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Polyp follow-Up in an Intelligent Wireless Capsule Endoscopy

Orlando Chuquimia1, Andrea Pinna1, Xavier Dray2, Bertrand Granado1

Abstract—In this paper, an image processing to de-
tect polyps in an intelligent Wireless Capsule Endoscopy
(WCE) is presented. This processing will be integrated into
the WCE. It is a new screening method to detect colorectal
cancer (CRC). A motion estimation algorithm is used to
follow a detected polyp and improve the pre-processing
of our detection chain. With our methodology, the polyp
detection rate is improved by up to 40% from 53% to
93.7%. The improved detection rate was validated with a
large database of 20 video-colonoscopies (18,910 images).

I. INTRODUCTION

CRC is the second highest cause of death by cancer world-
wide with 880,792 deaths in 2018 and a mortality rate of
47.6%. 95% of CRC cases begin with the presence of a growth
on the inner lining of the colon or the rectum, called a polyp.
Multiple types of polyps exist; among them, adenoma polyps,
which can degenerate into CRC. CRC is treatable in 90% of
the cases if it is detected early enough [1].

Today, imaging is the modality used to analyze the colon
and find polyps. A colonoscopy is the procedure used for
screening, diagnosis, and therapy in the gastrointestinal tract.
However, it can be painful, traumatic and poorly tolerated
by patients. The colonoscopy is invasive and usually requires
anesthesia, a specialist and a controlled environment. Fur-
thermore, the colonoscopy does not allow the visibility of
all the regions near the colon. Other methods exist, such as
the Colorectal Tomography (CT) and the WCE. CT is non-
invasive. However, this method cannot detect polyps smaller
than 1 cm and exposes the patient to radiation. WCE is
less invasive; it is a simple pill that the patient swallows
and that transmits images of the gastrointestinal tract via
a Radio Frequency communication through the body. The
video feedback is then uploaded to a workstation where a
specialist can review and examine these images to detect any
gastroenterological pathology. The available WCE PillCam
Colon 2 [2] has a length of 32.3 mm, a diameter of 11.6 mm,
a battery life of 10 hours, a resolution of 256x256 pixels and
an image sampling rate of approximately 2 to 4 frames per
second. Ten hours is not sufficient to inspect the total intestinal
tract. In addition, WCE has a low image resolution compared
to a standard endoscope used in a colonoscopy, that acquires
an image with a resolution of 1920x1080 pixels. A WCE
generates between 144,000 and 1,260,000 images (most of
these images do not contain polyps or any gastroenterological
pathology). Visual analysis of this large number of images
with low resolution makes the examination difficult and time-
consuming for the gastroenterologist.
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How can we create a new tool without the side effects and
limitations of both colonoscopy and WCE, to offer a powerful
screening tool and to reduce the CRC mortality rate?

We propose a new paradigm of WCE: an intelligent WCE
(iWCE). Its novelty is to integrate processing capabilities
directly in the capsule to automatically recognize a polyp.
Our iWCE integrates a high-resolution imager as an endoscope
(1920x1080 pixels) and an image processing chain to detect
suspicious lesions. It solely transmits images with suspected
gastroenterological pathologies. This method will reduce en-
ergy consumption and the number of images to be analyzed.
The processing is defined to be integrated taking into account
multiple constraints; a square surface area constraint of 8
by 8 mm2 (due to 11.6 mm capsule diameter), a real-time
constraint of 25 frames per second, and a power consumption
constraint of a battery life greater than 12 hours. Our iWCE is
a new screening method and a minimally invasive diagnostic
tool that will overcome the current barriers that limit the use
of WCE. Specialists will thus take clinical decisions in a
time-effective manner without analyzing more than a hundred
thousand images.

As this iWCE is a new approach, there are few existing
works. However, scientific works containing off-line analysis
of the images from endoscope or WCE detecting polyp lesions
can be found. A review of some of the computer-assisted polyp
detection methods can be found in [3].

These methods can be divided into three groups:
1) Hand-crafted approaches that exploit low-level image

processing algorithms to detect region candidates with
a polyp, inlcuding intensity valley [3] or Hessian fil-
ters [4].

2) Machine learning approaches based on classifiers that
can be a Convolutional Neural Network (CNN) to detect
polyp lesions as in [5].

3) Hybrid approaches which combine both methodolo-
gies. Works in [6] adopt this strategy with co-occurrence
matrix and local binary patterns as Hand-craft pro-
cessing. Classifiers can be, for example, Multi Layer
Perceptrons or Adaboost.

All these methods run on an external computer and con-
tribute to helping the physician in his diagnosis, but they
are not useful for our purpose. They are not suitable to be
integrated into a WCE and they do not take into account
certain constraints, such as real-time execution, form factor of
the pill and energy consumption. In particular, CNN methods
use several million of synapses and neurons, which cannot
be integrated in a 8 by 8 mm2 chip in a pill, with a power
consumption limitation of 158.1mW [2].

In our previous works, a hybrid approach based on an image
processing chain and fuzzy trees used as classifiers [7] was



proposed. This approach was used to detect polyps and it was
designed to be integrated in a WCE. Information about the
integration can be found in the article [8]. The first step in
the image processing chain is to extract regions of interest
(ROI) from an image. These ROIs correspond to parts of the
image where the texture features could indicate the presence
of polyps. In the second step, the ROIs are classified using
fuzzy trees as the machine learning algorithm.

To study the performance of our approach, we used a public
database named ASU-Mayo Clinic Colonoscopy Database,
which was introduced during the EndoVisSub2015-GIANA
challenge at MICCAI 2015 [3]. It is composed of 18,996
images (4,278 images containing a polyp) and their respective
ground-truths. The ground-truth is a binary-image that indi-
cates the position of the polyp in the image. The images come
from 20 video-colonoscopies in which 10 display a unique
polyp at multiple scales and from different viewing angles.

We have manually extracted the ROIs based on the ground-
truth of this database. Next, we trained the fuzzy tree to obtain
two classes, a class1 for the presence of a polyp and a class0
for the absence of a polyp. We use 70% of the images to learn
and 30% of the images to test.

To measure the performance, we have computed two indi-
cators at ROI-level:

• The sensitivity = TP
TP+FN

• The specificity = TN
TN+FP

with the parameters of the equations defined as:
• TP: a ROI of class1 that contains a polyp.
• FP: a ROI of class1 that does not contain a polyp.
• TN: a ROI of class0 that does not contain a polyp.
• FN: a ROI of class0 that contains a polyp.
We have obtained a sensitivity of 93% and a specificity of

91%.
Although the results are good, a bias is present: the classi-

fication results are for manual ROI extractions. The extraction
of the ROI by an image processing chain is a crucial part.
By giving specific features from the image to the machine
learning algorithm, it has a clear impact on the algorithm
performance [2].

In this article, we analyze our image processing chain that
delivers features from the image to the fuzzy trees. We make a
proposition to enhance its performance and finally, we evaluate
the performance to come to a conclusion.

II. EVALUATION OF THE IMAGE PROCESSING CHAIN

In this section, we provide a description of our first hybrid
approach described in [7], which includes three steps.

1) extraction step: before extracting a ROI, we convert
each image from an RGB model to a brightness model.
This preserves the texture information and provides
a better degree of integrability than an image color
processing containing three channels. Then, we realize
an edge detection into the image by applying a 3x3
median noise filter and a Canny filter. Finally, we use a
Hough Transform to detect circular or elliptical shapes.

Each circle or ellipse becomes a ROI (see Fig. 1). We
chose the Hough Transform because a polyp circular or
elliptical shape. It is also possible to integrate it in real-
time in a WCE [9].

2) description step: we realize a texture analysis of the
ROIs and extract 26 texture and luminosity descriptors
using co-occurrence matrix algorithm [10]. Texture and
luminosity are important descriptors to recognize and
identify polyps [11].

3) classification step: in this step, we use the fuzzy trees
to classify each image.

Fig. 1. Extraction step

Here, the image pre-processing part is composed by the
two steps; the extraction step and the description step. To
evaluate our pre-processing part, we measure the detection
rate of the global processing which includes the three steps
mentioned above; extraction, description, and classification.
The measurements were made at two levels: at ROI-level and
at image-level. At ROI-level, a ROI containing a polyp is
labeled as class1 and a ROI without a polyp is classified as
class0 [7]. At image-level, an image containing at least one
ROI of class1 is classified as class1. Otherwise, it is classified
as class0.

TABLE I
PERFORMANCES OF THE GLOBAL PROCESSING

Videos ROI level Image level
20 sensitivity Spec. sensitivity Spec.

Results 29.9% 95.2% 53.2% 73%

The results are shown in Table I. We notice that at the ROI-
level, the sensitivity is only 30% and at the image-level, the
sensitivity is 53% and the specificity is 73%. This shows the
impact of the image pre-processing part. At ROI-level, the
performance of the classification step falls from 93% [7] to
30%. At image-level, the sensitivity and specificity are low.

The reason for this must be examined. In the manual
extraction, the ROIs contain the entire polyp according to the
ground truth. Furthermore, all the polyps are contained in a
ROI. In the case of automatic extraction via image processing,
the ROIs do not seem to contain an entire polyp and not all
polyps are in a ROI.

We have conducted a deep analysis and determined that by
using the proposed image processing, 70% of polyps were
extracted in at least one ROI. Also, we have shown that
polyps were not always extracted completely. This impacts
the sensitivity performance of our classifier that was trained
to recognize ROIs that contain an entire polyp.

We have measured the percentage of polyps contained in
the ROIs and obtained the following results:

• 11.5% contain between 90-100% of a polyp
• 31.6% contain between 50-90% of a polyp
• 56.9% contain between 1-50% of a polyp



Fig. 2. Sensitivity according the percentage of polyp contained in ROI.

We have observed that a large amount of the ROIs does
not contain an entire polyp and only 43% of the ROIs contain
at least 50% of a polyp. We then measured the sensitivity
indicator for each of these three cases. The results are visible
in Figure 2.

As expected, a higher sensitivity is associated to ROIs
containing higher percentages of the polyp. We need to
improve the image processing to extract ROIs containing a
high percentage of the polyp.

Additionally, we have analyzed the performances of the
global processing at the image-level. At this level, in a first
approach, we use a simple rule: an image containing at least
one ROI classified as class1 is classified as class1; all other
images are classified as class0. The specificity in this case
is equal to the probability that all n ROIs are classified as
class0; it is a binomial probability equal to:

Specificity
Img level

= Pn
(classROI=0) = Specificityn

ROI level

The number of ROIs of class0 in an image varies from 5
to 13, which could decrease the sensitivity from 78% to 53%.
We measure a decrease of 73%. We notice that the rule used
to define the image class is not efficient.

To solve these problems, we propose a new approach for
polyp detection based on gastroenterologists’ expertise.

III. PROPOSED METHOD

Fig. 3. Modification of our former hybrid approach with now five steps.

Our method is inspired by the gastroenterologists’ psycho-
visual methodology when they are performing a colonoscopy.
They select the ROIs inside the gastrointestinal tract based
on shape features. Once they select a ROI, they move the
endoscope and follow the ROI to include a more accurate
analysis and to detect the presence of an existing polyp. Based
on this methodology, we modified our hybrid approach to have
five steps (see in Figure 3). These steps are the following:

1) extraction step: the same processing as previously
mentioned is used.

2) follow-up step: if an ROI was classified as class1 in the
previous image, we use a motion estimation method to
determine where the ROI should be in the current image
and create a related ROI.

3) description step: the same processing as previously
mentioned is used.

4) classification step: the same processing as previously
mentioned is used.

5) aggregation step: Images’ class is defined by an aggre-
gation of all the ROIs of class1 in the last images.

In brief:
• We have added a follow-up step. The goal of this step

is to improve the extraction of the ROIs that contain a
high percentage of a polyp. In the case where a ROI is
classified as class1 in image In−1, we use its location
in the image In−1 to estimate its location in the image
In. We then place a ROI on this location. This new ROI
is sent to the description step. In the follow-up step, the
temporal depth is denoted m to analyze the images from
In−1 to In−m. In this article, we have used m = 1, 2
and 3.

• We execute the extraction and the follow-up steps in
parallel.

• We have added an aggregation step to determine the
image’s class by exploiting spatio-temporal information.
An image will be considered as class1 if there is at least
one ROI of class1 that was class1 on the last k images.
In our case, we use k = 3.

With the follow-up step, we expect to increase the number
of ROIs that contain more than 50% of a polyp by estimating
their location in the next image.

With the aggregation step, we expect to increase the
specificity at the image level.

In the next subsection, we describe the ROI follow-up step
in detail.

A. Follow-up step
To follow a ROI validated as class1, we apply a motion

estimation using a block matching algorithm described in
Figure 4. Each ROI validated as class1 in the last image In−1

is considered as a block Bp,q of size P ∗Q. For all the pixels
in the block, a motion vector is computed.

The motion estimation is performed by computing a similar-
ity measurement between In−1(Bp,q) and In(Bp−i,q−j) using
the intensity standard variation V ar(i, j) (equation 1). Here,
we refer to the vector I

n−1(Bp,q) of the image In−1 in the block
Bp,q as: I

n−1(Bp,q) = [I
n−1(p,q), ..., In−1(p+P−1,q+Q−1)]

T .

V ar(i,j)=

√∑
∀p,q∈[BxP ]

[I
n−1

(Bp,q)−In (Bp−i,q−j)]
2

B∗P
(1)

Fig. 4. For a depth=1, a) Block matching with 1 neighborhood. b) Block
matching with 2 neighborhoods. c) ROI validated in the image In−1. d) 8
candidate motion vectors. e) 8 candidate blocks displaced by the candidate
motion vectors. f) Candidate block having the lowest standard variation.

As an example, in the image In of Figure 4.a, the block B
is displaced from the initial position (p, q) to (p−i, q−j). This



motion corresponds to a motion vector
−→
V = (i, j). We identify

this vector among 8 candidate motion vectors. To enhance the
motion vector identification, we compute the candidate vector
motion with different depths; in Figure 4 we see an example
with a depth of 1 (a) and a depth of 2 (b). We can have a
maximum depth of 10.

The motion vector
−→
V = (i, j) will be the candidate motion

vector where V ar(i, j) is minimum. The followed ROI in the
image In will be the validated ROI in the image In−1 (see
Figure 4) displaced by motion vector

−→
V = (i, j).

With this technique, we can follow the ROIs where a
polyp was detected in the image In−1. Furthermore, we
can increase the temporal depth of the motion estimation to
follow the ROIs where a polyp was detected in the images
In−1, In−2, ..., In−m.

IV. EXPERIMENTAL RESULTS

We have evaluated our modified hybrid approach with a
temporal depth of m = 0, 1, 2 and 3. Additionally, we have
evaluated the detection of the polyps at the ROI-level and the
image-level (see Table II). In Table II, we notice that adding
the aggregation step increases the specificity from 73% to
83% if a temporal depth of m = 0 is used. Furthermore, for
a temporal depth of m = 3, we notice that the sensitivity
increases from 30% to 57% at ROI-level and from 53% to
93.7% at image-level. The performance has increased by 40%
compared to our previous approach while using processing that
is compatible with integration inside an iWCE. If we analyze
the specificity, we observe an important decrease at the ROI-
level but a limited one of 10%, at the image-level. This can
also be considered as a good result.

In addition, we have analyzed the ROIs and showed that
the follow-up step improves the extraction of the ROIs with
a larger part of the polyps:

• 15.2% of ROIs contain between 90-100% of a polyp,
• 40.4% of ROIs contain between 50-90% of a polyp,
• 44.4% of ROIs contain between 1-50% of a polyp,

TABLE II
PERFORMANCES OF THE MODIFIED HYBRID APPROACH

ROI-level Image-level
Temporal depth sensitivity Spec. sensitivity Spec.

m=0 33,48% 93.1% 66.7% 82.8%
m=1 53.8% 86.0% 93.2% 65.0%
m=2 56.8% 84.0% 93.3% 63.6%
m=3 57.1% 83.1% 93.7% 62.0%

These results show that our goals have been obtained using
our new method. The amount of ROI identified that contains
at least 50% of a polyp increased from 43% to 56% by using
a simple Block Matching technique. Therefore, taking into
account the spatiotemporal information by a ROI follow-up
approach increases the performance of the detection.

By using the spatiotemporal aggregation, we increase the
specificity and obtain a high score of 93.7% for the sensitivity
at the image-level.

V. CONCLUSIONS

In this paper, we have presented a hybrid approach to detect
polyps that could be integrated in an iWCE [8]. This chain
comes from the gastroenterologists’ psychovisual methodol-
ogy. The idea is to follow an extracted ROI using a simple
motion estimation algorithm. With our proposition, we show
an increase of the sensitivity from 53% to 93.7% at image
level, validated on a large database of 18,910 images.

Follow-up is based on the analysis of the video stream and
not only a per image analysis. Our results show that consid-
ering the spatiotemporal location of a polyp on a segment of
video can improve the performance of the detection. The next
work will be focused on a deep analysis of the spatiotemporal
information and the membership degree of a ROI containing a
polyp on a segment of the video. In addition, we will consider
fuzzy trees to recognize ROIs with non-centered polyp to
improve the detection rate. 1
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