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We develop algorithms for energy minimization for kernels with singularities. This problem arises in dierent elds, most notably in the construction of space-lling sequences of points where singularity of kernels guarantees a strong repelling property between these points. Numerical algorithms are based on approximating singular kernels by non-singular ones, subsequent discretization and solving non-singular discrete problems. For approximating singular kernels, we approximate an underlying completely monotone (briey, CM) function with singularity by a bounded CM function with controlled accuracy. Theoretical properties of the suggested approximation are studied and some numerical results are shown.

1. Introduction: kernels and energies. This section introduces the main concepts and formulates the most important results required for the following sections. It mostly follows [START_REF] Pronzato | Bayesian quadrature, energy minimization and space-lling design[END_REF], where the reader may nd some proofs and more details. Subsection 1.12 discusses the motivation behind this research and describes the structure of the rest of the paper.

Main notation.

X : a compact subset of R d ; d ≥ 1.

• : the Euclidean norm. M : the set of nite signed Borel measures on X . M (q): the set of signed measures with total mass q, M (q) = {µ ∈ M : µ(X ) = q}. M + (1): the set of Borel probability measures on X . M + : the set of nite positive measures on X . K: a kernel; that is, a continuous symmetric function K : X × X → R ∪ {∞}; K is (uniformly) bounded if K(x, x) < ∞ for all x ∈ X ; K is singular if K(x, x) = +∞ for at least one x ∈ X . Further conditions on K will be specied in Section 1.2.

E K (ν), ν ∈ M : the energy of ν,

E K (ν) = X 2 K(x, x ) ν(dx) ν(dx ) . (1.1) 
M K : the set of measures with nite energy,

M K = {ν ∈ M : |E K (ν)| < +∞} . (1.2) 
P ν (x) = P ν,K (x): the potential of ν ∈ M at x,

P ν (x) = X K(x, x ) ν(dx ) , x ∈ X . (1.3) 
γ K (µ, ν): the MMD (Maximum-Mean Discrepancy) between measures µ, ν ∈ M ,

γ K (µ, ν) = E 1/2 K (ν -µ) = X 2 K(x, x ) (ν -µ)(dx) (ν -µ)(dx ) 1/2
. (1.4)
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(1.5) BF (Bernstein function): g : (0, ∞) → R + is a BF if g ∈ C ∞ (0, ∞) and g is CM; see [13, p.15]. 1.2. Kernels of interest. Denition 1.1. A kernel K is Strictly Positive Denite (SPD) on M if K is bounded and for all n ∈ N and all pairwise dierent x 1 , . . . , x n ∈ X , the matrix K n with elements {K n } i,j = K(x i , x j ) (i,j = 1, . . . , n) is positive denite. Denition 1.2. A kernel K is Integrally Strictly Positive Denite (ISPD) on M if E K (ν) > 0 for any nonzero measure ν ∈ M . Denition 1.3. A kernel K is Conditionally Integrally Strictly Positive Denite (CISPD) on M when it is ISPD on M (0); that is, when E K (ν) > 0 for all nonzero signed measures ν ∈ M such that ν(X ) = 0.

An ISPD kernel is CISPD. A bounded ISPD kernel is SPD and denes an RKHS (Reproducing Kernel Hilbert Space) H K . For CISPD kernels K, the energy E K (ν) can be negative. As for singular kernels K the energy E K (•) can be innite, we may have M K = M , where M K is dened in (1.2). If K is SPD, then M K = M and the potential P ν (x), see (1.3), is well dened and nite for any ν ∈ M and x ∈ X . However, there always exists ν ∈ M K such that P ν (x 0 ) is innite for some x 0 ∈ X when K is singular. A bounded kernel is CISPD if and only if it is characteristic; that is, it denes a metric on M + (1).

Examples of kernels.

Example 1.1 (Kernels constructed through CM functions). We consider two general ways of constructing kernels K(•, •) via CM functions.

Let f (•) be a non-constant completely monotone (CM) function, see (1.5).

(a) For x, x ∈ R, dene

K(x, x ) = f (|x -x |) . (1.6) 
As follows from Theorem 2.4 of Section 2.1, if f (•) is CM and also belongs to L 1 ((0, ∞)) then the kernel (1.6) is ISPD. (b) For x, x ∈ R d , dene K(x, x ) = f ( xx 2 ) .

(1.7)

The connection between K being SPD and f being CM is claried in Theorem 2.3 of Section 2.1.

In (1.6) and (1.7), the values of f and its derivatives at 0 may not be dened; in these cases, the function f is singular at 0 and hence the corresponding kernels K are singular. Examples of univariate CM functions with singularity at 0 are provided in Section 3.4.

Example 1.2 (Some important bounded ISPD kernels).

-The squared exponential kernel

K β (x, x ) = exp(-β x -x 2 ), β > 0.
-The isotropic Matérn kernels K κ,β with shape parameter κ, in particular

K 3/2,β (x, x ) = (1 + √ 3β x -x ) exp(- √ 3β x -x ) (Matérn 3/2)
and the exponential kernel

K 1/2,β (x, x ) = exp(-β x -x ), β > 0.
-The generalized multiquadric kernel

K α, (x, x ) = ( x -x 2 + ) -α/2 , > 0 , α > 0 .
Example 1.3 (Bounded CISPD kernels). The kernels dened by

K (α) (x, x ) = -x -x α , α > 0 , (1.8) 
are CISPD for α ∈ (0, 2), see [START_REF] Székely | Energy statistics: A class of statistics based on distances[END_REF]; the related distance-induced kernels

K (α) (x, x ) = x α + x α -x -x α , α > 0 ,
are CISPD for α ∈ (0, 2), but they are not SPD (in particular, K (α) (0, 0) = 0). In [START_REF] Székely | Energy statistics: A class of statistics based on distances[END_REF], E K (α) is called energy distance for α = 1 and generalized energy distance for general α ∈ (0, 2]. For α = 1 and

X = [0, 1] the kernel K(x, x ) = 1 -K (1) (x, x ) = 1 -|x -x | is ISPD.
Example 1.4 (Singular ISPD kernels). The Riesz kernels

K (α) (x, x ) = x -x -α , α > 0 , (1.9) 
are ISPD when

0 < α < d. When α ≥ d, E K (α) (µ) is innite for any µ ∈ M .
Example 1.5 (Singular CISPD kernel). The logarithmic kernel

K (0) (x, x ) = -log x -x (1.10)
is sometimes considered as a member of the Riesz family of kernels (1.9), as α → 0.

Since K (0) (x, x ) tends to -∞ when xx tends to +∞, it can only be used in the case when X is compact. The kernel K (0) is CISPD, see [5, p. 80].

1.4. Strict convexity of energy. Lemma 1.1.

(a) K is ISPD if and only if M K is convex and E K (•) is strictly convex on M K . (b) Assume that K is bounded. Then, K is CISPD if and only if E K (•) is strictly convex on M (1).
For a proof, see Lemmas 3.1 and 3.2 in [START_REF] Pronzato | Bayesian quadrature, energy minimization and space-lling design[END_REF]. Lemma 1.1 does not cover the case of singular CISPD kernels where a similar result can be proved. For instance, in view of [START_REF] Sa | Logarithmic Potentials with External Fields[END_REF]Sect. I.3], the energy E K (•) is strictly convex on M (1) ∩ M K for the logarithmic kernel (1.10).

In the remaining part of the paper we assume that K is such that E K (•) is strictly convex on M (1) ∩ M K , which is true in particular under the assumptions of Lemma 1.1.

1.5. MMD as a Bregman divergence and a Jensen dierence. For µ, ν ∈ M K , denote by F K (µ; ν) the directional derivative of E K (•) at µ in the direction ν:

F K (µ; ν) = lim α→0 + E K [(1 -α)µ + αν] -E K (µ)
α .

Straightforward calculation gives

F K (µ; ν) = 2 X 2 K(x, x ) ν(dx) µ(dx ) -E K (µ) . (1.11)
The strict convexity of

E K (•) implies that E K (ν) ≥ E K (µ) + F K (µ, ν) for any µ, ν ∈ M K , with equality if and only if ν = µ.
The Bregman divergence (associated with the functional E K (•)) between measures in M K and between probability measures in M + (1) ∩ M K , is

B K (µ, ν) = E K (ν) -[E K (µ) + F K (µ, ν)] ;
see [START_REF] Pronzato | Bregman divergences based on optimal design criteria and simplicial measures of dispersion[END_REF][START_REF] Rao | Cross entropy, dissimilarity measures and characterizations of quadratic entropy[END_REF] for a general denition of Bregman divergence. By direct calculation,

B K (µ, ν) = B K (ν, µ) = E K (ν -µ), which allows us to dene the squared MMD γ 2 K (µ, ν) as the Bregman divergence B K (µ, ν).
The Jensen dierence (associated with

E K (•)) is ∆ J (µ, ν) = (1/2)[E K (µ) + E K (ν)] -E K [(µ + ν)/2] ,
see [START_REF] Rao | Diversity and dissimilarity coecients: a unied approach[END_REF] for a general denition of Jensen dierence. Direct calculation gives

γ 2 K (µ, ν) = E K (ν -µ) = 4 ∆ J (µ, ν) . When E K (•) is strictly convex on M (1) ∩ M K , γ K (•,
•) denes a proper metric on the space of signed measures M (1) ∩ M K and on the space of probability measures M + (1)∩M K . One may refer to [START_REF] Pronzato | Bayesian quadrature, energy minimization and space-lling design[END_REF] and the references therein for other interpretations of the MMD γ K (•, •).

1.6. Minimum-energy probability measure. From (1.3) and (1.11), the potential P µ (x) associated with µ at x ∈ X , can be written as

P µ (x) = 1 2 F K (µ; δ x ) + E K (µ) , (1.12) 
where δ x is the delta-measure concentrated at x.

Theorem 1.1. [START_REF] Pronzato | Bayesian quadrature, energy minimization and space-lling design[END_REF]Th. 3.1] Assume that E K (•) is strictly convex on M + (1) ∩ M K . Then, (a) there always exists a unique minimum-energy probability measure, and (b)

µ + K ∈ M + (1)
is the minimum-energy probability measure on X if and only if

∀ x ∈ X , P µ + K (x) ≥ E K (µ + K ) .
Statement (a) follows from the fact that X is compact and therefore the set M + (1) is vagely compact. Moreover, a measure µ + K ∈ M + (1) is the minimum-energy probability measure if and only if F K (µ + K ; ν) ≥ 0 for all ν ∈ M + (1), or equivalently, since ν is a probability measure, if and only if F K (µ + K ; δ x ) ≥ 0 for all x ∈ X . In view of (1.12), this is equivalent to the statement (b) of the theorem.

Note that, by construction,

X P µ + K (x) µ + K (dx) = E K (µ + K ), implying P µ + K (x) = E K (µ + K )
on the support of the minimum-energy probability measure µ + K .

1.7. Minimum-energy signed measure.

Theorem 1.2. [9, Th. 3.2] When E K (•) is strictly convex on M (1)∩M K , µ * K ∈ M (1)
is the minimum-energy signed measure with total mass one on X if and only if

∀ x ∈ X , P µ * K (x) = E K (µ * K ) . (1.13)
For a proof we just need to note that µ * K is the minimum-energy measure in M (1) if and only if F K (µ * K ; ν) = 0 for all ν ∈ M (1) and this condition is equivalent to F K (µ * K ; δ x ) = 0 for all x ∈ X . In view of (1.12) this is exactly the condition (1.13).

The minimum-energy signed measure µ * K may not exist, especially when the kernel K is dierentiable; such cases include the squared exponential kernel, the genealized multiquadric kernel and isotropic Matérn kernels with shape parameter κ > 1, see Example 1.2.

When K is bounded, the minimum-energy signed measure supported on anite set {x 1 , . . . , x N } always exists and has weights w * N given by (1.14). Suppose that the N points x i are equally spaced in X = [0, 1] and consider the model with observations Y (x) = β + Z x , where β ∈ R and Z x is a Gaussian random process with zero mean and correlation E{Z x Z x } = K(x, x ). Then, βN = (w * N ) y N , with y N = (Y (x 1 ), . . . , Y (x N )) , is the Best Linear Unbiased (BLUE) estimator of β. When the process Z x has mean square derivatives of order 2 and higher, roughly speaking, for large N the construction of the (discrete) BLUE mimics the estimation of derivatives of Y (x) and the weights w * i strongly oscillate between large positive and negative values. Figure 1.1 shows the optimal weights (w * i /|w * i |)(log 10 (max{|w * i |, 1}), truncated to absolute values larger than 1 and in log scale, when x i = (i -1)/(N -1), i = 1, . . . , N = 101. On the left panel, the kernel is

K(x, x ) = (1 + √ 5|x -x | + 5|x -x | 2 /3) exp(- √ 5|x -x |) (Matérn 5/2
), so that Z x is twice mean-square dierentiable; the construction of the BLUE mimics the estimation of the rst and second order derivatives of Y at 0 and 1; on the right panel, the kernel is the generalized multiquadric K(x, x ) = (|x -x | 2 + 0.01) -1 . In both cases, there is no minimum-energy signed measure for K, its existence being related to that of a continuous BLUE for β. One may refer to [START_REF] Pronzato | Bayesian quadrature, energy minimization and space-lling design[END_REF] and [START_REF] Durrande | Detecting periodicities with Gaussian processes[END_REF][START_REF] Hensman | Variational Fourier features for Gaussian processes[END_REF][START_REF] Dette | Best linear unbiased estimators in continuous time regression models[END_REF] for more details. 

for x i = (i -1)/(N -1), i = 1, . . . , N = 101. Left: K(x, x ) = (1 + √ 5|x -x | + 5|x -x | 2 /3) exp(- √ 5|x -x |) (Matérn 5/2); Right: K(x, x ) = (|x -x | 2 + 0.01) -1 (generalized multiquadric).
1.8. Sucient conditions for the minimum-energy signed measure to be a probability measure. Theorem 1.3. [START_REF] Pronzato | Bayesian quadrature, energy minimization and space-lling design[END_REF]Th. 3.3] Assume that K is ISPD and translation invariant, with K(x, x ) = F (x -x ) and F continuous, twice dierentiable except at the origin, with Laplacian

∆ F (x) = d i=1 ∂ 2 F (x)/∂x 2 i ≥ 0, x = 0.
Then there exists a unique minimum-energy signed measure µ * K in M (1), and µ * K is a probability measure.

The weaker condition

F (x-x ) = f (|x-x |) with f (•) convex on (0, ∞) is sucient when d = 1. When d ≥ 2 with F (x -x ) = f ( x -x ), f (•)
must have a singularity at 0 to have ∆ F (x) ≥ 0 for all x = 0. For the Riesz kernels K (α) of (1.9), we have

∆( x -α ) = α(α + 2 -d)/ x α+2 , x = 0.
Therefore, the conditions of the theorem are met when d > 2 and α ∈ (0, d -2]. For the logarithmic kernel (1.10), we have ∆(-log x ) = (2 -d)/ x 2 , x = 0 and the conclusions of the theorem remain valid for d = 1, 2, although the kernel is only CISPD.

1.9. Separable kernels. Consider the case of the so-called separable (tensor product) kernels

K(x, x ) = d i=1 K i (x i , x i ) on X = X 1 × • • • × X d ,
where the K i are univariate bounded (C)ISPD kernels. The following properties can be veried.

- [START_REF] Szabó | Characteristic and universal tensor product kernels[END_REF]. -The minimum-energy probability measure µ + K is the product of univariate minimum-energy probability measures µ + Ki :

If each E Ki (•) is strictly convex on M (1) ∩ M Ki for X i , then E K (•) is strictly convex on M (1) ∩ M K for X ; see
µ + K (dx) = d i=1 µ + Ki (dx i ).
-If the minimum-energy signed measure µ * Ki for K i on X i exists for each i, then the minimum-energy signed measure µ * K for K on X exists and equals

µ * K (dx) = d i=1 µ * Ki (dx i ).
-If, for each i, the minimum-energy signed measure µ * Ki for K i on X i exists and coincides with µ + Ki , the minimum-energy probability measure for K i on X i , then µ * K for K on X exists and coincides with µ + K , the minimum-energy probability measure for K on X . 1.10. Numerical construction of minimum-energy signed measures for bounded kernels: discrete case. Assume that the set X is discrete: X = X N = {x 1 , . . . , x N } and the kernel K is SPD (and thus bounded). Let 1 N = (1, 1, . . . , 1) be the vector of ones of size N and K = (K(x i , x j )) i,j=1,...,N . The energy of the measure ζ N that assigns weights w j to the points x j (j = 1, . . . , N ) is then E K (ζ N ) = Φ(w N ) = w N Kw N , where w N = (w 1 , . . . , w N ) . The vector of weights corresponding to the minimum-energy signed measure ζ * N of total mass one can be easily computed:

w * N = K -1 1 N / 1 N K -1 1 N , (1.14) 
giving

Φ(w * N ) = min w Φ(w) = 1/ 1 N K -1 1 N ,
where the minimum is taken over all vectors w = (w 1 , . . . , w N ) such that

1 N w = w 1 + . . . + w N = 1. The potential of ζ * N is the vector with constant entries p w * N = Kw * N = 1 N / 1 N K -1 1 N .
1.11. Numerical construction of optimal measures for SPD kernels: general case. We approximate a general set X with a nite set X N = {x 1 , . . . , x N } and in this way we approximate the original problem of nding the optimal measure ζ * (either signed or probability) minimizing the energy E K (µ) with the discrete problem of minimizing Φ(w) = w Kw, where K = (K(x i , x j )) i,j=1,...,N . In both classes of discrete measures (signed or probability), this problem has a unique solution; in the class of signed measures, this solution is given by (1.14). As shown below, in many interesting cases the optimal (discrete) measure ζ * N is a probability measure, and it is easy to construct an accurate approximation of the optimal continuous measure ζ * from ζ * N ; for example, in the case X ⊂ R we can build either piecewise constant, or continuous piecewise linear, approximations.

1.12. Motivation behind the research and structure of the rest of the paper. The motivation behind this research is two-fold.

(1) For any PD kernel K and a probability measure ν, minus energy -E K (ν) is the so-called Rao's quadratic entropy introduced and studied by C.R. Rao, see e.g. [START_REF] Rao | Diversity and dissimilarity coecients: a unied approach[END_REF][START_REF] Rao | Cross entropy, dissimilarity measures and characterizations of quadratic entropy[END_REF]. This entropy has wide-spread applications in many applied elds, especially in biology. Maximum-entropy (and hence minimum-energy) measures are very natural objects to study for dierent classes of kernels, including singular ones. The authors have considered minimum-energy measures for the case of Riesz kernels in several previous papers, see for example, [START_REF] Schmidt | A characterization of the arcsine distribution[END_REF][START_REF] Schmidt | An extremal property of the generalized arcsine distribution[END_REF][START_REF] Pronzato | Bayesian quadrature, energy minimization and space-lling design[END_REF]. The present paper broadly extends this research. (2) Consider the MMD γ K (µ, ν) dened in (1.4) in the case when the measure µ is uniform on X . Methods for the approximate computation of MMD γ K (µ, ν) and the sequential minimization of this MMD (which is the energy for the measure µ -ν) with respect to ν in the case of singular kernels is important for the methodology of construction of space-lling sequences of points, as singularity of the kernel guarantees an automatic repelling property of these points. This methodology is the subject of a recent paper [START_REF] Pronzato | Bayesian quadrature, energy minimization and space-lling design[END_REF] by the present authors. The structure of the rest of the paper is as follows. Section 2 contains the main results and describes the principal algorithmic schemes. This section has ve parts.

Section 2.1 summarizes properties of CM and Bernstein functions required later on. It also relates CM functions to PD and ISPD kernels. In Section 2.2 we develop our main approximation of a CM function with singularity at 0 by bounded CM functions, and in Theorem 2.5 we study properties of this family of functions. In Section 2.3, we discuss properties of a pre-Hilbert space associated with a singular kernel and of the RKHS of the PD kernels constructed from CM functions of Theorem 2.5. In Sections 2.4 and 2.5, we develop an algorithm for approximating minimum-energy measures of singular kernels. This algorithm is based on the following: (a) the methodology developed in Section 2.2; (b) a discretization of the set X ; (c) the numerical construction of minimum-energy signed measures for bounded kernels in the discrete case, as formulated in Section 1.10; and (d) the use of piecewise constant functions for approximating densities of the minimum-energy measures. In Section 3, the methodology of Section 2 is further detailed and numerically investigated in the case of Riesz kernels on X = [0, 1].

2. Approximation of a CM function with singularity at 0 by a sequence of bounded CM functions.

CM functions and Bernstein functions (BF). As formulated in Sec

- tion 1.1, a function f : (0, ∞) → R + is completely monotone (CM) if f ∈ C ∞ (0, ∞)
and (1.5) holds. If f is a non-constant CM function, then the inequalities (1.5) are necessarily strict for all t > 0 and all k = 1, 2, . . .; see [START_REF] Schilling | Bernstein Functions: Theory and Applications[END_REF]Remark 1.5].

In this section, we formulate several important auxiliary results on completely monotone and Bernstein functions. 

f (x) = ∞ 0 e -tx µ(dt) .
(2.1) Theorem 2.2. [13, Th. 3.2] (Levy-Khinchine representation). A function g : (0, ∞) → R + is a BF if and only if

g(x) = a + b x + ∞ 0 (1 -e -tx ) ν(dt) (2.2)
where a, b ≥ 0 and ν is a nonnegative measure on (0, ∞) with ∞

0 min(1, t) ν(dt) < ∞.
The triplet (a, b, ν) uniquely determines g and vice versa.

If g is a BF of the form (2.2), then f = g is CM with the measure µ of (2.1) being

µ(dt) = b δ 0 (dt) + t ν(dt) , (2.3) 
where δ 0 (dt) is the delta-measure concentrated at 0. According to [13, Proposition 3.4], for a completely monotone function f with measure µ, there exists a BF g such that f = g if and only if the measure µ of (2.1) satises

∞ 0 1 1 + t µ(dt) < ∞ . (2.4) 
In this case, we can set g(t) = t 0 f (u) du. The relation between non-constant CM functions and SPD kernels is characterized by the following result, essentially proved by Shoenberg in [START_REF] Schoenberg | Metric spaces and positive denite functions[END_REF]. 

× R d → R by K(x, x ) = ψ( x -x 2 )
, where

• is the Euclidean norm. Then ψ is CM if and only if the kernel K is SPD for any d = 1, 2, . . . Note that Theorem 2.1 and the fact that the exponential kernel K 1/2,β (x, x ) = exp(-β x-x ), β > 0, is ISPD, implies that if f is a non-constant, CM and bounded function, then the kernel K(x, x ) = f ( xx ) is bounded and ISPD (and therefore SPD). Also, as shown in [START_REF] Schilling | Bernstein Functions: Theory and Applications[END_REF], having the kernel K(x, x ) = -ψ( xx 2 ) CISPD for a continuous ψ requires ψ to be a BF.

We also have the following property for unbounded kernels constructed from CM functions.

Theorem 2.4. [START_REF] Phillips | On unbounded positive denite functions[END_REF]Corollary 8] Let f : (0, ∞) → R be an L 1 CM function, possibly with singularity at zero. Then the kernel

K : R × R → R dened by K(x, x ) = f (|x-x |) is ISPD.
Unlike Theorem 2.3, Theorem 2.4 deals with one-dimensional case only. The authors are unaware of any generalization of Theorem 2.4 to kernels in R d .

Approximating family. Assume that a non-constant function f is CM

with the measure µ of (2.1) satisfying (2.4). Then f = g , where g(t) = t 0 f (u) du is a BF. The value f (0) may be undened; that is, f (0+) = lim t→0+ f (t) ≤ +∞. Our aim is to construct a family of CM functions

f ε such that f ε (0+) = lim t→0+ f ε (t) < ∞ for all ε > 0 and lim ε→0 f ε (t) = f (t) for all t > 0.
The family is given by

f ε (t) = f (t) = g (t) , ε = 0 1 ε t+ε t f (s) ds = 1 ε [g(t + ε) -g(t)] , ε > 0 .
(2.5)

It satises the following important properties.

Theorem 2.5. Let f be a non-constant CM function with the measure µ of (2.1) satisfying (2.4). Consider the family of functions (2.5), where g(t) = t 0 f (u) du.

Then (i) the functions f ε are CM for all ε ≥ 0, (ii) the functions f δ -f ε are CM for all 0 ≤ δ < ε, (iii) the functions εf ε -δf δ are CM for all 0 < δ < ε.

Proof.

(i ) Consider the form (2.2) for the function g. Then, for any ε > 0, the function f ε from (2.5) can be written as

f ε (x) = b + 1 ε ∞ 0 e -tx (1 -e -εt ) ν(dt) . (2.6)
Another form of (2.6) is

f ε (x) = ∞ 0 e -tx µ ε (dt) , (2.7) 
where

µ ε (dt) = b δ 0 (dt) + h ε (t) ν(dt) and h ε (t) = t for ε = 0 , 1 ε (1 -e -εt ) for ε > 0 ; (2.8) 
the expression for h 0 (t) follows from (2.3). Since h ε (t) > 0 for all ε ≥ 0 and t > 0, Theorem 2.1 implies that the functions f ε are CM for all ε ≥ 0.

(ii ) Assume 0 < δ < ε and consider (2.7) and the similar representation for f δ . Then, for all t > 0 we have

f δ (x) -f ε (x) = ∞ 0 e -tx [µ δ -µ ε ] (dt) , (2.9) 
where

[µ δ -µ ε ] (dt) = [h δ (t) -h ε (t)] ν(dt) . (2.10) 
The measure [h δ (t) -h ε (t)] ν(dt) is positive since, for any t > 0, we have h δ (t)h ε (t) > 0. Indeed, for any xed t > 0, the function h ε (t), considered as a function of ε ∈ (0, ∞), is strictly positive and strictly decreasing; the former has been noted in the proof of (i ) and the latter follows from

∂h ε (t) ∂ε = (1 + εt) e -εt -1 ε 2
and from the easily veriable fact that the function ω(s) = (1 + s)e -s -1 is strictly negative for all s > 0.

Consider now the case δ = 0. The expressions (2.9) and (2.10) are still valid but now we need to justify that

h 0 (t) -h ε (t) = t - 1 ε 1 -e -εt = tε + e -εt -1 ε
is positive for all ε > 0 and all t > 0. This follows from the fact that the function ω 0 (s) = s + e -s -1 is strictly positive for all s > 0.

(iii ) Using (2.8), we obtain similarly to (2.9) and (2.10):

δf δ (x) -εf ε (x) = ∞ 0 e -tx [δµ δ -εµ ε ] (dt) , with [δµ δ -εµ ε ] (dt) = b(ε -δ)δ 0 (dt) + [δh δ (t) -εh ε (t)] ν(dt) = b(ε -δ) δ 0 (dt) + e -εt -e -δt ν(dt) .
In view of Theorem 2.2, b ≥ 0. As 0 < δ < ε, we have b(ε -δ) ≥ 0 and e -εt -e -δt > 0 for all t > 0. Therefore, the measure [δµ δ -εµ ε ] (dt) is positive and hence, by Theorem 2.1, the function δf δ -εf ε is CM.

One may notice that (2.6) implies that the Fourier transform of

x ∈ R → f ε (|x|) ∈ R + is λ ∈ R → f ε (λ) = b δ(dλ) + ∞ 0 2t (1 -e -εt ) ε (t 2 + 4π 2 λ 2 ) ν(dt) , ε > 0 ,
with ν the measure in (2.6) (and in agreement with [17, Th. 9], f ε (λ) > 0 for all λ > 0, and the kernel K ε dened by

K ε (x, x ) = f ε (|x -x |) is characteristic).
Four simple examples of CM functions and approximating families are given below. Note that in examples (a) and (b) the function f (t) is bounded at 0;

0 < α < 1 in examples (b)(d). (a) f (t) = e -βt , β > 0: f ε (t) = c ε,β f (t) with c ε,β = (1 -e -βε )/(βε). (b) f (t) = 1/(1 + t) 1+α : f ε (t) = [(1 + t) -α -(1 + t + ) -α ] /(α ). (c) f (t) = 1/t 1-α : f ε (t) = ((t + ε) α -t α )/(αε). (d) f (t) = 1/(t 1-α (1 + t) 1+α ): f ε (t) = [(1+1/(t+ε)) -α -(1+1/t) -α ] /(αε).
2.3. Pre-Hilbert space associated with a singular kernel. Let X = [0, 1] and f be a non-degenerate CM function with singularity at 0. Assume, like in Section 2.2, that the measure µ of (2.1) satises (2.4). Dene the kernel K :

X ×X → R by K(x, x ) = f (|x -x |), x, x ∈ X .
Consider the family of functions {f ε } ε>0 dened by (2.5). In view of Theorem 2.5 all these functions are CM and bounded. Using the construction of Theorem 2.4, create the SPD kernels

K ε (x, x ) = f ε (|x -x |) .
(2.11)

Denote by H(K ε ) the RKHS associated with K ε (•, •), ε > 0. All these RKHS H(K ε ) are equivalent to H(K 1 ) since, according to (ii ) and (iii ) of Theorem 2.5, f δ -f ε and (ε/δ)f ε -f δ are CM functions for 0 < δ < ε, and, from [1, Th. 12], H(K) ⊂ H(K ) if and only if there exists a constant c > 0 such that cK -K is positive denite. Denote the scalar product in H(K ε ) by •, • ε . For a function g ∈ H(K ε ), consider the norms g ε = g, g ε with ε > 0. Then, for any g ∈ H(K 1 ) with 0 < g 1 < ∞ and for 0 < ε < ε, we have (ε /ε) g ε < g ε < g ε . Therefore, there exists a limit g 0 = lim ε→0 g ε , with 0 ≤ g 0 < g 1 . However, since K is unbounded, it does not dene an RKHS H K0 = H K .

For any > 0, we may nevertheless consider the set of potentials P ν,Kε (•), which, for ν ∈ M , is dense in H(K ε ). We then have P ν,Kε ε = E 1/2 Kε (ν), and, for any ν ∈ M , ν = 0, and for 0 [START_REF] Hensman | Variational Fourier features for Gaussian processes[END_REF]. Denoting ν ε = P ν,Kε ε , ν ∈ M , we thus have ν ε < ν ε for 0 < ε < ε; there exists a limit

< ε < ε, E K ε (ν) -E Kε (ν) = X 2 f ε,ε (x, x ) ν(dx) ν(dx ), with f ε,ε (x, x ) = f ε (|x -x |) -f ε (|x -x |). Therefore, E K ε (ν) -E Kε (ν) > 0 since f ε -f ε is CM; see Theorem 2.
ν 0 = lim ε→0 ν ε ≤ ∞ ,
and the set of measures ν such that ν 0 < ∞ coincides with M K , the set of signed measures with nite energy, see (1.2). The set P(K) of potentials P ν,K (•) for ν ∈ M K , equipped with the scalar product g, g 0 = lim ε→0 g, g ε , denes a pre-Hilbert space (P(K) is not a Hilbert space as it is not complete). Note that, unlike the spaces H(K ε ) with ε > 0, P(K) does not contain potentials of delta-measures δ x , x ∈ X .

2.4. Discrete approximations. In this section, we apply the methodology of Section 1.10 and construct discrete approximations of minimum-energy signed measures of total mass one on X = [0, 1] for kernels K ε dened by (2.11) with f ε constructed as in Section 2.2. Take ε > 0 and an integer N . Choose N design points x 1 , . . . , x N in [0, 1] (for example, set

x k = (k -1)/(N -1), k = 1, . . . , N ), form the matrix K ε,N = (f ε (|x i -x j |)) i,j=1,.
..,N and compute the minimum-energy signed measure ζ * ε,N in M (1) supported on the x i . The optimal weights are given by (1.14),

w * ε,N = w * N (K ε ) = K -1 ε,N 1 N / 1 N K -1 ε,N 1 N , (2.12) 
and the minimum value of the discrete energy Φ ε,N (w) = w K ε,N w for measures of total mass one is

E Kε (ζ * ε,N ) = Φ ε,N (w * ε,N ) = 1/ 1 N K -1 ε,N 1 N .
For a xed ε > 0, the kernel K ε is ISPD, see Section 2.1. Since the function f ε is convex, Theorem 1.3 implies that the minimum-energy signed measure µ * Kε in M (1) exists and is a probability measure, obtained as the solution of condition (1.13) in Theorem 1.2. Therefore, if the design points

x i are such that max x∈[0,1] min i |x-x i | → 0 as N → ∞, we have E Kε (ζ * ε,N ) → E Kε (µ * Kε ). This implies that γ 2 Kε (ζ * ε,N , µ * Kε ) = E Kε (ζ * ε,N -µ * Kε ) = E Kε (ζ * ε,N ) + E Kε (µ * Kε ) -2 N i=1 w * ε,N i K ε (x i , x) µ * Kε (dx) = E Kε (ζ * ε,N ) -E Kε (µ * Kε ) → 0 as N → ∞ .
Moreover, when the x i are obtained from an innite sequence {x 1 , x 2 , . . .} satisfying

max x∈[0,1] min i |x -x i | → 0 as N → ∞, the convergence is monotone; that is, γ Kε (ζ * ε,N , µ * Kε ) ↓ 0. However, for any xed N , E Kε (ζ * ε,N ) = Φ ε,N (w * ε,N
) tends to ∞ as ε → 0. As discrete measures cannot be used for kernels with singularities, we shall use an absolutely continuous version of ζ * ε,N having weights (2.12). The construction is described in the next section.

2.5. Approximations with piecewise constant densities. Let 0 ≤ x 1 < . . . < x N ≤ 1 be the support points of a discrete probability measure ζ N and w k ≥ 0 (k = 1, . . . , N ) be the corresponding weights with N k=1 w k = 1. Dene the N + 1 points z i by z j = (x j + x j+1 )/2, j = 1, . . . , N -1 and z 0 = 0, z N = 1 .

We partition the interval [0, 1) into N non-intersecting intervals I j = [z j-1 , z j ) (j = 1, . . . , N ), with respective lengthes l j = z j -z j-1 . We have l j > 0 for all j = 1, . . . , N and j l j = 1. Dene the piecewise constant function

p N (t) = w j /l j if t ∈ I j for some j = 1, . . . , N , 0 if t / ∈ [0, 1) . (2.13)
We have p N (t) ≥ 0 for all t, 1 0 p N (t) dt = N j=1 w j = 1, and therefore p N is a probability density function. We shall use it as a continuous approximation of ζ N . Note that if x j = (j -1)/(N -1), j = 1, . . . , N , then l 1 = l N = -1)] whereas l i = 1/(N -1) for i = 2, . . . , N -1.

Denote by ζ N the measure having the density (2.13). Then its energy (1.1) for K(x, y) = f (|x -y|) can be written as

E K ( ζ N ) = 1 0 1 0 K(x, y)p N (x)p N (y) dx dy = 2 N i=2 w i l i Ii   i-1 j=1 w j l j Ij f (x -y) dy   dx + N i=1 w 2 i l 2 i Ii Ii f (|x -y|) dx dy = w N K N w N ,
where w N = (w 1 , . . . , w N ) and K N is symmetric with

( K N ) i,i = 1 l 2 i zi zi-1 x zi-1 f (x -y) dy + zi x
f (y -x) dy dx and

( K N ) j,i = 1 l i l j zi zi-1 zj zj-1 f (x -y) dy dx for j < i . We can therefore obtain E K ( ζ N ) in closed-form when closed-form expressions for b a t a f (t -s) ds dt and d c b a f (t -s) ds dt (2.14) are available for any 0 ≤ a ≤ b ≤ c ≤ d ≤ 1.
In that case, if there exists a minimumenergy measure µ * K ∈ M (1) on [0, 1] for the kernel K, the minimum energy measure ζ * N of total mass one, for K, among those having piecewise constant densities p N (t) on the partition above, gives an approximation of µ * K . The optimal measure ζ * N , with density p * N (t), is characterized by the weights

w * N = w * N ( K) = K -1 N 1 N /(1 N K -1 N 1 N ) . (2.15) 
Also, developments similar to those in Section 2.4 give

γ 2 K ( ζ * N , µ * K ) = E K ( ζ * N ) -E K (µ * K ) , (2.16) 
which is well dened for singular kernels. The potential P N (x) for the measure with density p N (t) can be computed in a similar way for x in any I j , j = 1, . . . , N . Indeed, for any x ∈ I j = [z j , z j+1 ), we have

P N (x) = 1 0 K(x, y)p N (y) dy = N i=1 w i l i Ii f (|x -y|) dy = j-1 i=1 w i l i zi+1 zi f (x -y) dy + w j l j zj+1 zj f (|x -y|) dy + N k=j+1 w k l k z k+1 z k f (y -x) dy = j-1 i=1 w i l i zi+1 zi f (x -y) dy + N k=j+1 w k l k z k+1 z k f (y -x) dy + w j l j x zj f (x -y) dy + zj+1 x f (y -x) dy .
This expression for P N (x) can be used in particular to check how close the potential P * N (x) associated with p * N (t) is to being constant for x ∈ [0, 1]. The construction above can be applied to the discrete approximations ζ * ε,N of Section 2.4. We denote by ζ ε,N the measure with piecewise constant density and weights w * ε,N given by (2.12), and by ζ * ε,N the measure with piecewise constant density having weights w * ε,N = w * N ( K ε ) given by (2.15) with

K ε (x, y) = f ε (|x -y|), ε ≥ 0. When K(x, x ) = f (|x-x |) with f singular at zero and µ * K exists, we can compute the MMD discrepancies γ K ( ζ ε,N , µ * K ) and γ K ( ζ * ε,N , µ * K ), see (2.16
), and plot them as functions of ε. This is done in the next section for the Riesz kernels; see Fig. 3.8.

3.

Case study: Riesz kernels on [0, 1]. 3.1. Riesz kernels and associated optimal measures. Consider the function f α (t) = t -α (0 < α < 1) on t ∈ (0, 1], and the associated kernel

K(t, s) = f α (|t -s|) = |t -s| -α , t, s ∈ [0, 1] , t = s. (3.1) 
In this case, the minimizing measure µ * = µ * α for the energy functional (1.1) is known: it is a probability measure with density

φ α (t) = c α [t(1 -t)] (α-1)/2 , t ∈ [0, 1] , c α = Γ(α + 1) Γ( α+1 2 ) 2 . (3.2) 
That is, µ * corresponds to the Beta-distribution with parameters (α + 1)/2, (α + 1)/2 on [0, 1]. We have

1 0 K(t, s)φ α (s) ds = t 0 1 (t -s) α φ α (s) ds + 1 t 1 (s -t) α φ α (s) ds = c α π cos(πα/2) = Φ * α ,
where

Φ * α = πΓ(α + 1) cos(πα/2) Γ( α+1 2 ) 2 = min µ∈M (1) 
Φ(µ) .

Values of Φ * α are plotted in 

(t -s) -α ds dt = (d -a) 2-α + (c -b) 2-α -(d -b) 2-α -(c -a) 2-α (1 -α)(2 -α) .
To compute the potentials for measures µ = µ N having the density (2.13) we use the following formulas for x ∈ I j = [z j , z j+1 ):

P µ N (x) = 1 0 K(x, y)p N (y) dy = N i=0 w i l i Ii f α (|x -y|) dy = j-1 i=0 w i l i zi+1 zi (x -y) -α dy + w j l j zj+1 zj |x -y| -α dy + N k=j+1 w k l k z k+1 z k (y -x) -α dy = 1 1 -α j-1 i=0 w i l i (x -z i ) 1-α -(x -z i+1 ) 1-α + w j l j (x -z j ) 1-α + (z j+1 -x) 1-α + N k=j+1 w k l k (z k+1 -x) 1-α -(z k -x) 1-α   .
3.2. Eciency of the uniform probability measure. Let µ 0 be the uniform probability measure on [0, 1]. We dene its eciency as

eff(µ 0 ) = Φ * α Φ α (µ 0 ) = (1 -α)(2 -α) cos(πα/2) Γ( α+1 2 ) 2 2πΓ(α + 1) , (3.3) 
where

Φ α (µ 0 ) = E K (µ 0 ) = 1 0 1 0 |t -s| -α dt ds = 2 (1 -α)(2 -α) (3.4)
is the energy of the uniform measure. For all values of α ∈ [0, 1) this eciency is quite high, see Fig 3 .2, left (the lowest value is 0.98135 which is achieved at α 0.36253).

The accuracy of the approximation of the energy of µ 0 is therefore indicative of what is happening in terms of approximation of the optimal measure µ * α . The potential of the uniform measure is

P µ0;α (t) = 1 0 |t -s| -α ds = t 0 (t -s) -α ds + 1 t (s -t) -α ds = t 1-α + (1 -t) 1-α 1 -α .
This potential and its average value Φ α (µ 0 ) = Right: Potential of the uniform measure P µ0;α (t) and its average value Φ α (µ 0 ), see (3.4), computed for α = 0.5.

3.3.

Approximation of f α by f ε,α . The Bernstein function associated with f α (t) = t -α is g(t) = t 1-α /(1 -α), t ≥ 0, and the functions f ε from (2.5) are

f ε,α (t) = (t + ε) 1-α -t 1-α ε(1 -α) , t ≥ 0. (3.5) 
We can also write

f α (x) = 1 Γ(α) ∞ 0 e -tx t α-1 dt , x > 0 , f ε,α (x) = 1 ε Γ(α)
∞ 0 e -tx (1 -e -εt ) t α-2 dt , x ≥ 0 , and f ε,α (x) < f α (x) for all x > 0 and ε > 0 since (1 -e -z )/z < 1 for all z > 0. Let f α (λ) and f ε,α (λ) respectively denote the Fourier transforms of the functions x → f α (|x|) and x → f ε,α (|x|), x ∈ R. They are given by

f α (λ) = 2 sin(α π/2) Γ(1 -α) |2πλ| 1-α , f ε,α (λ) = 2 ε Γ(α) ∞ 0 (1 -e -εt ) t α-1 t 2 + 4π 2 λ 2 dt ,
with f ε,α (λ) < f α (λ) for all λ > 0 and ε > 0. Denote by H ε,α = H(K ε,α ) the RKHS associated with the kernel

K ε,α (t, s) = f ε,α (|t -s|), t, s ∈ [0, 1] , (3.6) 
where f ε,α is given in (3.5). From Section 2.3, for a xed α all H ε,α , ε > 0, are equivalent to H 1,α . Also, any function g ∈ H ε,α , with Fourier transform g, satises see Section 2.3. We have in particular

g 2 Hε,α = ∞ -∞ | g(λ)| 2 f ε,α (λ) dλ > g 2 0,α = ∞ -∞ | g(λ)| 2 f α (λ) dλ ,
f ε,α 2 
0,α = 1 Γ 2 (α)Γ(1 -α) sin 2 (α π/2) ∞ 0 ∞ 0 (1 -e -εt )(1 -e -εt )(t α -t α ) ε 2 tt (t 2 -t 2 ) dt dt .
The functions g such that g 0,α < ∞ must satisfy g(λ) = o(λ α/2-1 ) for λ → 0+ and λ → ∞. Only the behavior of g(λ) for λ → ∞ is important when we restrict our attention to functions g dened on [0, 1], and g 0,α < ∞ implies g 0,α < ∞ when 0 < α < α < 1.

Now we study the quality of approximation of the kernel (3.1) by the family of kernels K ε,α in (3.6). The energies of the uniform measure with respect to kernels (3.6) are

Φ α,ε (µ 0 ) = 1 0 1 0 f ε,α (|t -s|) dt ds = 2 (1 + ε) 3-α -ε 3-α -(3 -α)ε 2-α -1 ε(1 -α)(2 -α)(3 -α) . (3.7) 
Since f ε,α (t) < f α (t) = t -α for all α ∈ (0, 1) and t > 0, we have Φ α,ε (µ 0 ) < Φ α (µ 0 ) for all α ∈ (0, 1). Values of the ratio Φ α,ε (µ 0 )/Φ α (µ 0 ) are plotted in Fig 3 .5, left. We can deduce from this gure that if α is not very close to 1 (that is, when the singularity is not very strong), then f ε,α can be considered as an accurate approximation of f α , even for ε not very small. Note that the case when the singularity of the kernel is strong (when α is close to 1) is not very interesting when K is used to model the covariance function of a random process, as this is very close to the case of no dependence (the white noise case), for which the minimum energy measure is the uniform measure.

Expanding the rhs in (3.7) into a series we obtain

Φ α,ε (µ 0 ) = Φ α (µ 0 ) 1 -ε 1-α + ε(1 -α/2) + O(ε 2 ) , ε → 0 .
The resulting approximation is very accurate for all α ∈ [0, 1), even if ε is not very small. Already the very simple approximation

Φ α,ε (µ 0 )/Φ α (µ 0 ) 1 -ε 1-α (ε 0) (3.8)
is quite accurate, as can be seen from ε,N , based on the approximation f ε,α , gives a fairly accurate approximation of µ * K . Note that the precision is better than for ζ ε,N , which uses the optimal weights of the discrete approximation. Unsurprisingly, accuracy improves as N increases (left panel). Numerical diculties make the approximation less accurate for very small ε (right panel); values of ε between 10 -3 and 10 -2 are seen to give satisfactory results.

Concluding this section we can state that if α is not too close to 1 (so that the singularity of the kernel is not too severe) then f ε,α accurately approximates f α if ε is small enough. Due to their intrinsic repelling property, singular kernels have great potential interest in the construction of sequences of nested space-lling designs via kernel herding, see Section 4.4 of [START_REF] Pronzato | Bayesian quadrature, energy minimization and space-lling design[END_REF]. However, singularity precludes the use of the more ecient minimum-norm-point variant, in which weights are optimized at each iteration. The substitution of a separable kernel based on the approximation f ε,α for the singular separable kernel K(x, x ) = d i=1 f α (|x i -x i |) appears very attractive in this context.

Other examples.

A long list of Bernstein functions can be found in [START_REF] Schilling | Bernstein Functions: Theory and Applications[END_REF]Chapter 15]. In view of [START_REF] Phillips | Extension of the Schoenberg theorem to integrally conditionally positive denite functions[END_REF], among the rst 50 Bernstein functions g i from this list, in the following cases the corresponding CM function f i (proportional to g i ) has a singularity at zero: [START_REF] Berlinet | Reproducing Kernel Hilbert Spaces in Probability and Statistics[END_REF][START_REF] Phillips | Extension of the Schoenberg theorem to integrally conditionally positive denite functions[END_REF][START_REF] Pronzato | Bregman divergences based on optimal design criteria and simplicial measures of dispersion[END_REF][START_REF] Pronzato | Bayesian quadrature, energy minimization and space-lling design[END_REF][START_REF] Rao | Cross entropy, dissimilarity measures and characterizations of quadratic entropy[END_REF][START_REF] Sa | Logarithmic Potentials with External Fields[END_REF][START_REF] Schilling | Bernstein Functions: Theory and Applications[END_REF][START_REF] Schoenberg | Metric spaces and positive denite functions[END_REF][START_REF] Sriperumbudur | Hilbert space embeddings and metrics on probability measures[END_REF][START_REF] Székely | Energy statistics: A class of statistics based on distances[END_REF]23,25,27,31,33,34,36,38,40,41,42,43,44,45. Some of these functions are as follows (t > 0):

f 1 (t) = t -α , 0 < α < 1; f 8 (t) = t -α (1 + t) 2-α , 0 < α < 1; f 11 (t) = αt α-1 (1 -t β ) -βt β-1 (1 -t α ) (1 -t α ) 2 , 0 < α < β < 1 ;
f 16 (t) = α 1 t -α1-1 + . . . + α n t -αn-1 The families of functions f i,ε (t) = (g i (t + ε) -g i (t))/ε are constructed by (2.5). Below we give expressions for g i . Note that there may be an extra multiplier and a dierent parametrization if these functions are compared against corresponding expressions in [START_REF] Schilling | Bernstein Functions: Theory and Applications[END_REF]. Since all functions g i,ε are normalized so that g i (0) = 0 for all i, the values f i,ε (0) are simply f i,ε (0) = g i (ε); for small ε > 0 these values are large.

g 1 (t) = t 1-α /(1 -α) , 0 < α < 1 ;

g 8 (t) = t 1-α (1 -α)(1 + t) 1-α , 0 < α < 1 ;
g 11 (t) = (t β -t α )/(t α -1), 0 < α < β < 1 ; g 16 (t) = 1/ t -α1 + . . . + t -αn , 0 < α 1 , . . . , α n ≤ 1;

g 19 (t) = 2 √ t 1 + e -β √ t , β > 0;
g 23 (t) = t (1 + 1/t) 1+t -1 .

Minimum-energy measures for the kernels constructed for all these (as well as many other) CM functions has been numerically constructed by the authors. Results (and gures of optimal densities) are quite similar to the ones provided above for the Riesz kernel.
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 11 Figure 1.1: BLUE weights (w * i /|w * i |) log 10 (max{|w * i |, 1}) for x i = (i -1)/(N -1), i = 1, . . . , N = 101. Left: K(x, x ) = (1 + √

  Theorem 2.1.[START_REF] Schilling | Bernstein Functions: Theory and Applications[END_REF] Th. 1.4] (Bernstein). f is a CM function if and only if it is the Laplace transform of a nonnegative Borel measure µ on [0, ∞):
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 23 [START_REF] Wendland | Scattered Data Approximation[END_REF] Th. 7.13 & 7.14] Let ψ : [0, ∞) → R be a non-constant bounded function and dene the kernel K : R d

  Fig 3.1, left; normalized values (Φ * α ) 1-α are plotted in Fig 3.1, right.
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 31 Figure 3.1: Left: values of Φ * α for α ∈ [0, 0.9]. Right: values of (Φ * α ) 1-α for α ∈ [0, 1].

1 0

 1 P µ0;α (t) µ 0 (dt) are plotted in Fig 3.2, right, for α = 0.5. As can be seen from this gure, despite µ 0 has high eciency, there is still room for improvement, since the potential of µ * α is a constant function.
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 32 Figure 3.2: Left: eciency of the uniform measure computed by (3.3) for α ∈ [0, 1).Right: Potential of the uniform measure P µ0;α (t) and its average value Φ α (µ 0 ), see(3.4), computed for α = 0.5.
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 3 3 presents f α (t) (red solid line) and f ε,α (t) (blue dashed lines) as functions of t ≥ 10 -4 , for α = 0.5 (left panel) and α = 0.75 (right panel); the values of f ε,α (0) are indicated by a dot, = 0.001 for the dashed curve closest to f α and = 0.01 for the other.
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 3 4 shows f α (λ) (red solid line) and f ε,α (λ) (blue dashed lines) as functions of λ ≥ 10 -2 , for α = 0.5 (left panel) and α = 0.75 (right panel); = 0.001 for the dashed curve closest to f α and = 0.01 for the other.
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 33 Figure 3.3: f α (t) = t -α (red solid line) and f ε,α (t) (blue dashed line, top: = 0.001, bottom: = 0.01) as functions of t ≥ 10 -4 ; f ε,α (0) is indicated by a dot. Left: α = 0.5; right: α = 0.75.
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 34 Figure 3.4: f α (λ) (red solid line) and f ε,α (λ) (blue dashed line, top: = 0.001, bottom: = 0.01) as functions of λ ≥ 10 -2 . Left: α = 0.5; right: α = 0.75.

  Fig 3.5, right. The optimal density (3.2) and the approximation (2.13) obtained for the weights w * ε,N = w * N ( K ε ) given by (2.15) on the uniform grid x k = k/N (k = 0, 1, . . . , N = 200) are presented in Figs. 3.6 and 3.7 for dierent values of ε and α, illustrating the accuracy of the approximation.
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 35 Figure 3.5: Left: ratios Φ α,ε (µ 0 )/Φ α (µ 0 ) for ε = 10 -k , k = 2, 4, 8. Right: quality of approximation (3.8): values of Φ α,ε (µ 0 )/ Φ α (µ 0 )(1 -e 1-α ) computed for ε = 0.001 and α ∈ [0, 1).

Figure 3 . 6 :Figure 3 . 7 :

 3637 Figure 3.6: Optimal densities (3.2), red, and numerically computed densities (2.13), blue, on the uniform grid x k = k/N (k = 0, 1, . . . , N ); N = 200, ε = 0.01. Left: α = 0.1, eciency E K (µ K )/E K ( ζ * ε,N )

Figure 3 . 8 :

 38 Figure 3.8: Discrepancy γ K ( ζ N , µ * K ) for the measure ζ N with piecewise constant density and weights w * N (K ε ) given by (2.12) (red ), w * N ( K) (black ) and w * N ( K ε ) (blue ) given by (2.15). Left: ε = 0.001, N ∈ {50, . . . , 200}; right: N = 100, ε ∈ [10 -4 , 10 -2 ] (log scale) γ K ( ζ * N , µ * K ) 0.0238 does not depend on ε.
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