of the different clusters in Fig. 5. Data showing the
number of cells in the simplified mesh as Φ varies is displayed
in Fig. 6(a). As expected, increasing ε greatly affects mesh size.

The effect of ε on the computation time is illustrated in
Fig. 7(a), where our method for computing persistence based

1http://www-graphics.stanford.edu/data/3Dscanrep/

https://www.cc.gatech.edu/projects/large_models/

6

 64

 256

 1024

 4096

16,384

65,536

262,144

1,048,576

4,194,304

 0 1 2 3 4 5 6

N
u

m
b

e
r

o
f

c
e

ll
s

Φ

0-cells
1-cells
2-cells

(a)

1,100,000

1,625,000

3,250,000

6,500,000

13,000,000

26,000,000

 0 1 2 3 4 5 6

N
u

m
b

e
r

o
f

c
e

ll
s

Φ

0-cells
1-cells
2-cells

(b)

Figure 6: Number of vertices, edges and faces of the simplified 2-maps (in log2 scale) depending on the value of Φ. These numbers are average values for the six
meshes in (a), and for the six images in (b).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

0 0.32 0.64 1.28 2.56 5.12

T
im

e
 (

s
e

c
)

Φ

Filtration
Simplification

AT-model

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

0 0.32 0.64 1.28 2.56 5.12

T
im

e
 (

s
e

c
)

Φ

Filtration
Simplification

AT-model

(b)

Figure 7: Computation time (in seconds) of our method by using the lower-star filtration with increasing Φ values. For Φ = 0, lower-star filtration is used without
simplification step. The graph shows average values for the six meshes in (a), and for the six images in (b), and details time spent in the different parts of the
method: computation of the filtration, combinatorial map simplification and persistence computation by using AT-model. Filtration computes the height of each
cell (vertices, edges and face) and dispatches faces into clusters according to Φ. Simplification is the 2-map simplification, and AT-model is the persistent
homology computation, including sorting the cells.

(a) (b) (c)

Size #0-cells #1-cells #2-cells
Im1 1834 × 2000 3,668,000 10,996,333 7,328,334
Im2 2200 × 1313 2,888,600 8,658,775 5,770,176
Im3 3000 × 2000 6,000,000 17,990,001 11,990,002
Im4 3456 × 5184 17,915,904 53,730,433 35,814,530
Im5 5616 × 3744 21,026,304 63,060,193 42,033,890
Im6 1280 × 853 1,091,840 3,271,255 2,179,416

Figure 8: (a) One image used in our second experiments. (b) Its representation as mesh, with one color per cluster, for ε = 160, (c) and for ε = 320. The table gives
the size of the images (in pixels), the number of i-cells for the six meshes built from the images, #i-cells. The number of Hi generators is the same for all images,
H0=1, H1=0 and H2=0.

7

Table 1: Average of the bottleneck distance between the persistent diagrams
computed on: (1) the lower-star filtration, and (2) the lower-star filtration for
different values of Φ for each of the six meshes in (a), and for the six images in
(b).

(a)

Φ 0.32 0.64 1.28 2.56 5.12
ε 1.59 3.17 6.34 12.68 25.36

0-D 1.24 2.17 3.89 6.77 9.87
1-D 1.46 2.82 5.37 9.54 23.06

(b)

Φ 0.32 0.64 1.28 2.56 5.12
ε 1.97 3.93 7.87 15.74 31.47

0-D 0.00 2.57 7.28 14.56 27.41
1-D 0.00 2.57 7.28 14.14 26.13

on 2-map simplification is ran with different values of Φ. As
expected, computation time decreases while ε increases, as this
corresponds to a simpler mesh and thus a simpler filtration. We
can notice that for sufficiently large ε, computation time does
not decrease because all the time is taken by the computation of
the filtration and the simplification step.

The bottleneck distances between the persistence diagrams
corresponding to the lower-star filtration and the filtration ob-
tained when varying ε are given in Table 1(a). As expected, the
bottleneck distances are always smaller than ε.

5.2. 2D Images
For our second experiment, we used six grayscale images2

from Unsplash (https://unsplash.com/), one depicted in
Fig. 8, with size between 1280 × 853 and 5616 × 3744 pix-
els. For each image, we created a 2D mesh having one vertex
per pixel, its height value being the intensity of the pixel. This
transformation enables application of our algorithm for approx-
imating the persistent homology of 2D meshes to grayscale im-
ages. The number of cells in the simplified meshes obtained
from the images are given in Fig. 8.

We compared the persistent homology computation of the
six meshes for increasing values of Φ. The effect of ε on the
number of cells is illustrated in Fig. 6(b).

Like for experiments with meshes, we can observe in
Fig. 7(b) that computation time decreases while ε increases. We
obtain here a better speed-up compared to the experiment with
meshes. This comes from the numbers of cells which is much
larger for images than for meshes. In this case, simplifying the
2-map greatly reduces the numbers of cells and thus the com-
putation time spent in the AT-model computation.

Lastly, the bottleneck distances between the persistence di-
agrams corresponding to the lower-star filtration and the filtra-

2Images taken by C. Hu, D. Dobrila, J. Alexander, K. Toth, M. Asthoff and
T. Naccarato. Im1 is changyu-hu-4672-unsplash.jpg; Im2 is damjan-dobrila-
39542-unsplash.jpg; Im3 is jack-alexander-131176-unsplash.jpg; Im4 is kathy-
toth-31945-unsplash.jpg; Im5 is mark-asthoff-78328-unsplash.jpg and Im6 is
tony-naccarato-55-unsplash.jpg

tion obtained for the different Φ are given in Table 1(b). As
expected, the bottleneck distances are always smaller than ε.

6. Conclusion

We conclude with a brief discussion of future directions for
research. First, we plan to extend our work to non-orientable
manifolds by using the generalized maps package (the non-
orientable extension of combinatorial maps) of CGAL. We also
would like to define a parallel version of our method: the com-
binatorial map simplification was already defined in parallel in
Damiand and Gonzalez-Diaz (2016) but we need now to study
if it is possible to parallelize some parts of the AT-model com-
putation algorithm. Extension in nD could be given based on
the theoretical results for removal and contraction operations in
any dimension given in Damiand et al. (2012). Indeed, all basic
tools used in this work, combinatorial maps, removal / contrac-
tion operations and AT-model computation, are defined in any
dimension.

References

Bern, M.W., Eppstein, D., Agarwal, P.K., Amenta, N., Chew,
L.P., Dey, T.K., Dobkin, D.P., Edelsbrunner, H., Grimm,
C., Guibas, L.J., Harer, J., Hass, J., Hicks, A., Johnson,
C.K., Lerman, G., Letscher, D., Plassmann, P.E., Sedg-
wick, E., Snoeyink, J., Weeks, J., Yap, C., Zorin, D., 1999.
Emerging challenges in computational topology. CoRR
cs.CG/9909001.

Boissonnat, J.D., Pritam, S., Pareek, D., 2018. Strong Collapse
for Persistence, in: 26th Annual European Symposium on
Algorithms, pp. 67:1–67:13.

Botnan, M.B., Spreemann, G., 2015. Approximating persistent
homology in euclidean space through collapses. Applicable
Algebra in Engineering, Communication and Computing 26,
73–101.

Carlsson, G., 1999. Topology and data. Bulletin of the Ameri-
can Mathematical Society 46, 255–308.

Chazal, F., de Silva, V., Glisse, M., Oudot, S.Y., 2016. The
Structure and Stability of Persistence Modules. Springer
Briefs in Mathematics, Springer.

Cohen-Steiner, D., Edelsbrunner, H., Harer, J., 2007. Stability
of persistence diagrams. Discrete & Computational Geome-
try 37, 103–120.

Damiand, G., 2011. Combinatorial maps, in: CGAL User and
Reference Manual. 3.9 ed. http://www.cgal.org/Pkg/

CombinatorialMaps.

Damiand, G., Gonzalez-Diaz, R., 2016. Parallel homology
computation of meshes, in: Proc. of 6th Workshop on Com-
putational Topology in Image Context, Springer International
Publishing, Marseille, France. pp. 53–64.

8

Damiand, G., Gonzalez-Diaz, R., 2019. Persistent homol-
ogy computation using combinatorial map simplification,
in: Proc. of 7th International Workshop on Computational
Topology in Image Context (CTIC), Springer International
Publishing, Malaga, Spain. pp. 26–39.

Damiand, G., Gonzalez-Diaz, R., Peltier, S., 2012. Re-
moval operations in nD generalized maps for efficient
homology computation, in: Proc. of 4th Int. Workshop
on Computational Topology in Image Context, Springer
Berlin/Heidelberg, Bertinoro, Italy. pp. 20–29.

Damiand, G., Lienhardt, P., 2014. Combinatorial Maps: Effi-
cient Data Structures for Computer Graphics and Image Pro-
cessing. A K Peters/CRC Press.

Damiand, G., Peltier, S., Fuchs, L., 2006. Computing homol-
ogy for surfaces with generalized maps: Application to 3D
images, in: Proc. of 2nd Int. Symposium on Visual Comput-
ing, Springer Berlin/Heidelberg, Lake Tahoe, Nevada, USA.
pp. 235–244.

Dey, T.K., Edelsbrunner, H., Guha, S., 1999. Computational
topology, in: Advances in Discrete and Computational Ge-
ometry, American Mathematical Society. pp. 109–143.

Dey, T.K., Slechta, R., 2018. Filtration simplification for persis-
tent homology via edge contraction. CoRR abs/1810.04388.

Edelsbrunner, H., Harer, J., 2010. Computational Topology -
an Introduction. American Mathematical Society.

Gonzalez-Diaz, R., Ion, A., Jimenez, M.J., Poyatos, R.,
2011. Incremental-decremental algorithm for computing
AT-models and persistent homology, in: Proc. of Interna-
tional Conference Computer Analysis of Images and Pat-
terns, Seville, Spain, pp. 286–293.

Gonzalez-Diaz, R., Real, P., 2005. On the cohomology of 3d
digital images. Discrete Applied Mathematics 147, 245–263.

Günther, D., Reininghaus, J., Wagner, H., Hotz, I., 2012. Ef-
ficient computation of 3D Morse-Smale complexes and per-
sistent homology using discrete Morse theory. The Visual
Computer 28, 959–969.

Hatcher, A., 2002. Algebraic topology. Cambridge University
Press, Cambridge.

Lienhardt, P., 1994. N-Dimensional generalized combinatorial
maps and cellular quasi-manifolds. Inte. J. of Computational
Geometry and Applications 4, 275–324.

Robins, V., Wood, P., Sheppard, A., 2011. Theory and al-
gorithms for constructing discrete morse complexes from
grayscale digital images. IEEE Trans. Pattern Anal. Mach.
Intell. 33, 1646–1658.

9

