
HAL Id: hal-02495623
https://hal.science/hal-02495623

Submitted on 2 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interactive Flat Coloring of Minimalist Neat Sketches
Amal Dev Parakkat, Prudhviraj Madipally, Hari Hara Gowtham, Marie-Paule

Cani

To cite this version:
Amal Dev Parakkat, Prudhviraj Madipally, Hari Hara Gowtham, Marie-Paule Cani. Interactive Flat
Coloring of Minimalist Neat Sketches. Eurographics 2020 short paper proceedings, May 2020, Nor-
rköping, Sweden. �hal-02495623�

https://hal.science/hal-02495623
https://hal.archives-ouvertes.fr


Interactive Flat Coloring of Minimalist Neat Sketches

Amal Dev Parakkat1, Prudhviraj Madipally2, Hari Hara Gowtham2 and Marie-Paule Cani1

1École Polytechnique, CNRS (LIX), IP Paris, France
2Indian Institute of Technology Madras, India

Figure 1: Left to Right: Input sketch, initial automatic segmentation, user cues, result of iterative coloring

Abstract
We introduce a simple Delaunay-triangulation based algorithm for the interactive coloring of neat line-art minimalist sketches,
ie. vector sketches that may include open contours. The main objective is to minimize user intervention and make interaction as
natural as with the flood-fill algorithm while extending coloring to regions with open contours. In particular, we want to save
the user from worrying about parameters such as stroke weight and size. Our solution works in two steps, 1) a segmentation
step in which the input sketch is automatically divided into regions based on the underlying Delaunay structure and 2) the
interactive grouping of neighboring regions based on user input. More precisely, a region adjacency graph is computed from
the segmentation result, and is interactively partitioned based on user input to generate the final colored sketch. Results show
that our method is as natural as a bucket fill tool and powerful enough to color minimalist sketches.

CCS Concepts
• Theory of computation → Computational geometry; • Computing methodologies → Image processing; Shape analysis; •
Applied computing → Fine arts;

1. Introduction

Colorizing line-art images is typically done in two steps [FTR18],
namely flat coloring (assigning uniform colors to each region in the
image) followed by the addition of extra information such as shad-
ing and lighting. While flat-coloring is easy for closed contours,
many line sketches do include gaps which makes the task diffi-
cult. This is in particular the case for minimalist stylized sketches
(see Figure 1, left), a style used in several recent movies such as
“Ernest & Celestine” and “The Big Bad Fox and Other Tales”.
Though a few methods exist to assist users in coloring sketches

with non-closed contours, most of them require heavy user inter-
action. Therefore, there is no viable solution for quickly coloring
minimal sketches at a large scale, as for instance for movie pro-
duction. Our goal is to provide an easy and robust way to perform
flat-coloring, applicable to both closed and open contours. Since
the “final good coloring” depends on the perspective of the artist,
the system should provide the user with artistic freedom and enable
to progressively edit and refine the result.
2. Related work

The first method used to make colorization of contour sketches
more robust was trapped-ball segmentation [ZCZ∗09], which



Amal Dev Parakkat et al. / Interactive Flat Coloring of Minimalist Neat Sketches

Figure 2: Left to right: Coloring after running a curve recon-
struction algorithm [PMM18]; Using GIMP’s line art coloring
tool [FTR18]; Results of PaintsChainer‡, a learning based semi-
automatic colorization tool [ZLW∗18].

sweeps a ball of predefined radius inside the sketch to prevent paint
from getting inside narrow pockets, or outside the outer contour.
While this enables robust processing of small cracks in the con-
tours, this method cannot be applied to arbitrary sketches, where
the level of details and thus the size of gaps may locally vary.

Another solution is to use the curve reconstruction methods used
for completing skip-stroke sketches [PMM18]: Curve reconstruc-
tion is applied on points sampled from the sketch, and used to gen-
erate a set of closed boundaries which can be filled using a simple
flood-fill tool. Unfortunately, such methods only works for a pre-
defined sampling rate which makes them inapplicable in case of
arbitrary gap sizes.

A third approach used in the widely spread GIMP software relies
on local sketch analysis [FTR18] instead of looking for global con-
nectivity. A set of key points and the associated splines curves are
computed, and used to create closed regions that can be filled using
bucket fill. As curve-reconstruction-based methods, this method
precomputes a set of closed boundaries, and hence iteratively re-
fining the result becomes cumbersome. See Figure 2 (center).

Semi-automatic methods were used to enable interactive edit-
ing and refinement [SDC]: Based on user-specified color scribbles,
some global energy is minimized while considering the geometry
of the sketch. As mentioned in the paper, the main drawback is that
the result highly depends on scribble sizes and weights - which the
user needs to keep in mind while coloring. Figure 3 shows the effect
of these cues while coloring in a sample sketch.

Recently, machine learning techniques were also used for color-
ing line art [ZLW∗18]. These methods, however, do not utilize the
geometric information that can be deduced from the sketch. There-
fore, even with user interaction, the desired result may not be easily
achieved. See Figure 2 (right).

3. Overview

Our goal is to propose a simple and natural method for the inter-
active flat-coloring of line arts. The main objective is to make the
process as simple for the user as bucket fill, while robustly han-
dling sketches with non-closed contours. In particular, the method

‡ https://paintschainer.preferred.tech

Figure 3: Effect of scribble size and weight in LazyBrush [SDC]
(each set represents input strokes and corresponding coloring)

Figure 4: Left to Right: Delaunay triangulation of a sample sketch,
Transition edges (in red color), Result of segmentation

should work for coloring minimalist sketches with open strokes,
such as those used in several recent movies.

In contrast with previous work, our solution relies on computa-
tional geometry. It makes use of two steps: the automatic segmen-
tation of the sketch into regions (Section 4), and then the iterative,
on-the-fly grouping of these region based on interactive user input
(Section 5). In the remainder of the paper, we assume our input
sketch is “neat”, ie. is a simple vector sketch, with contours stored
as polylines and no extra information (no hatching, no shading). If
this was not the case, some prepossessing would need to be applied
before launching our method.

4. Segmenting a sketch with non-closed contours

The algorithm starts with an automatic segmentation of the input
sketch into a set of potential regions. The foreground pixels are
first mapped to Euclidean space, and a Delaunay triangulation (DT)
is computed. The transition between regions is captured from this
Delaunay structure by identifying “transition edges", ie. edges for
which the circumcenters of the two associated triangles lie on op-
posite sides.

Neighboring triangles with no transition edge are then grouped
using a triangle growing method similar to the one in [PPM18]:
initially, a candidate triangle (an un-visited triangle which is not
part of any already identified region) is selected. Starting from this
candidate triangle, we recursively merge it to its neighbors until all
boundary edges for the region are either transition edges or part of
sketch contours.

To enable coloring of the background, points are added at the

https://paintschainer.preferred.tech


Amal Dev Parakkat et al. / Interactive Flat Coloring of Minimalist Neat Sketches

Figure 5: Left to Right: A sketch with color cues (the order in which cues were given is indicated); Intermediate steps of the iterative coloring.

four corners of the image before the process starts. Figure 4 shows
the Delaunay triangulation of a sample sketch, the corresponding
transition edges (in red color), and the resulting regions.

5. Interactive Grouping based on user input

As shown in Figure 4, the segmentation step often over-segments
the input sketch. This is not a problem since in the next stage, we
interactively and iteratively merge the regions based on the cues
given by the user. To achieve this, a region adjacency graph G is
initially computed, in which the initial regions output by the seg-
mentation step are vertices, and an edge is created between two ver-
tices if their corresponding region share a common transition edge
(Note that we create no edge between regions separated by a con-
tour stroke, in order to avoid merging between regions parted by a
contour). A weight w is assigned to each edge of the graph, and set
to the Euclidean edge length of the corresponding transition edge.
The weight thus models the easiness for paint to flow between the
two associated regions.

Once the graph is created, regions are iteratively merged based
on the successive color cues given by the user in the form of mouse
clicks, as follows:

The interactive merging starts with assigning initial strength to
all vertices (Color_Strength()) in the graph to -∞ (which repre-
sents the amount of color that has been already stored at this partic-
ular vertex). Once a user picks a color and clicks (filling color) at a
specific position, the region R and its corresponding graph vertex v
(denoted as vertex(R)) are identified from the location of the mouse
click. All the regions in the graph that are reachable from region R
are then filled with the selected color. It has to be noted that this
process is initially similar to the bucket fill tool (since all vertices
inside a closed boundary do have a path between them).

After filling this color, the Color_Strength(u) of all vertices
u which are reachable from vertex v is updated to the value of
Edge_Flow(u,v), ie. the flow that can reach u when colored at v,
constrained by the the length of the shortest transition edge along
the way - ie. the smallest weight along a graph path, defined as:

Edge_Flow(u,v) = max(f (X ) : ∀ paths X f romu to v)

f (X ) = min(Weight(u,v) : ∀(u,v) ∈ X )
(1)

The user then iteratively picks different colors and clicks on a
chosen position in the sketch (as in bucket filling). Based on the
region R the user selected, the color is recursively spread to the
neighboring regions Ri, but only if the Color_Strength(vertex(Ri))
is smaller than the Edge_Flow(vertex(Ri),vertex(R)).

Figure 6: Priority
based path selection

To ensure that the color spreads
through the largest gap first (so that
in Figure 6, a color applied on re-
gion R1 will reach region R2 through
Path 1, instead of Path 2 which pri-
ority is limited by the size of the gap
between a and b), we make use of
a priority queue, as follows: When
a user clicks on a region R, the re-
gion is filled with the user-selected
color, the Color_Strength(vertex(R))
is updated to ∞ and each neigh-
bor u of vertex(R) is inserted into the priority queue with
Edge_Flow(u,vertex(R)) as priority. After that, vertices v are it-
eratively taken from the priority queue and if Color_Strength(v)
is smaller than Edge_Flow(v,vertex(R)), then the region corre-
sponding to v is colored, the Color_Strength(v) is updated to
Edge_Flow(v,vertex(R)) and all neighbors of v are inserted to the
queue. This procedure runs until the priority queue is empty.

Figure 5 shows various steps in the iterative coloring procedure.
From left to right, the figures show the order in which the colors are
given, and the result after each step. We believe that our algorithm
is order-independent: indeed, whatever the order in which colors
were applied, we end up in the same final result, thanks to the graph
flow mechanism which models how much a transition edge in the
sketch is likely to be suppressed.

6. Results & Discussion

Figure 7 shows interactive coloring results using our method. Each
set shows the input sketch (with user click positions and corre-
sponding colors in circles) along with the results. It can be observed
that our approach took almost the same number of mouse clicks
as that might have been required if the sketch was connected, and
when a bucket fill tool is used. This shows the simplicity and power
of the proposed algorithm.

Though our simple approach works quite well, it has few limita-
tions. First of all, we assumed the input is neat; hence, the proposed
approach is not applicable to sketches with shading information. A
way to solve this issue would be to identify and filter out shading
information and restore it back after coloring. Also, if the input is a
rough sketch (drawn with multiple strokes - such as the pigface in
Figure 7), though our approach helps in coloring it, the small gaps
between strokes representing the same contour will be left unat-
tended, unless the user manually colors those regions separately.

The main objective of the initial segmentation we used is to re-



Amal Dev Parakkat et al. / Interactive Flat Coloring of Minimalist Neat Sketches

Figure 7: Sketches and the color cues along with the result of our method

Figure 8: Left to Right: A sample sketch, Expected connection, Re-
sult of our method, Underlying region (with and without zooming)

Figure 9: (a) Parts of different sketches, (b) Results of our method,
and (c) Expected boundaries.

duce the complexity of the algorithm (triangles are merged to facil-
itate the easy spreading of colors while having a small region ad-
jacency graph). This segmentation sometimes misses some of the
features an human would perceive such as the connection between
body and tail of the chameleon, as shown in Figure 8. One alter-
native would be to construct a region adjacency graph from ver-
tices denoting each of the Delaunay triangles, instead to use pre-
segmented, larger regions.

7. Conclusion & Future Work

In this paper, we proposed an easy to use approach for coloring
minimalist sketches. The proposed Delaunay-triangulation-based
algorithm is easy to implement and results shows that we are able
to generate good results compared to the state of the art algorithms,
and with less user effort.

In our current solution, gaps in the sketch’s contours end up
straightly connected by Delaunay edges, which might not be suf-
ficient in some cases. For instance, Figure 9 shows a few percep-
tually expected connections and the results generated by our ap-
proach. An avenue for future research would be to make use of
more sophisticated algorithms, such as the one introduced in Entem
et al. [EPB∗19] in the specific case of smooth shapes, for contour
completion. A new alternative would need to be found for restoring
contours with sharp corners. Another exciting direction of future
work would be to extend the algorithm in order to color sketches
with extra information, such as shading and hatching.

References
[EPB∗19] ENTEM E., PARAKKAT A. D., BARTHE L., MUTHUGANAP-

ATHY R., CANI M.-P.: Automatic structuring of organic shapes from a
single drawing. Computers & Graphics 81 (2019), 125 – 139. 4

[FTR18] FOUREY S., TSCHUMPERLÉ D., REVOY D.: A fast and effi-
cient semi-guided algorithm for flat coloring line-arts. In Proceedings of
the Conference on Vision, Modeling, and Visualization (2018), EG VMV
’18, pp. 1–9. 1, 2

[PMM18] PARAKKAT A. D., METHIRUMANGALATH S.,
MUTHUGANAPATHY R.: Peeling the longest: A simple general-
ized curve reconstruction algorithm. Computers & Graphics 74 (2018),
191 – 201. 2

[PPM18] PARAKKAT A. D., PUNDARIKAKSHA U. B., MUTHUGANAP-
ATHY R.: A delaunay triangulation based approach for cleaning rough
sketches. Computers & Graphics 74 (2018), 171 – 181. 2

[SDC] SÝKORA D., DINGLIANA J., COLLINS S.: Lazybrush: Flexible
painting tool for hand-drawn cartoons. Computer Graphics Forum 28, 2,
599–608. 2

[ZCZ∗09] ZHANG S., CHEN T., ZHANG Y., HU S., MARTIN R. R.:
Vectorizing cartoon animations. IEEE Transactions on Visualization and
Computer Graphics 15, 4 (2009), 618–629. 1

[ZLW∗18] ZHANG L., LI C., WONG T.-T., JI Y., LIU C.: Two-stage
sketch colorization. ACM Trans. Graph. 37, 6 (Dec. 2018), 261:1–
261:14. 2


