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MINIMUM-ENERGY MEASURES FOR SINGULAR KERNELS

LUC PRONZATO∗ AND ANATOLY ZHIGLJAVSKY†

Abstract. We develop algorithms for energy minimization for kernels with singularities. This
problem arises in di�erent �elds, most notably in construction of space-�lling sequences of points
where singularity of kernels guarantees a strong repelling property between these points. Numerical
algorithms are based on approximating singular kernels by non-singular ones, subsequent discretisa-
tion and solving non-singular discrete problems. For approximating singular kernels, we approximate
an underlying completely monotone (brie�y, CM) function with singularity by a bounded CM func-
tion with controlled accuracy. Theoretical properties of the suggested approximation are studied and
some numerical results are shown.

Keywords: energy minimization, singular kernels, Riesz kernel, Riesz potential,
space-�lling design
AMS subject classi�cations: 62K99, 65D30, 65D99.

1. Introduction: kernels and energies. This section introduces the main
concepts and formulates the most important results required for the following sec-
tions. It mostly follows [6], where the reader may �nd some proofs and more details.
Subsection 1.12 discusses the motivation behind this research and describes the struc-
ture of the rest of the paper.

1.1. Main notation.
X : a compact subset of Rd; d ≥ 1.
‖ · ‖: the Euclidean norm.
M : the set of �nite signed Borel measures on X .
M (q): the set of signed measures with total mass q, M (q)={µ∈M : µ(X )=q}.
M+(1): the set of Borel probability measures on X .
M+: the set of �nite positive measures on X .
K: a kernel; that is, a continuous symmetric function K : X ×X → R∪{∞}; K

is (uniformly) bounded if K(x,x) <∞ for all x ∈X ; K is singular if K(x,x) = +∞
for at least one x ∈X . Further conditions on K will be speci�ed in Section 1.2.

EK(ν), ν ∈M : the energy of ν,

EK(ν) =

∫
X

∫
X

K(x,x′) dν(x)dν(x′) . (1.1)

MK : the set of measures with �nite energy,

MK = {ν ∈M : |EK(ν)| < +∞} . (1.2)

Pν(x): the potential of ν ∈M at x,

Pν(x) =

∫
X

K(x,x′) dν(x′) , x ∈X . (1.3)

γK(µ, ν): the MMD (Maximum-Mean Discrepancy) between measures µ, ν ∈M ,

γK(µ, ν) = E
1/2
K (ν − µ) =

(∫
X 2

K(x,x′) d(ν − µ)(x) d(ν − µ)(x′)

)1/2

. (1.4)
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CM (completely monotone) function: f : (0,∞) → R+ is CM if f ∈ C∞(0,∞)
and

(−1)kf (k)(t) ≥ 0 , ∀t ∈ (0,∞); k = 0, 1, . . . (1.5)

BF (Bernstein function): g : (0,∞)→ R+ is a BF if g ∈ C∞(0,∞) and g′ is CM;
see [10, p.15].

1.2. Kernels of interest.
De�nition 1.1. A kernel K is Strictly Positive De�nite (SPD) on M if K is bounded
and for all n ∈ N and all pairwise di�erent x1, . . . ,xn ∈ X , the matrix Kn with
elements {Kn}i,j = K(xi,xj) (i, j = 1, . . . , n) is positive de�nite.
De�nition 1.2. A kernel K is Integrally Strictly Positive De�nite (ISPD) on M if
EK(ν) > 0 for any nonzero measure ν ∈M .
De�nition 1.3. A kernel K is Conditionally Integrally Strictly Positive De�nite
(CISPD) on M when it is ISPD on M (0); that is, when EK(ν) > 0 for all nonzero
signed measures ν ∈M such that ν(X ) = 0.

An ISPD kernel is CISPD. A bounded ISPD kernel is SPD and de�nes an RKHS
(Reproducing Kernel Hilbert Space) HK . For CISPD kernels K, the energy EK(ν)
can be negative. As for singular kernels K the energy EK(·) can be in�nite, we may
have MK 6= M , where MK is de�ned in (1.2). If K is SPD, then MK = M and
the potential Pν(x), see (1.3), is well de�ned and �nite for any ν ∈ M and x ∈ X .
However, there always exists ν ∈ MK such that Pν(x0) is in�nite for some x0 ∈ X
when K is singular.

1.3. Examples of kernels.
Example 1.1 (Kernels constructed through CM functions). We consider two general
ways of constructing kernels K(·, ·) via CM functions.

Let f(·) be a non-constant completely monotone (CM) function, see (1.5).
(a) For x, x′ ∈ R, de�ne

K(x, x′) = f(|x− x′|) . (1.6)

As follows from Theorem 2.4 of Section 2.1, if f(·) is CM and also belongs to
L1((0,∞)) then the kernel (1.6) is ISPD.

(b) For x,x′ ∈ Rd, de�ne

K(x,x′) = f(‖x− x′‖2) . (1.7)

The connection between K being SPD and f being CM is clari�ed in Theo-
rem 2.3 of Section 2.1.

/

In (1.6) and (1.7), the values of f and its derivatives at 0 may not be de�ned; in
these cases, the function f is singular at 0 and hence the corresponding kernels K are
singular. Examples of univariate CM functions with singularity at 0 are provided in
Section 3.4.
Example 1.2 (Some important bounded ISPD kernels).

- The squared exponential kernel Kβ(x,x′) = exp(−β ‖x− x′‖2), β > 0.
- The isotropic Matérn kernels Kκ,β with shape parameter κ, in particular

K3/2,β(x,x′) = (1 +
√

3β ‖x− x′‖) exp(−
√

3β ‖x− x′‖) (Matérn 3/2)

and the exponential kernel K1/2,β(x,x′) = exp(−β‖x− x′‖), β > 0.
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- The generalized multiquadric kernel

Kα,ε(x,x
′) = (‖x− x′‖2 + ε)−α/2 , ε > 0 , α > 0 . /

Example 1.3 (Bounded CISPD kernels). Consider the kernels de�ned by

K(α)(x,x′) = −‖x− x′‖α , α > 0 , (1.8)

which are CISPD for α ∈ (0, 2), see [15], and the related distance-induced kernels

K ′(α)(x,x′) = ‖x‖α + ‖x′‖α − ‖x− x′‖α , α > 0 .

K ′(α) is CISPD for α ∈ (0, 2) , but is not SPD (in particular, K ′(α)(0,0) = 0). In [15],
EK′(α) is called energy distance for α = 1 and generalized energy distance for general
α ∈ (0, 2]. For α = 1 and X = [0, 1] the kernel K(x, x′) = 1−K(1)(x, x′) = 1−|x−x′|
is ISPD. /

Example 1.4 (Singular ISPD kernels). The Riesz kernels:

K(α)(x,x
′) = ‖x− x′‖−α , α > 0 , (1.9)

If 0 < α < d then K(α) is ISPD. When α ≥ d, EK(α)
(µ) is in�nite for any µ ∈M . /

Example 1.5 (Singular CISPD kernel). The logarithmic kernel:

K(0)(x,x
′) = − log ‖x− x′‖ . (1.10)

This kernel is sometimes considered as a member of the Riesz family of kernels (1.9),
as α→ 0. Since K(0)(x,x

′) tends to −∞ when ‖x− x′‖ tends to +∞, it can only be
used in the case when X is compact. The kernel K(0) is CISPD, see [2, p. 80]. /

1.4. Strict convexity of energy.
Lemma 1.1.
(a) K is ISPD if and only if MK is convex and EK(·) is strictly convex on MK .
(b) Assume that K is bounded. Then, K is CISPD if and only if EK(·) is strictly

convex on M (1).

For a proof, see Lemmas 3.1 and 3.2 in [6]. Lemma 1.1 does not cover the case of
singular CISPD kernels where a similar result can be proved. For instance, in view of
[9, Sect. I.3], the energy EK(·) is strictly convex on M (1) ∩MK for the logarithmic
kernel (1.10).

In the remaining part of the paper we assume that K is such that EK(·) is
strictly convex on M (1) ∩MK , which is true in particular under the assumptions
of Lemma 1.1.

1.5. MMD as Bregman divergence and Jensen di�erence. For µ, ν ∈
MK , denote by FK(µ; ν) the directional derivative of EK(·) at µ in the direction ν:

FK(µ; ν) = lim
α→0+

EK [(1− α)µ+ αν]− EK(µ)

α
.

Straightforward calculation gives

FK(µ; ν) = 2

[∫
X 2

K(x,x′)dν(x)dµ(x′)− EK(µ)

]
. (1.11)
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The strict convexity of EK(·) implies that EK(ν) ≥ EK(µ) + FK(µ, ν) for any
µ, ν ∈MK , with equality if and only if ν = µ.

The Bregman divergence (associated with the functional EK(·)) between measures
in MK and between probability measures in M+(1) ∩MK , is

BK(µ, ν) = EK(ν)− [EK(µ) + FK(µ, ν)] ;

see [5, 8] for a general de�nition of Bregman divergence. By direct calculation,
BK(µ, ν) = BK(ν, µ) = EK(ν − µ), which allows us to de�ne the squared MMD
γ2K(µ, ν) as the Bregman divergence BK(µ, ν).

The Jensen di�erence (associated with EK(·)) is

∆J(µ, ν) = (1/2)[EK(µ) + EK(ν)]− EK [(µ+ ν)/2] ,

see [7] for a general de�nition of Jensen di�erences. Direct calculation gives

γ2K(µ, ν) = EK(ν − µ) = 4 ∆J(µ, ν) .

Since EK(·) is a strictly convex functional on M (1) ∩MK , both representations
of MMD imply that γK(·, ·) de�nes a proper metric on the space of signed measures
M (1) ∩MK and the space of probability measures M+(1) ∩MK .

For other interpretations of the MMD γK(·, ·), see [6] and references therein.

1.6. Minimum-energy probability measure.
From (1.3) and (1.11), the potential Pµ(x) associated with µ at x ∈ X , can be

written as

Pµ(x) =
1

2
FK(µ; δx) + EK(µ) , (1.12)

where δx is the delta-measure concentrated at x.
Theorem 1.1. [6, Th. 3.1] Assume that EK(·) is strictly convex on M+(1) ∩MK .
Then, (a) there always exists a unique minimum-energy probability measure, and (b)
µ+
K ∈M+(1) is the minimum-energy probability measure on X if and only if

∀x ∈X , Pµ+
K

(x) ≥ EK(µ+
K) .

Statement (a) follows from the fact that X is compact and therefore the set
M+(1) is vagely compact. Moreover, a measure µ+

K ∈M+(1) is the minimum-energy
probability measure if and only if FK(µ+

K ; ν) ≥ 0 for all ν ∈M+(1), or equivalently,
since ν is a probability measure, if and only if FK(µ+

K ; δx) ≥ 0 for all x ∈X . In view
of (1.12), this is equivalent to the statement (b) of the theorem.

Note that, by construction,
∫

X Pµ+
K

(x) dµ+
K(x) = EK(µ+

K), implying Pµ+
K

(x) =

EK(µ+
K) on the support of the minimum-energy probability measure µ+

K .

1.7. Minimum-energy signed measure.
Theorem 1.2. [6, Th. 3.2]When EK(·) is strictly convex on M (1)∩MK , µ

∗
K ∈M (1)

is the minimum-energy signed measure with total mass one on X if and only if

∀x ∈X , Pµ∗K (x) = EK(µ∗K) . (1.13)

For a proof we just need to note that µ∗K is the minimum-energy measure in
M (1) if and only if FK(µ∗K ; ν) = 0 for all ν ∈M (1) and this condition is equivalent
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to FK(µ∗K ; δx) = 0 for all x ∈ X . In view of (1.12) this is exactly the condition
(1.13).

The minimum-energy signed measure µ∗K may not exist, especially when the kernel
K is di�erentiable; such cases include the squared exponential kernel, the genealized
multiquadric kernel and isotropic Matérn kernels with shape parameter κ > 1, see
Example 1.2.

1.8. Su�cient conditions for the minimum-energy signed measure to
be a probability measure.
Theorem 1.3. [6, Th. 3.3] Assume that K is ISPD and translation invariant, with
K(x,x′) = F (x − x′) and F continuous, twice di�erentiable except at the origin,

with Laplacian ∆F (x) =
∑d
i=1 ∂

2F (x)/∂x2i ≥ 0, x 6= 0. Then there exists a unique
minimum-energy signed measure µ∗K in M (1), and µ∗K is a probability measure.

The weaker condition F (x−x′) = f(|x−x′|) with f(·) convex on (0,∞) is su�cient
when d = 1. When d ≥ 2 with F (x− x′) = f(‖x− x′‖), f(·) must have a singularity
at 0 to have ∆F (x) ≥ 0 for all x 6= 0. For the Riesz kernels K(α) of (1.9), we have
∆(‖x‖−α) = α(α + 2 − d)/‖x‖α+2, x 6= 0. Therefore, the conditions of the theorem
are met when d > 2 and α ∈ (0, d − 2]. For the logarithmic kernel (1.10), we have
∆(− log ‖x‖) = (2− d)/‖x‖2, x 6= 0 and the conclusions of the theorem remain valid
for d = 1, 2, although the kernel is only CISPD.

1.9. Separable kernels. Consider the case of the so-called separable (tensor
product) kernels

K(x,x′) =

d∏
i=1

Ki(xi, x
′
i)

on X = X1 × · · · ×Xd, where the Ki are univariate bounded (C)ISPD kernels. The
following properties can be veri�ed.

- If each EKi(·) is strictly convex on M (1)∩MKi for Xi, then EK(·) is strictly
convex on M (1) ∩MK for X ; see [14].

- The minimum-energy probability measure µ+
K is the product of univariate

minimum-energy probability measures µ+
Ki
: µ+

K(dx) =
∏d
i=1 µ

+
Ki

(dxi).
- If the minimum-energy signed measure µ∗Ki for Ki on Xi exists for each i,
then the minimum-energy signed measure µ∗K for K on X exists and equals

µ∗K(dx) =
∏d
i=1 µ

∗
Ki

(dxi).
- If, for each i, the minimum-energy signed measure µ∗Ki for Ki on Xi exists

and coincides with µ+
Ki
, the minimum-energy probability measure for Ki on

Xi, then µ
∗
K for K on X exists and coincides with µ+

K , the minimum-energy
probability measure for K on X .

1.10. Numerical construction of minimum-energy signed measures for
bounded kernels: discrete case. Assume that the set X is discrete: X = XN =
{x1, . . . ,xN} and the kernelK is SPD (and thus bounded). Let 1N = (1, 1, . . . , 1)T be
the vector of ones of size N and K = (K(xi,xj))i,j=1,...,N . The energy of the measure
ζN that assigns weights wj to the points xj (j = 1, . . . , N) is then EK(ζN ) = Φ(wN ) =
wT
NKwN , where wN = (w1, . . . , wN )T . The vector of weights corresponding to the

minimum-energy signed measure ζ∗N of total mass one can be easily computed:

w∗N = K−11N/
(
1TNK−11N

)
, (1.14)
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giving

Φ(w∗N ) = min
w

Φ(w) = 1/
(
1TNK−11N

)
,

where the minimum is taken over all vectors w = (w1, . . . , wN )T with 1TNw = w1 +
. . .+wN = 1. The potential of ζ∗N is the vector with constant entries pw∗N

= Kw∗N =

1N/
(
1TNK−11N

)
.

1.11. Numerical construction of optimal measures for SPD kernels:
general case. We approximate a general set X with a �nite set XN = {x1, . . . ,xN}
and in this way we approximate the original problem of �nding the optimal measure ζ∗

(either signed or probability) minimizing the energy EK(µ) with the discrete problem
of minimizing Φ(w) = wTKw, where K = (K(xi,xj))i,j=1,...,N . In both classes of
discrete measures (signed or probability), this problem has a unique solution; in the
class of signed measures, this solution is given by (1.14). As shown below, in many
interesting cases the optimal (discrete) measure ζ∗N is a probability measure, and it
is easy to construct an accurate approximation of the optimal continuous measure ζ∗

from ζ∗N ; for example, in the case X ⊂ R we can build either piece-wise constant, or
continuous piece-wise linear, approximations.

1.12. Motivation behind the research and the structure of the rest of
the paper. Motivation behind this research is two-fold.

(1) For any PD kernel K and a probability measure ν, minus energy −EK(ν) is
the so-called Rao's quadratic entropy introduced and studied by C.R. Rao,
see e.g. [7, 8]. This entropy has wide-spread applications in many applied
�elds, especially in biology. Maximum-entropy (and hence minimum-energy)
measures are very natural objects to study for di�erent classes of kernels
including singular ones. The authors have considered minimum-energy mea-
sures for the case of Riesz kernels in several previous papers, see for example,
[11, 12, 6]. The present paper broadly extends this research.

(2) Consider the MMD γK(µ, ν) de�ned in (1.4) in the case when the measure µ is
uniform on X . Methods of approximate computation of MMD γK(µ, ν) and
sequential minimization of this MMD (which is the energy for the measure
µ − ν) with respect to ν in the case of singular kernels is important for the
methodology of construction of space-�lling sequences of points, as singularity
of the kernel guarantees automatic repelling property of these points. This
methodology is the subject matter of a recent paper [6] by the present authors.

The structure of the rest of the paper is as follows. Section 2 contains the main
results and describes the principal algorithmic schemes. This section has �ve parts.

Section 2.1 summarizes properties of CM and Bernstein functions required later
on. It also relates CM functions to PD and ISPD kernels. In Section 2.2 we develop
our main approximation of a CM function with singularity at 0 by bounded CM func-
tions and in Theorem 2.5 we study properties of the family of these functions. In
Section 2.3 we discuss properties of the pre-Hilbert space associated with a singular
kernel and relate this space to the RKHS of the PD kernels constructed from CM
functions of Theorem 2.5. In Sections 2.4 and 2.5 we develop an algorithm for ap-
proximating minimum-energy measures of singular kernels. This algorithm is based
on the following: (a) the methodology developed in Section 2.2; (b) discretization
of the set X ; (c) method of numerical construction of minimum-energy signed mea-
sures for bounded kernels in discrete case, formulated in Section 1.10; and (d) using
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piecewise constant functions for approximating densities of the minimum-energy mea-
sures. In Section 3, the methodology of Section 2 is further detailed and numerically
investigated for the case of Riesz kernels on X = [0, 1].

2. Approximation of a CM function with singularity at 0 by a sequence
of bounded CM functions.

2.1. CM functions and Bernstein functions (BF). As formulated in Sec-
tion 1.1, a function f : (0,∞)→ R+ is completely monotone (CM) if f ∈ C∞(0,∞)
and (1.5) holds. If f is a non-constant CM function, then the inequalities (1.5) are
necessarily strict for all t > 0 and all k = 1, 2, . . .; see [10, Remark 1.5].

In this section, we formulate several important auxiliary results on completely
monotone and Bernstein functions.
Theorem 2.1. [10, Th. 1.4] (Bernstein). f is a CM function if and only if it is
the Laplace transform of a nonnegative Borel measure µ on [0,∞):

f(x) =

∫ ∞
0

e−txµ(dt) . (2.1)

Theorem 2.2. [10, Th. 3.2] (Levy-Khinchine representation). A function g :
(0,∞)→ R+ is a BF if and only if

g(x) = a+ b x+

∫ ∞
0

(1− e−tx) ν(dt) (2.2)

where a, b ≥ 0 and ν is a nonnegative measure on (0,∞) with
∫∞
0

min(1, t) ν(dt) <∞.
The triplet (a, b, ν) uniquely determines g and vice versa.

If g is a BF of the form (2.2), then f = g′ is CM with the measure µ of (2.1)
being

µ(dt) = b δ0(dt) + t ν(dt) , (2.3)

where δ0(dt) is the delta-measure concentrated at 0. According to [10, Proposition
3.4], for a completely monotone function f with measure µ, there exists a BF g such
that f = g′ if and only if the measure µ of (2.1) satis�es∫ ∞

0

1

1 + t
µ(dt) <∞ . (2.4)

In this case, we can set g(t) =
∫ t
0
f(u)du.

The relation between non-constant CM functions and SPD kernels is characterised
by the following result, essentially proved by Shoenberg in [13].
Theorem 2.3. [16, Th. 7.13 & 7.14] Let ψ : [0,∞) → R be a non-constant bounded
function and de�ne the kernel K : Rd × Rd → R by K(x,x′) = ψ(‖x − x′‖2), where
‖ · ‖ is the Euclidean norm. Then ψ is CM if and only if the kernel K is SPD for any
d = 1, 2, . . .

Note that Theorem 2.1 and the fact that the exponential kernel K1/2,β(x,x′) =
exp(−β‖x−x′‖), β > 0, is ISPD, implies that if f is a non-constant, CM and bounded
function, then the kernel K(x,x′) = f(‖x−x′‖) is bounded and ISPD (and therefore
SPD). Also, as shown in [10], having the kernel K(x,x′) = −ψ(‖x−x′‖2) CISPD for
a continuous ψ requires ψ to be a BF.

We also have the following property for unbounded kernels constructed from CM
functions.
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Theorem 2.4. [3, Corollary 8] Let f : (0,∞)→ R be an L1 CM function, possibly with
singularity at zero. Then the kernel K : R× R→ R de�ned by K(x, x′) = f(|x−x′|)
is ISPD.

Unlike Theorem 2.3, Theorem 2.4 deals with one-dimensional case only. The
authors are unaware of any generalization of Theorem 2.4 to kernels in Rd.

2.2. Approximating family. Assume that a non-constant function f is CM
with the measure µ of (2.1) satisfying (2.4). Then f = g′, where g(t) =

∫ t
0
f(u)du is

BF. The value f(0) may be unde�ned; that is, f(0+) = limt→0+ f(t) ≤ +∞. Our aim
is to construct a family of CM functions fε such that fε(0+) = limt→0+ fε(t) < ∞
for all ε > 0 and limε→0 fε(t) = f(t) for all t > 0.

The family is given by

fε(t) =

{
f(t) = g′(t), ε = 0

1
ε

∫ t+ε
t

f(s) ds = 1
ε [g(t+ ε)− g(t)] , ε > 0 .

(2.5)

It satis�es the following important properties.
Theorem 2.5. Let f be a non-constant CM function with the measure µ of (2.1)

satisfying (2.4). Consider the family of functions (2.5), where g(t) =
∫ t
0
f(u)du.

Then
(i) the functions fε are CM for all ε ≥ 0,
(ii) the functions fδ − fε are CM for all 0 ≤ δ < ε,
(iii) functions εfε − δfδ are CM for all 0 < δ < ε.

Proof. (i) Consider the form (2.2) for the function g. Then, for any ε > 0, the
function fε from (2.5) can be written as

fε(x) = b+
1

ε

∫ ∞
0

e−tx(1− e−εt) ν(dt) . (2.6)

Another form of (2.6) is

fε(x) =

∫ ∞
0

e−txµε(dt) , (2.7)

where µε(dt) = b δ0(dt) + hε(t) ν(dt) and

hε(t) =

{
t for ε = 0 ,

1
ε (1− e−εt) for ε > 0 ;

(2.8)

the expression for h0(t) follows from (2.3).
Since hε(t) > 0 for all ε ≥ 0 and t > 0, Theorem 2.1 implies that the functions fε

are CM for all ε ≥ 0.
(ii) Assume 0 < δ < ε and consider (2.7) and similar representation for fδ. Then

for all t > 0 we have

fδ(x)− fε(x) =

∫ ∞
0

e−tx [µδ − µε] (dt) (2.9)

where

[µδ − µε] (dt) = [hδ(t)− hε(t)] ν(dt) . (2.10)

The measure [hδ(t)− hε(t)] ν(dt) is positive since, for any t > 0, we have hδ(t) −
hε(t) > 0. Indeed, for any �xed t > 0, the function hε(t), considered as a function of
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ε ∈ (0,∞), is strictly positive and strictly decreasing; the former has been noted in
the proof of (i) and the latter follows from

∂hε(t)

∂ε
=

(1 + εt) e−εt − 1

ε2

and the easily veri�able fact that the function ω(s) = (1+s)e−s−1 is strictly negative
for all s > 0.

Consider now the case δ = 0. The expressions (2.9) and (2.10) are still valid but
now we need to justify that

h0(t)− hε(t) = t− 1

ε

(
1− e−εt

)
=
tε+ e−εt − 1

ε

is positive for all ε > 0 and all t > 0. This follows from the fact that the function
ω0(s) = s+ e−s − 1 is strictly positive for all s > 0.

(iii) Using (2.8), we obtain similarly to (2.9) and (2.10):

δfδ(x)− εfε(x) =

∫ ∞
0

e−tx [δµδ − εµε] (dt)

with

[δµδ − εµε] (dt) = b(ε− δ)δ0(dt) + [δhδ(t)− εhε(t)] ν(dt)

= b(ε− δ)δ0(dt) +
[
e−εt − e−δt

]
ν(dt) .

In view of Theorem 2.2, b ≥ 0. As 0 < δ < ε, we have b(ε − δ) ≥ 0 and
e−εt − e−δt > 0 for all t > 0. Therefore, the measure [δµδ − εµε] (dt) is positive and
hence, by Theorem 2.1, the function δfδ − εfε is CM. �

Four simple examples of CM functions and approximating families are given be-
low. Note that in examples (a) and (b) the function f(t) is bounded at 0 and 0 < α < 1
in examples (b)�(d).

(a) f(t) = e−λt, λ > 0: fε(t) = cε,λf(t) with cε,λ = (1− e−λε)/(λε).
(b) f(t) = 1/(1 + t)1+α: fε(t) = [(1 + t)−α − (1 + t+ ε)−α] /(α ε).
(c) f(t) = 1/t1−α: fε(t) = ((t+ ε)α − tα)/(αε).
(d) f(t) = 1/(t1−α(1 + t)1+α) : fε(t) = [(1+1/(t+ε))−α−(1+1/t)−α] /(αε).

2.3. Reproducing kernel pre-Hilbert space associated with a singular
kernel. Let X = [0, 1] and f be a non-degenerate CM function with singularity at 0.
Assume, like in Section 2.2, that the measure µ of (2.1) satis�es (2.4). De�ne the
kernel K : X ×X → R by the formula (1.6).

Consider the family of functions {fε}ε>0 de�ned by (2.5). In view of Theorem 2.5
all these functions are CM and bounded. Using the construction of Theorem 2.4,
create the SPD kernels

Kε(x, x
′) = fε(|x− x′|) . (2.11)

With each kernel Kε(·, ·), ε > 0, we associate H(Kε), the RKHS (Reproducing Kernel
Hilbert Space). All these RKHS H(Kε), ε > 0, are equivalent since, according to (ii)
and (iii) of Theorem 2.5, fδ − fε and (ε/δ)fε − fδ are CM functions for 0 < δ < ε.
Here we have also used the following result [1, Th. 12]: H(K) ⊂ H(K ′) if and only if
there exists constant c > 0 such that cK ′ −K is a positive de�nite kernel.
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Denote the scalar product in H(Kε) by 〈·, ·〉ε. For a function g ∈ H(Kε), consider
the norms ‖g‖ε =

√
〈g, g〉ε with ε > 0. As the set of potentials Pν(·) with ν ∈ M

is dense in H(Kε), we may only consider functions g = Pν(·), ν ∈ M . In view of
Theorem 2.5, the functions fε, fε′ and fε′ − fε are bounded and CM for 0 < ε′ < ε.
Therefore, for functions g = Pν(·) with ν ∈ M we have ‖g‖2ε = EKε(ν), ‖g‖2ε′ =
EKε′ (ν) and ‖g‖2ε′ − ‖g‖2ε = EKε,ε′ (ν) ≥ 0, where Kε,ε′ is the kernel Kε,ε′(x, x

′) =
fε′(|x− x′|)− fε(|x− x′|).

As for all g ∈ H(Kε) we have ‖g‖ε ≤ ‖g‖ε′ for 0 ≤ ε′ ≤ ε, there is a limit

‖g‖0 = lim
ε→0
‖g‖ε ≤ ∞ .

We can then de�ne the set

H(K) = {g ∈ H(Kε) for some ε > 0: ‖g‖0 <∞} .

The scalar product in H(K) is de�ned as the limit: 〈g, g′〉0 = limε→0〈g, g′〉ε for
g, g′ ∈ H(K).

The set H(K) is not a Hilbert space as H(K) is not complete. It is, however,
a pre-Hilbert space and can be referred to as "Reproducing kernel pre-Hilbert space
associated with kernel (1.6)". Note that the set H(K) is not empty as it contains
all potentials Pν(·), see (1.3), of measures ν ∈ MK , where MK is the set of signed
measures with �nite energy, see (1.2). Note also that, unlike the spaces H(Kε) with
ε > 0, the space H(K) does not contain potentials of delta-measures δx, x ∈X .

Similarly to the discussion above we can de�ne a reproducing kernel pre-Hilbert
space associated with kernel K(x,x′) = f(‖x − x′‖2), constructed in Theorem 2.3,
through the RKHS of the bounded kernels Kε(x,x

′) = fε(‖x−x′‖2) . Here x,x′ ∈X ,
a compact subset of Rd; d ≥ 1.

2.4. Discrete approximations. In this section, we apply the methodology of
Section 1.10 and construct discrete approximations to minimum-energy signed mea-
sures of total mass one on X = [0, 1] for kernels Kε de�ned by (2.11) with fε con-
structed as in Section 2.2.

Take ε > 0 and an integer N . Choose N design points x1, . . . , xN in [0, 1]
(for example, set xk = (k − 1)/(N − 1), k = 1, . . . , N), form the matrix Kε,N =
(fε(|xi − xj |))i,j=1,...,N and compute the minimum-energy signed measure ζ∗ε,N in
M (1) supported on the xi. The optimal weights are given by (1.14),

w∗ε,N = K−1ε,N1N/
(
1TNK−1ε,N1N

)
, (2.12)

and the minimum value of the discrete energy Φε,N (w) = wTKε,Nw for measures of
total mass one is

EKε(ζ
∗
ε,N ) = Φε,N (w∗ε,N ) = 1/

(
1TNK−1ε,N1N

)
.

For a �xed ε > 0, the kernel Kε is ISPD, see Section 2.1. Since the function fε is
convex, Theorem 1.3 implies that the minimum-energy signed measure µ∗Kε in M (1)
exists and is a probability measure, obtained as the solution of condition (1.13) in
Theorem 1.2. Therefore, if the design points xi are such that maxx∈[0,1] mini |x−xi| →
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0 as N →∞, we have EKε(ζ
∗
ε,N )→ EKε(µ

∗
Kε

). This implies that

γ2Kε(ζ
∗
ε,N , µ

∗
Kε) = EKε(ζ

∗
ε,N − µ∗Kε)

= EKε(ζ
∗
ε,N ) + EKε(µ

∗
Kε)− 2

N∑
i=1

w∗ε,N i

∫
Kε(xi, x)µ∗Kε(dx)

= EKε(ζ
∗
ε,N )− EKε(µ

∗
Kε)→ 0 as N →∞ .

Moreover, when the xi are obtained from an in�nite sequence {x1, x2, . . .} satisfy-
ing maxx∈[0,1] mini |x − xi| → 0 as N → ∞, the convergence is monotone; that is,
γKε(ζ

∗
ε,N , µ

∗
Kε

) ↓ 0. However, for any �xed N , EKε(ζ
∗
ε,N ) = Φε,N (w∗ε,N ) tends to ∞

as ε→ 0. As discrete measures cannot be used for kernels with singularities, we shall
use an absolutely continuous version of ζ∗ε,N having weights (2.12). The construction
is described in the next section.

2.5. Approximations with piecewise constant densities. Let 0 ≤ x1 <
. . . < xN ≤ 1 be the support points of a discrete probability measure ζN and wk ≥ 0
(k = 1, . . . , N) be the corresponding weights with

∑N
k=1 wk = 1. De�ne the N + 1

points zi by

zj = (xj + xj+1)/2, j = 1, . . . , N − 1 and z0 = 0, zN = 1 .

We partition the interval [0, 1) into N non-intersecting intervals Ij = [zj−1, zj) (j =
1, . . . , N), with respective lengthes lj = zj − zj−1. We have lj > 0 for all j = 1, . . . , N
and

∑
j lj = 1. De�ne the piecewise constant function

pN (t) =

{
wj/lj if t ∈ Ij for some j = 1, . . . , N

0 if t /∈ [0, 1) .
(2.13)

We have pN (t) ≥ 0 for all t and
∫ 1

0
pN (t)dt =

∑N
j=1 wj = 1 and therefore pN is a

probability density function. We shall use it as a continuous approximation to ζN .
Note that if xj = (j−1)/(N −1) (j = 1, . . . , N), then l1 = lN = 1/[2(N −1)] whereas
li = 1/(N − 1) for i = 2, . . . , N − 1.

Denote by ζ̃N the measure having the density (2.13). Then its energy (1.1) for
K(x, y) = f(|x− y|) can be written as

EK(ζ̃N ) =

∫ 1

0

∫ 1

0

K(x, y)pN (x)pN (y)dx dy

= 2

N∑
i=2

wi
li

∫
Ii

i−1∑
j=1

wj
lj

∫
Ij

f(x− y)dy

dx+

N∑
i=1

w2
i

l2i

∫
Ii

∫
Ii

f(|x− y|)dxdy

= wT
NK̃NwN ,

where wN = (w1, . . . , wN )T and K̃N is symmetric with

(K̃N )i,i =
1

l2i

∫ zi

zi−1

[∫ x

zi−1

f(x− y)dy +

∫ zi

x

f(y − x)dy

]
dx and (2.14)

(K̃N )j,i =
1

lilj

∫ zi

zi−1

[∫ zj

zj−1

f(x− y)dy

]
dx for j < i . (2.15)

11



We can therefore obtain EK(ζ̃N ) in closed-form when closed-form expressions for∫ b

a

[∫ t

a

f(t− s)ds
]
dt and

∫ d

c

[∫ b

a

f(t− s)ds

]
dt (2.16)

are available for any 0 ≤ a ≤ b ≤ c ≤ d ≤ 1. In that case, if there exists a minimum-
energy measure µ∗K ∈M (1) on [0, 1] for the kernel K, the minimum energy measure

ζ̃∗N of total mass one, for K, among those having piecewise constant densities pN (t)

on the partition above, gives an approximation of µ∗K . The optimal measure ζ̃∗N , with

density p∗N (t), is characterized by the weights w̃∗N = K̃−1N 1N/(1
T
NK̃−1N 1N ). Also,

developments similar to those in Section 2.4 give

γ2K(ζ̃∗N , µ
∗
K) = EK(ζ̃∗N )− EK(µ∗K) , (2.17)

which is well de�ned for singular kernels.
The potential P̃N (x) for the measure with density pN (t) can be computed in a

similar way for x in any Ij , j = 1, . . . , N . Indeed, for any x ∈ Ij = [zj , zj+1), we have

P̃N (x) =

∫ 1

0

K(x, y)pN (y)dy =

N∑
i=1

wi
li

∫
Ii

f(|x− y|)dy

=

j−1∑
i=1

wi
li

∫ zi+1

zi

f(x− y)dy +
wj
lj

∫ zj+1

zj

f(|x− y|)dy +

N∑
k=j+1

wk
lk

∫ zk+1

zk

f(y − x)dy

=

j−1∑
i=1

wi
li

∫ zi+1

zi

f(x− y)dy +

N∑
k=j+1

wk
lk

∫ zk+1

zk

f(y − x)dy

+
wj
lj

(∫ x

zj

f(x− y)dy +

∫ zj+1

x

f(y − x)dy

)
.

This expression for P̃N (x) can be used in particular to check how close the potential

P̃ ∗N (x) associated with p∗N (t) is to being constant for x ∈ [0, 1].
The construction above can be applied to the discrete approximations ζ∗ε,N of

Section 2.4. We denote by ζ̃ε,N the measure with piecewise constant density and

weightsw∗ε,N given by (2.12), and by ζ̃∗ε,N the measure with piecewise constant density

having weights w̃∗ε,N obtained with the kernel K̃ε,N computed with (2.14, 2.15) where
f is replaced by fε, ε ≥ 0. When K(x, x′) = f(|x − x′|) with f singular at zero and

µ∗K exists, we can compute the MMD discrepancies γK(ζ̃ε,N , µ
∗
K) and γK(ζ̃∗ε,N , µ

∗
K),

see (2.17), and plot them as functions of ε.

3. Case study: Riesz kernels on [0, 1].

3.1. Riesz kernels and associated optimal measures. Consider the function
f(t) = t−α (0 < α < 1), on t ∈ (0, 1] and the associated kernel

K(t, s) = f(|t− s|) = |t− s|−α, t, s ∈ [0, 1] , t 6= s. (3.1)

In this case, the minimizing measure µ∗ for the energy functional (1.1) is known. In
fact, it is a probability measure with density

φα(t) = cα · [t(1− t)](α−1)/2 , t ∈ [0, 1] , cα =
Γ(α+ 1)[
Γ(α+1

2 )
]2 . (3.2)
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That is, µ∗ has Beta-distribution with parameters α+1
2 , α+1

2 on [0, 1].

We have:

∫ 1

0

K(t, s)φα(s)ds=

∫ t

0

1

(t− s)α
φα(s)ds+

∫ 1

t

1

(s− t)α
φα(s)ds = cα

π

cos(πα/2)
= Φ∗α ,

where

Φ∗α =
πΓ(α+ 1)

cos(πα/2)
[
Γ(α+1

2 )
]2 = min

µ∈M (1)
Φ(µ) .

Values of Φ∗α are plotted in Fig 3.1, left; normalised values (Φ∗α)
1−α

are plotted in
Fig 3.1, right.

Figure 3.1: Left: values of Φ∗α for α ∈ [0, 0.9]. Right: values of (Φ∗α)
1−α

for α ∈ [0, 1].

Note that for the kernel (3.1) we have the following exact formulas for (2.16):

∫ b

a

[∫ t

a

(t− s)−αds
]
dt =

(b− a)2−α

(1− α)(2− α)
;∫ d

c

[∫ b

a

(t− s)−αds

]
dt =

(d− a)2−α + (c− b)2−α − (d− b)2−α − (c− a)2−α

(1− α)(2− α)
.

To compute the potentials for measures µ = µN having the density (2.13) we use
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the following formulas for x ∈ Ij = [zj , zj+1):

PµN (x) =

∫ 1

0

K(x, y)pN (y)dy =

N∑
i=0

wi
li

∫
Ii

f(|x− y|)dy

=

j−1∑
i=0

wi
li

∫ zi+1

zi

(x− y)−αdy +
wj
lj

∫ zj+1

zj

|x− y|−αdy +

N∑
k=j+1

wk
lk

∫ zk+1

zk

(y − x)−αdy

=
1

1− α

[
j−1∑
i=0

wi
li

[
(x− zi)1−α − (x− zi+1)1−α

]
+
wj
lj

[
(x− zj)1−α + (zj+1 − x)1−α

]
+

N∑
k=j+1

wk
lk

[
(zk+1 − x)1−α − (zk − x)1−α

] .
3.2. E�ciency of the uniform probability measure. Let µ0 be the uniform

probability distribution on [0, 1]. We de�ne the e�ciency of µ0 as

eff(µ0) =
Φ∗α

Φα(µ0)
=

(1− α)(2− α) cos(πα/2)
[
Γ(α+1

2 )
]2

2πΓ(α+ 1)
, (3.3)

where

Φα(µ0) = EK(µ0) =

∫ 1

0

∫ 1

0

|t− s|−αdtds =
2

(1− α)(2− α)
(3.4)

is the energy of the uniform measure. For all values of α ∈ [0, 1) this e�ciency is quite
high, see Fig 3.2, left (the lowest value of this e�ciency is ' 0.98135 which is achieved
at α ' 0.36253). The quality of approximations used for the uniform measure are
therefore indicative of what is happening with approximations used for the optimal
measures.

The potential of the uniform measure is

Pµ0;α(t) =

∫ 1

0

|t− s|−αds =

∫ t

0

(t− s)−αds+

∫ 1

t

(s− t)−αds =
t1−α + (1− t)1−α

1− α
.

This potential and its average value Φα(µ0) =
∫ 1

0
Pµ0;α(t)µ0(dt) are plotted in Fig 3.2,

right, for α = 0.5. As can be seen from this �gure, despite the uniform measure has
high e�ciency, there is still room for improvement, since the potential of the optimal
measure is a constant function.

3.3. Approximation of f by fε. The Bernstein function associated with f(t) =
t−α is g(t) = t1−α/(1− α), t ≥ 0, and the functions fε from (2.5) are

fε,α(t) =
(t+ ε)1−α − t1−α

ε(1− α)
, t ≥ 0. (3.5)

Let us study the quality of approximation of the kernel (3.1) by the family of
kernels

Kε,α(t, s) = fε,α(|t− s|), t, s ∈ [0, 1] , (3.6)
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Figure 3.2: Left: e�ciency of the uniform measure computed by (3.3) for α ∈ [0, 1).
Right: Potential of the uniform measure Pµ0;α(t) and its average value Φα(µ0), see
(3.4), computed for α = 0.5.

where fε,α is given in (3.5). The energies of the uniform measure with respect to
kernels (3.6) are

Φα,ε(µ0) =

∫ 1

0

∫ 1

0

fε,α(|t− s|)dtds = 2
(1 + ε)3−α−ε3−α−(3− α)ε2−α−1

ε(1− α)(2− α)(3− α)
. (3.7)

Since fε,α(t) < f(t) = t−α for all α ∈ (0, 1) and t > 0, we have Φα,ε(µ0) < Φα(µ0)
for all α ∈ (0, 1). Values of the ratio Φα,ε(µ0)/Φα(µ0) are plotted in Fig 3.3, left. We
can deduce from this �gure that if α is not very close to 1 (that is, when singularity
is not very strong) then fε,α can be considered as an accurate approximation to f ,
even for ε not very small. Note that the case when singularity of the kernel is strong
(when α is close to 1) is not very interesting when K is used to model the covariance
function of a random process, as this is very close to the case of no dependence (the
white noise case), for which the minimum energy measure is the uniform measure.

Expanding rhs in (3.7) into a series we obtain

Φα,ε(µ0) = Φα(µ0)
[
1− ε1−α + ε(1− α/2)

]
+O(ε2) , ε→ 0 .

The resulting approximation is very accurate for all α ∈ [0, 1), even if ε is not very
small. Already the very simple approximation

Φα,ε(µ0)/Φα(µ0) ' 1− ε1−α (ε ' 0) (3.8)

is quite accurate, as can be seen from Fig 3.3, right.
The optimal density (3.2) and the approximation (2.13) obtained for the weights

w̃∗ε,N on the uniform grid xk = k/N (k = 0, 1, . . . , N = 200) are presented in Figs. 3.4
and 3.5 for di�erent values of ε and α, illustrating the accuracy of the approximation.

Concluding this section we can state that if α is not too close to 1 (so that the
singularity of the kernel is not too severe) then fε,α accurately approximates f , if ε
is small enough.
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Figure 3.3: Left: ratios Φα,ε(µ0)/Φα(µ0) for ε = 10−k, k = 2, 4, 8. Right: quality of
approximation (3.8): values of Φα,ε(µ0)/

(
Φα(µ0)(1− e1−α)

)
computed for ε = 0.001

and α ∈ [0, 1).

Figure 3.4: Optimal densities (3.2), red, and numerically computed densities (2.13),
blue, on the uniform grid xk = k/N (k = 0, 1, . . . , N); N = 200, ε = 0.01. Left:

α = 0.1, e�ciency EK(µ∗K)/EK(ζ̃∗ε,N ) ' 0.99939. Right: α = 0.25, e�ciency

EK(µ∗K)/EK(ζ̃∗ε,N ) ' 0.99788.

3.4. Other examples. A long list of Bernstein functions can be found in [10,
Chapter 15]. In view of [4], among the �rst 50 Bernstein functions gi from this list, the
following cases the corresponding CM functions fi (proportional to g

′
i) have in�nite

value at zero: 1, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23, 25, 27, 31, 33, 34, 36, 38, 40, 41,
42, 43, 44, 45.
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Figure 3.5: Optimal densities (3.2), red, and numerically computed densities (2.13),
blue, on the uniform grid xk = k/N (k = 0, 1, . . . , N); N = 200, ε = 0.001.

Left: α = 0.5, e�ciency EK(µ∗K)/EK(ζ̃∗ε,N ) ' 0.99953. Right: α = 0.75, e�ciency

EK(µ∗K)/EK(ζ̃∗ε,N ) ' 0.99869.

Some of these functions are as follows (t > 0):

f1(t) = t−α, 0 < α < 1;

f8(t) =
t−α

(1 + t)2−α
, 0 < α < 1;

f11(t) =
αtα−1(1− tβ)− βtβ−1(1− tα)

(1− tα)
2 , 0 < α < β < 1 ;

f16(t) =
α1t
−α1−1 + . . .+ αnt

−αn−1

(t−α1 + . . .+ t−αn)
2 , 0 < α1, . . . , αn ≤ 1;

f19(t) =
(

1− (λ
√
t− 1)e−λ

√
t
)
/
√
t, λ > 0;

f23(t) = t (1 + 1/t)
1+t

log (1 + 1/t) .

The families of functions fi,ε(t) = (gi(t+ε)−gi(t))/ε are constructed by (2.5). Below
we give expressions for gi. Note that there may be an extra multiplier and a di�erent
parametrization if these functions are compared against corresponding expressions in
[10]. Since all functions gi,ε are normalized so that gi(0) = 0 for all i, the values
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fi,ε(0) are simply fi,ε(0) = gi(ε); for small ε > 0 these values are large.

g1(t) = t1−α/(1− α) , 0 < α < 1 ;

g8(t) =
t1−α

(1− α)(1 + t)1−α
, 0 < α < 1 ;

g11(t) = (tβ − tα)/(tα − 1), 0 < α < β < 1 ;

g16(t) = 1/
(
t−α1 + . . .+ t−αn

)
, 0 < α1, . . . , αn ≤ 1;

g19(t) = 2
√
t
(

1 + e−λ
√
t
)
, λ > 0;

g23(t) = t (1 + 1/t)
1+t − 1 .

Minimum-energy measures for the kernels constructed for all these (as well as many
other) CM functions has been numerically constructed by the authors. Results (and
�gures of optimal densities) are quite similar to the ones provided above for the Riesz
kernel.
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