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Abstract
Robotization is increasingly used in the agriculture since the last few decades. It is 
progressively replacing the human workforce that is deserting the agricultural sec-
tor, partly because of the harshness of its activities and health risks they may pre-
sent. Moreover, robotization aims to improve efficiency and competitiveness of the 
agricultural sector. However, it leads to several research and development challenges 
regarding robots supervision, control and optimization. This paper presents a simu-
lation and optimization approach for the optimization of robotized treatment tasks 
using type-c ultraviolet radiation in horticulture. The optimization of tasks schedul-
ing problem is formalized and a heuristic and a genetic algorithms are proposed to 
solve it. These algorithms are evaluated compared to an exact method using a multi-
agent-based simulation approach. The simulator takes into account the evolution of 
the disease during time and simulates the execution of treatment tasks by the robot.

Keywords Scheduling · Simulation · Optimization · Multi agent system · UV-c 
treatment
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1 Introduction

Since the dawn of time, humans are trying to improve the yield of agricultural 
activities and to make them less painful, starting by using animals, then machines, 
and, nowadays, robots. Several research works deal with the design and the devel-
opment of robots in the agricultural field. Farming robots can be found in many 
agricultural activities, from plant cultivation to harvest (Sistler 1987). The most 
used robots in agriculture are sprayers and combine harvesters. Several laborato-
ries are developing methods to improve and facilitate the cultivation of plants. It 
is important to notice that the agriculture sector is not limited to the cultivation 
of fruits and vegetables, but it also includes other related activities such as food 
industry, spices, tissues and basic elements of drugs (Oberti et al. 2016).

Downy and powdery mildew are two types of fungi of the same family that 
usually contaminate plants. There are small differences between them about the 
manner they infect the leaves of plants. Downy mildew is characterized by oily 
stains that manifests itself under the leaves. Plants susceptible to downy mildew 
are vine, tomato, potato, lettuce and squash (Zhang et al. 2018; Li et al. 2017). 
Powdery mildew is characterized by a white powder like a flour that covers the 
foliage. It affects several plants, but the most sensitive are the oak, the maple, the 
quince, the apple tree and the hawthorn (Peries 1962; Janisiewicz et  al. 2016). 
The treatment of both types of mildew is the same. Nowadays, farmers are using 
pesticides to eliminate the majority of diseases including mildew. These pesti-
cides are sprayed by several methods such as manual, by permanent installation 
or using agricultural autonomous robots.

One of the most important activities of the agriculture sector is the treatment 
of plants against the disease affecting cultures. Usually, pesticides are used to 
ensure this treatment, which may have negative side effects on human health and 
the environment. New methods based on the use of UV-c treatment are developed 
to treat some diseases such as downy mildew and powdery mildew. Robotic solu-
tions for the implementation of such methods are very interesting, even essential, 
because of the dangerous effect of UV radiations on the human operators.

In fact, the last decade has known the emergence of robotics in the agricul-
tural field. Many research laboratories and technology providers are working on 
the development of autonomous vehicles and robots. For instance, the agricul-
tural engineering department at the Louisiana Agricultural Experiment Station 
developed a robotic seedling transplant model (Hwang and Sistler 1985). The 
prototype could only transplant at an average rate of six plants per minute, which 
represents a fifth of the rate for a human operator. The authors have also made a 
global view of past, present and future agricultural machinery. They identified 
laboratories interested in agricultural robotics.

Spraying robots and threshing machines are the most famous agricultural 
robots. Compared to the combine harvester, Sistler (1987) cites several axes 
that are studied in this context, including the irrigation regulated by robots to 
minimize water waste during watering. Bonadies et al. (2016), a state of the art 
is given on unmanned land vehicles (UAVs) used in the field of agriculture to 
increase efficiency, especially by reducing labor requirements. Other researchers 
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have developed their robots to improve the harvest of several types of plants such 
as Van Henten et al. (2002), Sakai et al. (2008) and De-An et al. (2011).

A strawberry harvester was developed and presented in Feng et  al. (2012). A 
manipulator arm with six degrees of freedom with pneumatic gripping fingers and 
a suction cup was mounted on a four-wheel drive vehicle for harvesting in a green-
house. The work of Southall et al. (2002) relates to an artificial vision system for 
an autonomous vehicle designed to treat horticultural crops. The vehicle navigates 
along rows of crops (individual cauliflower plants) that are planted in a reason-
ably regular network. The paper of Zhang et  al. (2002) gives an overview of the 
global development of precision farming technologies. This includes the variability 
of natural resources, variability management, management zone, the impact on the 
profitability and environment of agricultural holdings, technical innovations in sen-
sors, controls and remote sensing, information management, global applications and 
adoption trends of precision agriculture technologies.

When spraying, any field location should be treated only once, as excessive dis-
tribution of sprayed products will destroy the crop (Janani et al. 2016). On this type 
of robot, researchers are trying to find the ideal strategies to avoid the destruction of 
crops with chemical products. Janani et al. (2016), the co-authors propose a coopera-
tive strategy to allow a team of robots to spray on a large field. The goal is to achieve 
task allocation and coordination using only local information from robots. The pro-
posed strategy is scalable, but requires all robots to participate at the same time. Some 
reviews like Talbot (2014), Sarri et al. (2017) and Gonzalez-de Soto et al. (2016) were 
interested in the location of robot with GPS to make an autonomous spray in agricul-
tural field, and to facilitate the movement of robots between the rows of plants without 
damages. The authors team of Oberti et al. (2016) developed an agricultural robot to 
detect moisture on plants and apply pesticides to reduce disease on these plants. Using 
a robotic arm on a wheeled mobile platform and a multi spectral camera, the system 
can detect the presence of fungi. The vehicle moves and when mildew is detected at 
a particular position, the robotic arm is used to spray a pesticide on the infected area 
from three directions to ensure a uniform coverage. The experimental results of this 
robot revealed an ability to reduce the use of pesticides from 65 to 85%.

The scheduling of robots’ tasks in complex agriculture environments is subject to 
several constraints such as the battery limitation, the evolution of the disease and the 
duration of treatment. In this article, we address the problem of tasks scheduling on 
an autonomous mobile robot for the treatment of plants disease in horticulture. We 
propose a multi-agent based approach to simulate and optimize the treatment mis-
sions of the robot while taking into account a limited-capacity rechargeable robot’s 
battery, and a dynamic behaviour of the disease. This work is part of a European 
project called UV-ROBOT which is intended to use robots that carry type-c ultravio-
let (UV-c) lamps to treat plants infected by mildew, in order to replace the chemical 
treatment. To the best of the authors’ knowledge, there is no work in the literature 
treating the same problem or deploying a similar approach (based on simulation-opti-
mization) to resolve it. The contributions of this paper can be summarized as follows:

• Development of a simulator able to represent the process of mildew treatment by 
UV-c using a robot, which represents a novelty by itself
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• Optimization of the robotized treatment by using three methods:

• A greedy-based heuristic algorithm;
• An exact method based on Binary Integer Linear Program (BILP) model;
• A Genetic algorithm based metaheuristic method.

• Consideration of the dynamic situation, where the level of disease increases with 
time, using a simulation-optimization approach.

In the rest of this article, we present the steps of our work through the following 
sections. In the Sect. 2, we review some relevant works related to the treatment of 
plants diseases, the emergence of robotics in the agriculture sector and the principle 
methods to simulate and optimize the performances of resulting robotized systems. 
The Sect. 3 describes the optimization problem of robotized treatment tasks in hor-
ticulture and how we formulate it. Then, in Sect. 4, two approximate algorithms are 
proposed to solve this problem. In Sect. 5, our simulation approach is explained and 
the development of the simulator is detailed. Then, the hybrid simulation-optimiza-
tion approach is presented in Sect. 6. In Sect. 7, some experimental results are pre-
sented and discussed. Concluding remarks and future works are given in the Sect. 8.

2  Related works

In this paper, we aim to optimize the scheduling of treatment tasks performed by a 
robot in a greenhouse to reduce the time of treatment, knowing that the robot is run-
ning on battery with a limited power capacity. This problem covers several aspects 
like planning and scheduling of robot’s tasks under battery constraint, simulation 
approach and optimization methods. This section presents some relevant research 
related to our problem.

In fact, the literature contains more research on robot planning and scheduling in 
several other areas than the agricultural field. For example, in Brumitt and Stentz 
(1996), the authors developed a simulator able to plan missions for a fleet of robots. 
A mission is a set of tasks to be performed by the robot during a predefined period 
of time, usually between two charging cycles of its battery. When the robots leave 
their starting point, the simulator can modify their scheduling at any time, which 
makes them dynamic and more flexible. The obtained results show that each robot is 
looking for its fastest way to achieve its mission while avoiding obstacles. This prob-
lem is NP-hard, even if the authors did not take into account the constraint related 
to energy capacity of the robots’ batteries. Sørensen et al. (2004) worked on agricul-
tural robots tasks planning. The goal was to plan the treatments to be done by robots 
on a field and to compare them to traditional machine management. The solution 
proposed is based on graph theory. Based on an aerial image, the field is modeled 
as an undirected related graph, where each graph edge represents a path. After the 
construction of the graph, they use a heuristic algorithm based on the Rural Postman 
Problem (RPP) which allows them to find the shortest path. Dasgupta (2012) sum-
marized his work on multi-robot systems, and emphasized that multi-agent systems 
(MASs) offer a wide range of solutions that can be adapted to multi-robot systems. 
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The principle of MAS is to divide a system into multiple agents, such that each 
agent has its own behaviour in the system.

The objective of the two works presented in Dang et al. (2012, 2014) is to make 
a task planning for a robot on a finite time horizon, while minimizing the total travel 
time. The robot transports parts to bins that feed production machines in a ware-
house. Dang et  al. (2012), the authors developed a GA-based heuristic algorithm. 
They used a chromosome that contains in each column two variables: the first vari-
able is relative to the machine feed, and the second one is relative to the type of tray 
to transport. Their algorithm begins to converge towards an optimized solution when 
the number of generations is greater than 20. Dang et al. (2014), the authors added 
the mathematical model of the problem and defined time windows for robot feeding 
tasks based on a (s, Q) inventory policy. It is a classical policy of inventory manage-
ment, also called ‘the reorder point, order quantity’ system, where s is the reorder 
point and Q is the reorder quantity or lot size.

Another interesting work (Giordani et  al. 2013) used MAS for multiple robots 
tasks planning, where the authors modeled the tasks as agents and defined two lev-
els in their system: ‘Planning level’ and ‘Scheduling level’. In planning level, the 
algorithm assigns a number of robots for each task agent and in each specific period. 
Then in scheduling level, they use a distributed version of the Hungarian method in 
order to make a negotiation between the robots. Then, the algorithm makes the cal-
culations and the communication between the robots to assign one robot per task in 
a given time period.

Several problems could present some similarities with the one considered in this 
paper, such as the Electrical Vehicle Routing’s Problem (EVRP) (Schneider et  al. 
2014) with a single vehicle, or the Capacitated Vehicle Routing Problem (CVRP) 
(Laporte and Nobert 1983). The latter seems to be an evident approximation to our 
problem, but there are several specific characteristics, such as the treatment power 
consumption, the dynamic level of disease and the battery charging time, which make 
this approximation complicated to elaborate. The Bin-Packing problem is also often 
chosen to approximate a big range of problems with different adaptations (Chris-
tensen et al. 2017). Other approaches can be used to schedule the robotic tasks such 
as the coverage path planning (Wei and Isler 2018; Sharma et al. 2019), where a robot 
must cover/visit several point. However, it is not easy to consider a dynamic variation 
regarding the importance of each point. Other works on dynamic Bin-Packing prob-
lem were studied, where the dynamicity is related to the arrival and departure times 
of the items. Coffman et al. (1983), the authors have made a natural generalization 
of the classic Bin-Packing problem. They have used the ‘First Fit’ (FF) algorithm to 
manage the arrival and departure times of items dynamically. The works presented in 
Leinberger et al. (1999), Chan et al. (2009) and Li et al. (2015) aim to minimize the 
total cost of bins used over time. They used a hybrid algorithm that is based on the 
FF algorithm. Processing is done on the distribution of requests arising from gaming 
systems in the cloud. Leinberger et al. (1999) integrated simulation to improve the 
performance of the FF algorithm for the online Bin-Packing problem. Berndt et al. 
(2015), the authors studied four cases of packaging problem: Online Bin-Packing, 
Relaxed Online Bin-Packing, Dynamic Bin-Packing and Fully Dynamic Bin-Pack-
ing. In the Fully Dynamic Bin-Packing problem, items arrival and departure happen 
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in an on-line manner and repackaging of already packaged items is allowed. The goal 
is to minimize both the number of used bins and the amount of repackaging.

All the aforementioned optimization problems are NP-hard, for which the exact 
methods are not efficient with big instances. That is why heuristics and meta-heuris-
tics, such as Genetic Algorithm (Karakatič and Podgorelec 2015) or Particle Swarm 
Optimization (PSO) (Ai and Kachitvichyanukul 2009), are often used to solve this 
kind of problems, providing a good compromise between the computation time and 
the quality of the solution.

Several researchers proved the effectiveness of MAS-based simulation. This 
method gives the possibility to follow the events of the simulation and to make it 
close to reality. As in Dahane et al. (2017) and Sahnoun et al. (2015), the authors 
used MAS to predict the health of wind-turbines and to optimize the maintenance 
of an offshore wind farm. They tested several scenarios in order to obtain the best 
maintenance strategy.

Other researchers reported that, in many cases, simulation reaches its limits 
because it does not allow to play certain scenarios where the behaviour of the sys-
tem changes (Powell et al. 2001; Ören et al. 2014). In order to improve the behav-
iour of the system or to predict the occurrence of influencing random events, several 
researchers recommended to add some optimization algorithms into the simulation 
process (Lim et al. 2009; Powell 2005). In Wu et al. (2003) and Powell (2008), the 
authors adopted the optimization simulation method and used rough dynamic pro-
gramming to solve various optimization problems. They applied their method on the 
problem of the military air planes transport in the United States.

3  Problem formulation

In this work, we consider an autonomous mobile robot that performs the treatment of 
infected plants in a greenhouse by executing several successive missions. In each mis-
sion, it visits a subset of rows containing some infected plants with different levels (see 
Fig. 1). After each mission the robot must return to the charging station to load its bat-
tery before the next mission. Our robot has an average autonomy of 30 min, and its 
battery loading takes at most 4 h. The capacity limit of the battery is a big challenge 
for mobile robots. Mei et al. (2005), the authors presented a model of their robots with 
several graphs showing the energy consumption of different components. For our robot, 
there are two factors that influence the energy consumption during the execution of a 
task, which are the speed of the robot’s displacement and the UV-c lamps state (on/off).

The appearance and the development of plants’ diseases follow different, and 
probably dependent, stochastic processes. However, for the seek of simplicity, we 
model this phenomenon by using a simple Markov process, where the transition from 
a given disease level to the following level is modelled as a Bernoulli trial. In fact, we 
suppose that each level transition has only two possible outcomes: ‘success’ (increase 
of the disease level) or ‘failure’ (no change). Once a plant is treated, its level of dis-
ease is reset to zero. To manage the evolution of diseases in the greenhouse when 
the robot performs its missions, we turned our ‘dynamic problem’ into a 24-h time 
period ‘static problem’, i.e. the transitions of disease levels are updated each 24 h.
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The ‘static problem’ consists of scheduling the treatment tasks while minimizing the 
number of missions needed by the robot to treat all the infected plants in the greenhouse 
in order to reduce the total time of treatment. The objective is to minimize the impact of 
disease on the total yield of the greenhouse by eradicating the disease as soon as possi-
ble. At the beginning of the planning period, the level of disease of each plant is known. 
The level of the disease can be assessed either by a visual inspection or by measuring 
the intensity of mildiou presence in the air close by each plant, using a specific sensor. 
To treat an infected plant in a given crop, the robot should visit the two surrounding 
rows to treat the plant from both sides (see Fig. 2). Let wii be the total amount of energy 
needed by the robot to treat all infected plants at both sides of the row i ∈ {1, 2,… ,N} , 
with N the number of rows in the greenhouse. We assume that the pre-emption of the 
treatment of infected plants in a given row is not allowed, i.e. each row is visited once 
and only once. When the robot travels from row i to row j, the amount of power con-
sumed is denoted by wij . Let W (c.f. Eq. 1) be the power consumption matrix where the 
principal diagonal elements correspond to the amount of power needed to treat each 
row in the greenhouse, including the displacement of the robot within the row. The 
upper and lower diagonal elements of W correspond to the amount of power needed to 
displace the robot from one row to another. The charging station is considered as a fic-
tive row, indexed by 0, which has no power consumption ( w00 = 0 ). Note that the 
charging station corresponds to the starting and ending position of each treatment mis-
sion executed by the robot. Let k be the index of missions and Xk its corresponding 
decision variables matrix, where each element xk

ij
 is a binary decision variable permit-

ting to assign task (i, j) to mission k. Equation (2) represents an example of missions for 
a 4-rows greenhouse. During the kth mission, the robot is scheduled to visit rows 1, 3 
and 4 successively and then returns back to the charging station.

Fig. 1  Representation of greenhouse model with different levels of disease
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The goal being to treat all infected plants while minimizing the number of missions, 
this problem is similar to the well known Bin-Packing problem (Mazar et al. 2018). 
We have the following analogy: items in the Bin-Packing problem correspond to 
treatment tasks (one task per row visited) and bins correspond to the missions. 
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Nevertheless, in our case, power consumption during robot displacement should 
be taken into account, in order to ensure that the robot has the sufficient power to 
move between rows and to return to the charging station at the end of each mission. 
For this end, our problem is formulated as a Binary Integer Linear Program (BILP), 
which is detailed below. Equation (3) represents the objective function, which seeks 
to minimize the number of missions. In fact, the aim of this study is to optimize the 
use of the robot. This can be reached by making the same treatment with fewer mis-
sions. Reducing the number of missions is equivalent to reducing the total treatment 
time and a better use of the robot, which allow improving the crop yield.

Subject to:

where

(3)minimize Z(Y) =

K∑
k=1

yk

(4)
N∑
i=0

N∑
j=0

wijx
k
ij
≤ Cyk ∀k ∈ {1, ...,K}

(5)

N∑
i=0
i≠j

xk
ij
= xk

jj
∀j ∈ {0, ..,N} ∀k ∈ {1, ..,K}

(6)

N∑
j=0

j≠i

xk
ij
= xk

ii
∀i ∈ {0, ..,N} ∀k ∈ {1, ..,K}

(7)yk ≥ yk+1 ∀k ∈ {1, ..,K − 1}

(8)
N∑
i=1

xk
ii
≥ yk ∀k ∈ {1, ..,K}

(9)xk
ii
≤ xk

00
∀i ∈ {1, ..,N} ∀k ∈ {1, ..,K}

(10)
N∑
i=1

i−1∑
j=0

xk
ij
= yk ∀k ∈ {1, ..,K}

(11)
K∑
k=1

xk
ii
= 1 ∀i ∈ {1, ...,N}
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• C: Power capacity (in units of power) of the robot’s battery at the beginning 
of the mission

• wij : Power consumption (in units of power) of the task ij
• xk

ij
 : a binary decision variable permitting to assign tasks to missions

  
• yk : a binary decision variable permitting to schedule the missions 

• K is the maximum number of possible missions. Its upper bound is the num-
ber of row of the greenhouse ( K ≤ N  ). For the execution of the linear pro-
gram, this value is defined empirically to reduce the number of decision vari-
ables.

Constraint (4) ensures that the total energy to be consumed to perform the tasks 
of each mission k must not exceed the battery’s power capacity of the robot. 
Constraints (5) and (6) define the origin and the destination of a robot when it 
is visiting a row. It means that the robot has to come from a previously visited 
row (including the charging station) and it has to visit another row after visit-
ing the current one. Constraint (7) means that mission number k + 1 can not be 
scheduled if mission number k is not already scheduled. In constraint (8), if the 
mission is scheduled, there will be at least one row to visit. Constraint (9) means 
that no row i can be scheduled if mission number k is not scheduled ( xk

00
= 0 ). 

Constraint (10) means that at the end of each mission, the robot goes back to the 
charging station. Constraint (11) ensures that each row is treated once during 
one of the scheduled missions.

4  Optimization

This section presents two approximate optimization algorithms developed to solve 
the ‘static problem’ formulated in the previous section. These algorithms will be 
integrated within the simulation process in order to solve the ‘dynamic problem’, 
where the stochastic behaviour related to the appearance and the evolution of the 
disease is taken into account. These algorithms will be evaluated and compared in 
both static and dynamic environment.

xk
ii
=

{
1 if the robot treats row i during mission k

0 otherwise.

xk
ij
=

{
1 if the robot travels directly from row i to row j ∀ i ≠ j

0 otherwise.

yk =

{
1 if the mission k is scheduled

0 otherwise.
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4.1  Heuristic algorithm (HA)

The proposed heuristic (Algorithm  1) is a greedy-based algorithm which assigns 
treatment tasks to robot missions, iteratively. At the beginning of each iteration, the 
algorithm initializes the vector of tasks’ power consumptions Vc, which corresponds 
to the diagonal of the matrix W (line 2), the battery charge Es (line 3) and the list of 
tasks TASKS=[] is initialized as empty (line 4). To be sure that the robot can come-
back to the charging station, we remove a security power ( Maxkwk0 ) corresponding 
to the power necessary to travel the maximum distance between the charging station 
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Fig. 3  Mechanism of the heuristic to define the mission of robot
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and the farthest row (line 6). The assignment rule to select the tasks of a mission is as 
follows: the first biggest-power-consumption task that can be appended (lines 8 and 
9), i.e. the first task having the biggest power consumption, that is less than or equal 
to the remaining power capacity minus the power needed to move to its row from the 
row of the last appended task. If there is enough power, the treatment of selected row 
is added to the mission (line 11) and the corresponding energy is removed from E 
(line 12), and this process is continued until testing all the remaining rows.

In order to generate the necessary missions to treat all the greenhouse, this algo-
rithm is repeated several times where the matrix W is updated by not taking into 
account the tasks already assigned to the previous missions. Figure 3 illustrates an 
example of the construction of two missions using the heuristic. We can observe that 
‘Mission 1’ contains the biggest tasks (17 kW and 18 kW). The task of 15 kW can 
not be assigned to this mission because it leads to exceed battery’s power capacity of 
the robot (45 kW), but the task of 10 kW can be treated in this mission. The rest of 
tasks are assigned to ‘Mission 2’ using the same algorithm.
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4.2  Genetic algorithm (GA)

Genetic algorithms represent one of the most used evolutionary solving meth-
ods that often perform well approximating solutions to complex problems (Aytug 
et al. 2003). It is a meta-heuristic optimization algorithm that has the advantage 
of being quite simple to implement (Tsai et al. 2013). In addition, it is commonly 
used to resolve the Bin-Packing problem (Falkenauer 1996; Kröger 1995), which 
is an important motivation to chose GA for the resolution of our problem. How-
ever, in order to improve its performances, its parametrization can sometimes 
become a delicate task. Even if there are several rules to follow in order to define 
the GA parameters, each problem has its own characteristics and needs an empiri-
cal adaptation of the GA parameters. The chromosome coding and the GA opera-
tors are detailed below. The fitness function corresponds to the total number of 
missions needed to assign all treatment tasks.

The chromosome of the GA is coded as a binary matrix where lines represent 
missions and columns represent the greenhouse’s rows. For example, if the robot has 
to treat row j during the mission i, the gene (i, j) gets a value of one, zero otherwise.

At the beginning, an initial population of 50 individuals is created randomly. To 
create the population of a new generation, ordinary genetic operators are succes-
sively applied, namely: ‘Crossover’, ‘Mutation’ and ‘Selection’. Each created chro-
mosome, either in the initial population creation or by genetic operators, is tested by 
verifying the constraints developed above so that all the chromosomes are feasible.

Each run of the GA is executed as follows: two chromosomes are selected ran-
domly from the current population and crossed. Each generated child is tested and 
is regenerated until it becomes feasible. The obtained children are then mutated and 
validated again. For our algorithm, the average rate of infeasible generated chil-
dren was around 7%, which indicates that the diversity of generated chromosome 
is ensured (Abdelaziz et  al. 1999). If this rate increases, it will increase the com-
putation time, but if it is null, that mean that there is a risk of non diversity of the 
population (Aickelin and Dowsland 2004). All the parameters of the GA are defined 
empirically after several trails.

4.2.1  Crossover

Figure 4 illustrates the structure of the chromosomes and the principle of the crosso-
ver operation. It is a single-point crossover, which is randomly generated between 
2 and N − 1 . 90% of the population is randomly selected for the crossover opera-
tion. We opted for random selection to reduce the calculation time. Although there 
are several ways in the literature to select parents, such as the ‘roulette wheel’, We 
use a simpler selection method because we did not meet any phenomena of loss of 
diversity.

4.2.2  Mutation

Obtained children may be mutated with a given probability according to the fol-
lowing four possibilities: (1) only the first child is mutated, with probability 0.3, (2) 

tenailleau
Zone de texte 

tenailleau
Zone de texte 



 M. Mazar et al.

only the second child is mutated, with probability 0.3, (3) both children are mutated, 
with probability 0.3, and (4) neither children are mutated, with probability 0.1. The 
mutation operation is illustrated in Fig. 5. Two rows of the chromosome (missions) 
are randomly selected and their elements are respectively interchanged one by one, 
following a Bernoulli process with probability P = 0.5.

Each chromosome from the new population is evaluated and discarded if it is 
infeasible, if it does not respect at least one constraint.

4.2.3  Selection

10% of the best chromosomes of the old generation are selected to be directly a part 
of the new generation. 90% of this new generation are selected from the best indi-
viduals obtained by crossover and mutation.

4.2.4  Stopping test

This process is stopped after a fixed number of generations. The size of the popu-
lation and the maximum generation can be defined manually using a slider on the 
graphical interface of the sim-optimizer. For the results presented here, we set this 
number to 20 after several trials. The best individual, having the minimum number 
of missions to treat all infected rows, is returned.

4.3  Exact method

The developed BILP (detailed in Sect. 3) has been solved using a commercial solver 
‘ FICOⓇ Xpress’ to give optimal solution of the problem. In order to reduce the 
number of decision variables, the maximum number of mission is defined, for each 
instance, by the number of mission given by the heuristic algorithm.

[   1   0   0   0   1   0   0   1   1   0   1   0   1   1   0   0   0   ]
[   0   0   1   0   0   0   0   0   0   1   0   1   0   0   0   1   1   ]
[   0   1   0   1   0   1   1   0   0   0   0   0   0   0   1   0   0   ]
[   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   ]
[   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   ]

[   1   0   0   0   0   0   0   0   0   0   1   0   1   1   0   0   0   ]
[   0   0   1   0   0   0   0   0   0   1   0   1   0   0   0   1   1   ]
[   0   1   0   1   0   0   0   1   0   0   0   0   0   0   1   0   0   ]
[   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   ]
[   0   0   0   0   1   1   1   0   1   0   0   0   0   0   0   0   0   ]

[   1   0   0   0   0   0   0   0   1   0   1   0   1   1   0   0   0   ]
[   0   0   1   0   0   0   0   0   0   1   0   1   0   0   0   1   1   ]
[   0   1   0   1   0   0   0   1   0   0   0   0   0   0   1   0   0   ]
[   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   ]
[   0   0   0   0   1   1   1   0   0   0   0   0   0   0   0   0   0   ]

[   1   0   0   0   1   0   0   1   0   0   1   0   1   1   0   0   0   ]
[   0   0   1   0   0   0   0   0   0   1   0   1   0   0   0   1   1   ]
[   0   1   0   1   0   1   1   0   0   0   0   0   0   0   1   0   0   ]
[   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   ]
[   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   ]

Crossover

Fig. 4  Illustration of the crossover operator
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5  Simulation

The dynamic and stochastic behaviour of the apparition and evolution of the dis-
ease in the greenhouse changes the problem during time. This behaviour can not be 
included in the optimization model proposed above. Changing the parameters of the 
model means the resolution of another problem completely different. The technique 
of simulation and optimization can be used to consider this dynamicity of the sys-
tem. This section describes the development of the simulator. Since the considered 
system used by the UV-Robot is complex, we chose to use the MASs for its mod-
eling and simulation. MAS allows the representation of each agent interdependently 
and facilitates, by the way, the modeling and simulation of complex systems. When 
modeling the system by MAS, its is important to divide the systems into agents to 
allow their modeling and the definition of their interactions.

Figure 6 presents the simulation model using MASs, were there are 7 agents and 
10 interactions between them. The agents are defined as follow:

• Grower its role consists to setup the robot and repair or manually transport it to 
the recharge station when there is a problem. We consider that the grower plays 
the role of supervisor, who should be always present.

• Robot only one robot agent is considered, which is able to execute autonomously 
a set of missions defined and scheduled by the monitoring agent. It controls its 
speed and the state of UV-lamps regarding the state of plants (the level of dis-
ease). The robot have a limited electric power capacity that decreases according 
to its speed and the state of UV-Lamps. Figure 7 represents the behaviour of the 
robot during the execution of treatment missions in the greenhouse. In fact, each 
mission is composed of the treatment of Kmax rows. Each row is composed of 
Jmax different sections of plants (each section can be of 1–4 m). The treatment 
of each row starts by going to the entry of the row. Then, the robot treats all the 

[   1   0   0   0   0   0   0   0   1   0   1   0   1   1   0   0   0   ]
[   0   0   1   0   0   0   0   0   0   1   0   1   0   0   0   1   1   ]
[   0   1   0   1   0   0   0   1   0   0   0   0   0   0   1   0   0   ]
[   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   ]
[   0   0   0   0   1   1   1   0   0   0   0   0   0   0   0   0   0   ]

[   1   0   0   0   0   0   0   0   1   0   1   0   1   1   0   0   0   ]
[   0   0   1   0   1   0   0   0   0   1   0   0   0   0   0   1   0   ]
[   0   1   0   1   0   0   0   1   0   0   0   0   0   0   1   0   0   ]
[   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   ]
[   0   0   0   0   0   1   1   0   0   0   0   1   0   0   0   0   1   ]

Mutation

P=_12

Fig. 5  Mutation method
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sections successively, while adapting its speed ( Va ) and the state of the lamps 
accordingly to the level of disease of each section. When the robot arrives to 
the end of the row ( j = Jmax ), it switches off the UV-lamps and goes back to the 
entry of the row with the maximum speed Vmax . The energy consumption of each 
action is defined by the following values: �Vmax , corresponding to robot dis-
placement with maximum speed; �Va , corresponding to robot displacement with 
the adapted speed Va ; and �lamps , the energy consumption of the UV-lamps.

• UV-lamps this agent is placed on the robot and controlled by it.
• Plants the plants agents are able to grow and degrade their situation when they 

are affected by disease. The disease level in each agent Plant is a stochastic pro-
cess that is influenced by other plants, the environment and the state of the plant 
itself. After treatment, the level of disease of the plant is set to zero. Six levels 
of disease are considered: the plant is safe if the level is zero and completely 
infected if the level is 30. The apparition and evolution of the disease in the 
greenhouse is supposed to follow a Markovian process. The transition probabili-
ties are defined by the user at the beginning of the simulation process.

  A plant is considered as fully treated only when the robot treats it from both 
sides (left, right), and its disease level is reset to zero. There is also in the agent 
Plant a function called Plants state, which checks the state of the plant before 
producing the fruit. The relation between the level of disease and the production 
is inversely proportional.

• Greenhouse this agent represents the environment in which the other agents are 
evolving. General indicators are related to this agent such as the global level of 
disease.

• Charge station this agent manages the charging operation of the robot’s battery. 
When the robot visits the charging station, its battery becomes fully charged after 
a time duration that depends on the initial power level of the battery at the begin-
ning of the charging operation. In our case, if the robot’s battery is completely 
empty, the charging duration is about 4 h.

Plants

Robots

Greenhouse Charge 
station 

Treating

Growing in 

Charging

Placed in

Moving in

Lamp UV-cMonitoring Grower

Defines missions

Installed on

ControlSending data

Planning missions

Manual 
control 

Fig. 6  Multi agent system model
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Fig. 7  Robot behaviour Start mission; get task_list

k=1

Destination = task_list(k)
Speed = Vmax
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"destination"

Consume ΦVmax Energy
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Move (Reverse) to the row entry "destination"
Consume ΦVmax energy

If k ≤ Kmax

Move (forward) to charging station
Consume ΦVmax energy

j++

No

k++

NO

Yes

Yes

tenailleau
Zone de texte 

tenailleau
Zone de texte 



 M. Mazar et al.

• Monitoring this agent monitors the system and defines the missions for the robot. 
The monitoring function includes the observation of the level of mildew, the 
environment and state of the robot (position, charge, health level, etc.). Based 
on this information, the agent Monitoring makes decision by optimizing the mis-
sion for the robot using one of the algorithms detailed in Sect. 4. The optimiza-
tion part is ensured by the function ‘Optimize the mission planning’ as shown 
in Fig. 8. The selection of the optimization method is done manually before the 
beginning of the simulation process. The moment of running the optimization 
algorithm during the simulation is explained in Sect. 6.

The interactions between agents are defined as follows:
The agent Grower starts the process of treatment by launching the agent Moni-

toring. Then, the agent Monitoring collects data from the agents Robot and Grower 
and runs an optimization algorithm to schedule the missions for the agent Robot. 
After this step, the Robot starts the treatments by moving in the Greenhouse  and 
visiting the Plants growing in the Greenhouse. The Robot sends its position and its 
battery’s remaining power level to the monitoring system. Even if there is no direct 
link between the agent Monitoring and the agent Greenhouse, the Robot is playing 
the role of communication channel between these two agents. We assume that the 
agent Greenhouse is able to know the levels of disease of all plants and send them 
automatically to the agent Monitoring. The treatment of each plant section is done 
by turning on or off the UV-lamps that are installed on the Robot. After each mission 
the agent Robot goes to the ChargeStation which is placed in the Greenhouse.

The above MAS model has been used to develop our simulator with Netlogo soft-
ware (Wilensky and Evanston 1999). The simulator allows the representation of the 

PlantsRobots

       Greenhouse

Charge 
station 

Growing in 

Charging

Placed in

Moving in

Lamp UV-c

Monitoring

Grower

Defines missions Installed on Control

Sending data

Optimize the 
mission 

scheduling 

Rela�onshipAgent Process or ac�onsDecision

Disease Level

Update the 
consump�on 

matrix

Yes

Tasks list

Robot is loaded ?

YesRobot is ready ?

Robot state 

Execute mission

Choose speed

Move

Turn-on UV-
lamp

Level > 0?

No

Yes
scheduling missions

Plant

Infected 
plant

Plants state

Stochas�c process

Is treated ?

Level ++

Level 0

No

Yes

Environmental 
condi�ons favorable to 

the disease

Treating

Propaga�on

Get mushroom

Produce

Op�miza�on process

Manual 
control

Fig. 8  Agent-based simulation optimization process
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behaviour of our system, including the visualization of the infection level evolution 
on each plant section in the greenhouse.

Generally, the simulation process allows the execution of a limited number of 
scenarios and compare their results. The user can make decision based on these 
observations. This manner of decision-making allows to obtain feasible solution, but 
there is not a real exploration of the state space of system. The agent Monitoring, is 
able to make complex decisions because it includes some optimization algorithm. 
The execution of this algorithm during the simulation can improve the behaviour of 
the system and the value of its key performance indicators. Section 6 explains how 
to integrate the optimization process into the simulation.

6  Simulation‑optimization

Simulation and optimization are the most important methods used for decision mak-
ing. Simulation gives a vision of the process in time (exploration of future state), but 
its vision in the space state is limited (limited exploration of all the possible choices 
for a treatment). On another hand, the simulation can explore the space state but its 
vision in time is limited. In fact, it is not obvious to consider the variation of system 
parameters. Mixing these two techniques by using simulation-optimization approach 
can resolve this problem. The idea is to optimize simulation problems over time, by 
making decisions that takes into account the future situation of the system, Powell 
(2008) or by exploring the state space through the stochastic behaviour of the system 
(Wu et  al. 2003). In order to integrate this decision in the simulation, we have to 
answer several questions such as: (1) how to introduce the optimization algorithms 
and for which parameter? (2) when should the optimization algorithm be launched 
during the simulation process? and (3) what is the horizon of optimization?

The agent Monitoring is responsible for defining the mission for the agent Robot. 
The decision to schedule a mission can be defined by one of the optimization meth-
ods presented above, or simply by using the numerical order of the rows. In fact, 
the agent Monitoring collects data and receives orders from several agents in the 
greenhouse. It receives the order to start optimizing the mission from the grower 
and it receives the information concerning the level of disease and the state of the 
robot from the agent Robot, as shown Fig. 8. The list of treatments to execute dur-
ing a mission is transmitted to robot after the optimization process. The selection of 
the optimization method is defined manually by the Grower (user) and the moment 
the optimization process is launched depends on the selected algorithm and the data 
collected from the robot. For example, the heuristic is launched after the end of each 
mission, but the GA is launched after the treatment of all the greenhouse.

Since, each mission is a set of rows to visit, and the optimization process defines 
these rows in the aim to reduce the number of missions. The optimization process 
can be executed just before each mission (heuristic case) or when the robot finish all 
the scheduled missions without eliminating all the disease in the greenhouse (GA, 
exact method with dynamic disease evolution process). The parameters that influ-
ence the launching of an optimization process can be summarized as follows:
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• The power level of the robot’s battery
• The position of the robot
• The level of disease
• The type of selected optimization algorithm.

Figure  8 shows the decision process in the simulation model for each agent. The 
optimization algorithm is a part of the agent Monitoring, which receives the plants’ 
disease levels from the robot in order to update the values of the diagonal elements 
( wi,i, i = 0 to N ) of energy consumption matrix W (c.f. Eq.  1). Figure  8 also con-
tains more details about the other agents (Robot, Plants and Greenhouse), their inner 
decision processes and their interactions. As soon as the agent Robot receives its 
mission, it begins executing it by moving between the rows selected within the mis-
sion. The list of selected rows is generated by the optimization process and transmit-
ted by the agent Monitoring. The robot treats infected plants using UV-c lamps by 
adapting its speed according to the disease level. The lamps are switched off during 
the displacement between rows or in front of healthy plant.

The optimization algorithms are managed through the interface of the simulator, 
where the user chooses the appropriate algorithm before launching the simulation. 
Then, the monitoring makes the decisions using only the selected algorithm. We 
notice that, whatever the selected algorithm, the greenhouse will be treated until all 
plants’ diseases are totally eradicated.

Three different algorithms were proposed to optimize this process in static and 
dynamic situations. The next section will present the tests performed to test the effi-
ciency of proposed algorithms regarding the CPU time and the objective function 
quality.

7  Experimentation

The aim of this section is to present and compare the results obtained by each pro-
posed optimization algorithm. The first phase of tests is dedicated to evaluate the 
average gap (GAP) between the solutions provided by the GA and HA compared to 
the optimal solutions provided by the exact method (EM). The second phase of tests 
is dedicated to the test of the performance of these methods in the case of a dynamic 
system, where the parameters of the model are changing over time (variation of the 
level of disease). The solution based on the sim-optimization method is then pro-
posed to deal with the dynamic behaviour of the disease.

7.1  Phase 1: static environment

In order to test the developed model, algorithm and simulator, a set of simulation 
optimization experiments were performed.

To evaluate the results obtained by HA, we compared them with those of EM 
obtained by a commercial solver, namely the ‘FICOⓇ Xpress Workbench’ solver. 
The obtained results (Fig.  9) show that the heuristic solution is very close to the 
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optimal solution. Figure 9 draws the robot’s energy consumption for the treatment of 
a greenhouse composed of 50 plant rows, where the disease’s probability of appari-
tion P is equal to 0.5. In both curves (exact method and heuristic), the robot uses a 
battery of 960 Wh of energy capacity, allowing it to execute each mission during 
around 30 min before its battery is being charged during around 4 h. The treatment 
of all infected rows is carried out in 7 missions with EM and 8 missions using HA. 
Figure 9 shows also that there is a tiny difference between both methods in the first 
five missions. However, in the two last missions, HA does not allow the robot to 
use all of the available energy on its battery. This can be explained by the fact that, 
in the two last missions, HA cannot find any mission that can be executed using 
the remaining energy. In the same time, the optimal solution uses all the available 
energy during each mission. The total treatment with EM consumes about 2% less 
energy than the heuristic method and finishes the treatment 3 h and 40 min earlier. 
Based on this observations, we can conclude that the heuristic can be a good alterna-
tive regarding its execution time and solution quality. 

After the validation of the results obtained by HA, GA was tested for several 
greenhouse sizes with different disease’s probabilities of apparition. We compared 
the three methods for each greenhouse. Table 1 summarizes 540 simulation runs for 
9 different greenhouses configurations, where 20 simulations are performed for each 
one. We choose imperially to perform 20 experiments to get a realistic stable aver-
age. For GA and HA, the average and the standard deviation of their gap compared 
to EM are presented in the second and the third columns, respectively. The column 
‘# Non Convergence’ represents the number of simulations, out of 20, where EM 
did not converge in a reasonable time. We consider that there is no convergence if 
the CPU time exceeds 8 h without any result. In fact, due to the NP-hardness of the 
problem, the exact method can not always converge with rematively large instances 
( R = 75 and P = 1 ; R = 100 and P = 0.75 ; R = 100 and P = 1 ). For both approxi-
mate algorithms, the gaps are near to zero, which means that the obtained results 
are not very far from the optimal solutions. The comparison of the gaps of HA and 
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Fig. 9  Robot energy consumption with heuristic and exact method
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GA demonstrates that the latter gives better solutions in three cases (presented with 
boldface in the column GA GAP). The comparison of the standard deviation (SD) 
demonstrates the stability of the obtained results for each method.

Table  2 presents the average and the standard deviation of CPU time for each 
used algorithm. Results show that the CPU time is increasing with the instance 
size, as well as the standard deviation. For example, in the case of large instance 
( R = 100 and P = 1 ), the average CPU time is 10,426 s (2 h, 55 min and 24 s) for 
EM method, 11.075 s for GA and 0.084 s for HA. For smallest instances, these times 
are 7.75 s for EM, 1.448 s for GA and 0.016 s for HA. For all the tested instances, 
it is clear that HA is faster than GA, which is faster than EM. The values of the 
standard deviation demonstrate that methods are stable and the recorded CPU times 
are varying in a small range. We notice that this time can be influenced by other 
programs executed in the same time by the computer, like anti-virus or other hidden 
services of the operating system.

In order to understand the evolution of the disease during the treatment, we pre-
sent the disease level using each algorithm in Fig. 10 for the case of a large instance 
( R = 100 and P = 0.5 ). The total treatment of the greenhouse takes more than 
2 days for all algorithms. EM allows to finish first (blue curve) within 14 missions, 
whereas GA allows to finish the treatment within 15 missions (doted red curve) and 
HA within 16 missions. Each vertical green line indicates the beginning of a calen-
der day. The 4-h periods of time where the level of disease is constant correspond 
to charging cycles. The periods of time where the level of disease decreases corre-
spond to treatment cycles. The pace of decreasing is low in the first missions (mis-
sions 1–4) because the robot treats a lot of rows from only one side, whereas a row is 
considered as treated only when the treatment is performed from its both sides.

To sum up about this part of experiments, we can conclude that the proposed HA 
and GA present interesting performances in terms of processing time and solution 
quality. Moreover, GA has the advantage of improving solution quality compared to 
HA, but it consumes insignificantly more CPU time.

Table 1  GAP average and 
standard deviation for the 
three algorithms for different 
values of R and P (bold → GA 
performs better than HA)

(R, P) Heuristic Genetic algorithm Exact method
GAP/SD GAP/SD # Non convergence

(50, 0.5) 0.056/0.062 0.044/0.061 0
(50, 0.75) 0.022/0.038 0.022/0.039 0
(50, 1) 0.016/0.22 0.016/0.21 1
(75, 0.5) 0.054/0.045 0.054/0.042 0
(75, 0.75) 0.049/0.021 0.049/0.025 0
(75, 1) 0.021/0.022 0.021/0.021 14
(100, 0.5) 0.041/0.033 0.037/0.034 2
(100, 0.75) 0.051/0.016 0.038/0.015 13
(100, 1) 0.023/0.015 0.023/0.014 16
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7.2  Phase 2: dynamic environment

In practice, as explained in Sect. 3, the evolution of the disease happens all the time 
but it is modeled as 24-h static problem in the developed simulation model. In order 
to test the performances of the proposed algorithms (HA, GA and EM), we con-
sider the same instance that was tested for the static environment case ( R = 100 and 
P = 0.5 ). This instance is selected for this test of the dynamic case, because it is the 
largest instance that EM can solve in reasonable time. The results are reported in 
Fig. 11, which shows the evolution of the total level of disease in the greenhouse, for 
the three algorithms, until it is totally treated. As it can be seen, the level of disease 
is updated (increases) at the end of each day (green line).

HA is executed at the beginning of each mission, whereas GA and EM are exe-
cuted at the end of all scheduled missions for one equivalent Bin-Packing prob-
lem. Because HA generates tasks scheduling of only one mission, the simulator 
waits until the end of the current mission to update the level of disease and launch 

Table 2  CPU time average and standard deviation for the three algorithms for different values of R and P 

(R, P) Heuristic Genetic algorithm Exact method
CPU time/SD (s) CPU time/SD (s) CPU time/SD (s)

(50, 0.5) 0.016/0.015 1.448/0.09 7.75/2.13
(50, 0.75) 0.010/0.014 3.73/0.19 18/7.1
(50, 1) 0.016/0.009 6.153/0.89 73/49
(75, 0.5) 0.046/0.097 3.172/0.75 30/64.7
(75, 0.75) 0.029/0.004 6.563/0.39 217/94
(75, 1) 0.038/0.013 9.994/1.9 1677/884
(100, 0.5) 0.049/0.006 5.253/0.74 82/119
(100, 0.75) 0.058/0.016 11.751/2.27 431.286/21334
(100, 1) 0.084/0.034 11.075/2.9 10426/81203
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Fig. 10  Level of mildew in static environment
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to define the following mission in a negligible computation time. Concerning GA 
and EM, as both methods generate a set of missions, they are launched at the end 
of all planned missions. In this case, the unique way to compare HA with the two 
other methods is to execute it until treating all the greenhouse. The execution 
moments of GA and EM are mentioned in Fig. 11 by GAi and EMi respectively, 
where i ∈ {1, 2, 3} corresponds to the number of algorithm execution. The total 
treatment time of the greenhouse using EM and GA is about 4 days (3 days in the 
static case), whereas it is about 6 days for HA. GA increases the total treatment 
time by 4 h (only one additional mission) compared to EM (c.f. Fig. 11), which 
is a very interesting approach regarding its small computation time (5 s for GA 
and 82 s for EM). This time increases sharply with bigger instances (Table 2). In 
addition, the solution given by GA can be obtained in an on line time. This time 
is limited by the necessary time for a full charging of the robot, which is in a con-
stant evolution. To conclude, the efficiency of HA decreases in the dynamic envi-
ronment case, while GA still presents a very interesting results, which are close to 
the optimal solution provided by EM.

8  Conclusion

In this paper, a simulation-optimization approach has been used to solve the 
problem of robotized tasks scheduling for mildew treatment by UV-c rays in 
horticulture. The problem has been formulated as a classical Bin-Packing prob-
lem and a simulator has been developed using the paradigms of multi-agent sys-
tems to track system events and behaviour in static and dynamic environments. 
Three optimization algorithms (HA, GA and EM) have been introduced into the 
simulation process to improve the decision making process of the system. The 
merging of optimization and simulation involves making reliable decisions about 
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the timing of the optimization algorithms in the simulator. During the simula-
tion process, HA is launched at the beginning of each mission, whereas GA and 
EM are launched only once in the static case and at the end of a set of planned 
missions in the dynamic environment case. A set of experimentations have been 
conduced to compare the performances of the proposed optimization algorithms. 
The obtained results show that HA is efficient in the static environment case, but 
its performance is degraded in the dynamic environment case. GA presents very 
interesting performances in both cases (dynamic and static), especially with large 
instances. Regarding the execution time of GA and the good quality of its results, 
we recommend the use of GA, which can deal with big instance in short time.

The simulation-optimization method manages the dynamic behaviour of com-
plex systems and GA is very interesting method in these cases.

Our next work will focus on the development of methods for the totally-
dynamic environment case. In this case, the constraint of static state periods of 
24 h will be removed, which means that the infection by the diseases is continu-
ously increasing during the whole simulation period. The next step in this project 
is the deployment of the proposed method in a real case with the robot developed 
by our partners in the project. Another perspective of this works is to study the 
case of multi-robots, multi-charging-stations and multi-greenhouses.
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