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Abstract12

Several language models rely on an assumption modeling each local context as a (potentially oriented)13

bag of words, and have proven to be very efficient baselines. Sequence graphs are the natural14

structures encoding their information. However, a sequence graph may have several realizations15

as a sequence, leading to a degree of ambiguity. In this paper, we study such degree of ambiguity16

from a combinatorial and computational point of view. In particular, we present theoretical results17

concerning the family of sequence graphs. Several combinatorial problems are presented, depending18

on three levels of generalisation (window size, graph orientation, and weights), and whether some19

of these are NP-complete is left opened. We establish different algorithms, including an integer20

program and a dynamic programming formulation to respectively recognize a sequence graph and to21

count the number of its distinct realizations. This allows us to show that this model assumption can22

induce an important number of sentences to have the same representations. We empirically compare23

the representations obtained with a recurrent neural networks for different realizations of sequence24

graphs.25

2012 ACM Subject Classification Mathematics of computing → Combinatoric problems; Mathem-26

atics of computing → Combinatorics on words; Mathematics of computing → Graph algorithms;27

Theory of computation → Complexity classes; Theory of computation → Problems, reductions and28

completeness29

Keywords and phrases Graphs, Sequences, Combinatorics, Inverse problem, Complexity class30

1 Introduction31

The automated treatment of familiar objects, either natural or artifacts, always relies on a32

translation into entities manageable by computer programs. However, the correspondence33

between the object to be treated and "its" representation is not necessarily one-to-one. The34

representations used for learning algorithms are no exception to this rule. In particular,35

natural language words and textual documents representations are essential for several tasks,36

including document classification [23], role labelling [19], and named entity recognition37

[16]. The traditional models based on pointwise mutual information, or graph-of-words38

(GOW), [9, 17, 20], supplement the content of bag-of-words (TF, TFIDF) with statistics39

of co-occurrences within a window of fixed size w, introduced to mitigate the degree of40

ambiguity. Several models [2, 14, 18, 21] also use the same type of information and constitute41

strong baselines for natural language processing.42

While these representations are more precise than the traditional bag-of-words (e.g Parikh43

vectors), they still induce some level of ambiguity, i.e. a given graph can represent several44

sequences. Our study is thus motivated by a quantification of the level of ambiguity, seen45
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Linux is not UNIX but

(a) No ambiguity (w = 3)

Linux is not UNIX but

(b) Ambiguity (w = 2)

Figure 1 Sequence graphs (or graphs-of-words) built for the sentence “Linux is not UNIX but
Linux” using window sizes 3 (a) and 2 respectively (b). In the second case, the sequence graph is
ambiguous, since any circular permutation of the words admits the same representation.
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Figure 2 Sequence graphs (or graphs-of-words) built for the sentence “a b r a c a d a b r a” using
window sizes 2 (a), 3 (b), 4 (c) and 5 (d).

as an algorithmic problem, coupled with an empirical assessment of the consequences of46

ambiguity for the representations.47

After introducing in Section 2 the formal definition of a sequence graph and the descriptions48

of our main problems, we establish in Section 3.1 complexity aspects of deciding the existence49

and counting sequences in GOWs associated with a window size w = 2. Then we consider50

in Section 3.2 the general case w ≥ 3, and propose a integer program and a dynamic51

programming algorithm to respectively recognize a sequence graph and count admissible52

sequences. Finally, we assess the prevalence of ambiguity within a synthetic dataset, and53

observe that sequences invariant with respect to the GOW representation do not lead to54

invariance with respect to recurrent neural networks such as Long Short Term Memory55

networks (LSTMs).56

Related work57

Sequence graphs encode the information of several co-occurences based models [2, 15, 18]. To58

the best of our knowledge, the ambiguity and realizability questions addressed in this work59

were never systematically addressed by prior work in computational linguistics. Furthermore,60

we believe the problems studied in this paper are interesting from an algorithmic point of61

view, and appear to be devoid of reduction to other well-known problems.62
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However, some similarities exist between our problem and others studied in the Distance63

Geometry (DG) literature. In distance geometry, the input consists of a set of pairwise64

distances between points, having unknown positions in a d-dimensional space. The problem65

then consists in determining (the existence of) a set of positions for the points, satisfying the66

distance constraints. Since a position is fully characterized from d+ 1 constraining neighbors,67

the problem can be solved by finding a sequential order for processing points, such that the68

assignment of a point is always by at least d+ 1 among its neighbors [13]. This statement69

shares some level of similarity with our problem since an admissible sequence for a window70

w = d + 2 also represents a linear ordering of its nodes, in which w − 1 = d + 1 of the71

neighbors have lower value with respect to the order.72

The reasons for the insufficiency of linear ordering in DG to solve our realizability problem73

are threefold. First, each element of the sequence x associated to the protein backbone is74

associated a unique vertex. This is not the case we investigate here, since a symbol can be75

repeated several times, but only one vertex is created in the graph. This implies that the76

vertex associated to the ith element (i ≥ w) of x can have strictly less than w − 1 distinct77

neighbors in its predecessors in x. Second, the absence of loops in distance geometry, because78

an element is at distance 0 from itself. Finally, the graphs are always undirected in distance79

geometry.80

2 Definitions and problem statement81

Let x = x1, x2, ..., xp be a finite sequence of discrete elements among a finite vocabulary82

X. Without loss of generality, we can suppose that X = {1, ..., n}. In the following, let83

Ip = {1, ..., p}. This motivates the following definition:84

I Definition 1. G = (V,E) is the graph of the sequence x with window size w ∈ N∗ if and85

only if V = {xi | i ∈ Ip}, and86

(i, j) ∈ E ⇐⇒ ∃(k, k′) ∈ I2
p , |k − k′| ≤ w − 1 xk = i and xk′ = j (1)87

For digraphs, Eq. (1) is replaced with88

(i, j) ∈ E ⇐⇒ ∃(k, k′) ∈ I2
p , k ≤ k′ ≤ k + w − 1, xk = i and xk′ = j. (2)89

Finally, a weighted sequence graph G is endowed with a matrix Π(G) = (πij) such that90

πij = Card {(k, k′) ∈ I2
p | k ≤ k′ ≤ k + w − 1, xk = i and xk′ = j} (3)91

We say that x is a w-admissible sequence for G (or a realization of G), if G is the graph of92

sequence x with window size w.93

The natural integers πij represent the number of co-occurrences of i and j in a window94

of size w. Hence, the graph of sequence is unique. An linear time algorithm to construct a95

weighted sequence digraph is presented in Sec. A of the appendix. Other cases are obtained96

similarly. The procedure in algorithm 1 defines a correspondence between the sequence set97

X? into the graph set G : φw : X? → G, x 7→ Gw(x). Based on these definitions, we consider98

the following problems:99

I Problem 1 (Weighted-Realizable (W-Realizable) ).100

Input: Possibly directed graph G, matrix weights Π, window size w101

Output: True if (G,Π) is the w-sequence graph of some sequence x, False otherwise.102
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I Problem 2 (Unweighted-Realizable (U-Realizable) ).103

Input: Possibly directed graph G, window size w104

Output: True if G is the w-sequence graph of some sequence x, False otherwise.105

We denote D-Realizable (resp. G-) the restricted version of Realizable where the106

input graph G is directed (resp. undirected), and W-Realizable (resp. U-) the restricted107

version of Realizable where the input graph G is weighted (resp. unweighted), possibly108

in combination with the D- or G- variants. We write Realizablew for the case where w109

is a fixed (given) constant. We also consider the variants of W-Realizable, denoted WG-110

Realizable and WD-Realizable where the input graph is restricted to be respectively111

undirected and directed. We define UG-Realizable and UD-Realizable similarly. Finally,112

we write (WG-, WD-, ...)Realizablew for the case where w is a fixed strictly positive integer.113

I Problem 3 (Unweighted-NumRealizations (U-NumRealizations) ).114

Input: Possibly directed graph G, window size w115

Output: The number of realizations of G, i.e. preimages of G through φw such that116

|{x ∈ X? | φw(x) = G}| if finite, or +∞ otherwise.117

I Problem 4 (Weighted-NumRealizations (W-NumRealizations)).118

Input: Possibly directed graph G, matrix weights Π, window size w119

Output: The number of realizations of G in the weighted sense.120

Similarly, we use the same prefix for the directed or undirected versions of (D-, G-, i.e.121

DU- for directed and unweighted). We also denote NumRealizationsw for the case where122

w is a fixed strictly positive integer. Note that NumRealizations strictly generalizes the123

previous one, as Realizable can be solved by testing the nullity of the number of suitable124

realization computed by NumRealizations.125

DW Directed weighted DU Directed unweighted
GW Undirected weighted GU Undirected unweighted

126

3 Theoretical results127

In this section, we present our main theoretical results. Due to length limitations, some of128

the proofs are left in the appendix.129

3.1 A complete characterization of 2-sequence graphs130

A graph has a sequential realization with w = 2 when there exists a path visiting every vertex131

and covering all of its edges (at least once for the unweighted case and exactly πe for the132

edge e in the weighted case). This characterization enables relatively simple characterization133

and algorithmic treatment, leading to the results summarized in Table 2.134

Table 1 Complexity for various instances of our problems (w = 2)

NumRealizations2 Realizable2

Data Instance Complexity #Sequences Complexity Characterization

Unweighted graph P {0,+∞} P G connected
Weighted graph #P-hard {0, 1} ∪ 2N∗ P ψ(G) (semi) Eulerian
Unweighted digraph P {0, 1,+∞} P Theorem 14
Weighted digraph P N (BEST Theorem) P ψ(G) (semi) Eulerian
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3.2 General sequence graphs and Realizablew≥3135

The characterization of more general sequence graphs, such as 3-graphs is not the same for136

2-graphs, as shows the counter-example in Fig 3a: the depicted graph has no self-edge so137

there must at least one clique of size 3. Similarly, Fig. 3b depicts a counter example for138

directed graphs: G does not have loops, so if it had a 3-admissible sequence, such sequence139

must be of the form {1 2 3 1..., 1 3 2 1..., 2 3 1 2..., 3 2 1 3..., 2 1 3 2...} but then (2, 1) would form140

an edge.141

1 2 3
(a) G is connected but
not a 3-sequence graph

1 2 3
(b) G is strongly connec-
ted but not a 3-sequence
graph

Figure 3 Counter examples for w = 3

3.3 A polynomial time algorithm for GU-Realizablew142

Similarly to the procedure in Sec. B, we will use an auxiliary graph built on G. Let143

H(G) = (E,HE) be the new graph obtained with the following procedure. Two edges144

e = (v1, v2), f = (v3, v4) of E are connected in H(G) if and only if:145

v2 = v3 and (v1, v4) ∈ E (4)146

This defines an injective function h̃ : EH → V 3: an edge of H(G) can be seen as an147

unique triplet v1, v2, v3 where (v1, v2), (v1, v3) and (v2, v3) ∈ E. Therefore, by definition, a148

walk P in H(G) is always of the form:149

P = (t1, t2), ..., (tp−1, tp) s.t ∀i ∈ {1, ..., p− 1}, (ti, ti+1) ∈ E (5)150

It is clear that if H(G) is a 2-graph, then G is a 3-graph since there is a walk going151

through all edges of H(G) (so visiting every non isolated node and creating all edges of G).152

However, the converse is not true as depicted in Fig. 4. In order to determine if G = (V,E)153

has an admissible sequence in the general case, a procedure is to recursively merge pairs of154

vertices, maintaining constraints depending on E. These constraints are similar to Eq. 4. We155

adopt the following notations, ui,j = (ui, uj) and u1:k = (u1, ..., uk). The iterative procedure156

for w ≥ 3 is summed up in the following equation. Namely, ∀k ∈ {2, ..., w − 2}, one has157

E(k) = {u1:k+1 ∈ V k+1 | u1:k ∈ E(k−1), u2:k+1 ∈ E(k−1) ∧ (u1, uk+1) ∈ E} (6)158

Let H(k) = (E(k), E(k+1)), it can be defined recursively through:159

H(0) = G ∀k ∈ N∗, H(k) = f(H(k−1)) (7)160
161

where f transforms edges into vertices and creates edges between new vertices that verify162

Eq. 6.163

I Definition 2. Let u be a vertex of H(k) for k ∈ N, u = (u1, ..., uk, uk+1). The sequence164

u1, ..., uk+1 is the authentic sequence of u. We also call an authentic sequence of a walk on165

H(k): P = (x1, ..., xk+1), (x2, ..., xk+2), ..., (xv, ..., xv+k) the sequence x1, x2, ..., xv+k.166
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In order to obtain admissible sequences of length p, the computation of H(p) requires p167

iterations, and the number of vertices and edges of H(k) can increase during iterations (the168

complete graph is an example for which theses numbers increase exponentially).169

I Proposition 3. Let x = x1, ..., xp be a w-admissible sequence of a graph (or digraph)170

G = (V,E). If w ≤ p, x, then x is an authentic sequence of a walk of length p− w + 1 on171

H(w−2).172

Proof. Due to length limitation, we provide a proof sketch, full proof is left in the appendix.
The following property by induction on k:

∀k ∈ {w, ..., p}, ∃ walk P on H(w−2) such that :

x1:k = P [1]1, P [2]1, ..., P [k − w]1, P [k − (w − 1)]1:(w−1)

• Initialisation: k = 1. By construction of H(w−2), x1 is the first element of the “static173

walk”: x1:w−1 ∈ H(w−2).174

• Induction: Verification that if x1:k is a walk of length k − w + 1, one can find a walk of175

length (k + 1)− w + 1 to generate x1:(k+1). J176

I Theorem 4. Let w ∈ N∗. GU-Realizablew is in P .177

Proof. The case for w = 1 is trivial, and w = 2 has been treated. For w ≥ 3, an algorithm178

is obtained by going through all the connected components of H(w−2). Let C1, ..., Cm the179

connected components of H(w−2). On the one hand, it is possible to compute them in180

polynomial time. On the other hand, it is possible to construct walks covering all of their181

respective edges in polynomial time (for instance iteratively using shortest paths). Let182

W1, ...,Wm such walks and X1, ..., Xm their respective admissible sequences.183

Using Prop. 3, G is a w-sequence graph if and only if there exists a walk W̃i0 on some184

Ci0 creating exactly the edges of G. However, Wi0 creates more edges than any walk on Ci0185

by construction.186

In conclusion, the assertion:

∃i ∈ {1, ...,m}, φw(Xi) = G

is a characterization that G is a w-sequence. This assertion is decidable in polynomial time187

since for all i, φw(Xi) is computable in polynomial time (cf. Algorithm 1). J188

For digraphs, the analogue of the aforementioned procedure would consist in enumerating189

alll paths in the DAG R(H(w−2)). However, the number of paths can be exponential, even for190

a sequence graph. In the next subsection, we will prove that DU-Realizablew is actually191

NP-hard. Finally, if x1, ..., xc are vertices of a strongly component of H(w−2), which order192

should be considered to form a new vertex attribute xC? The following lemma shows that193

this order is not important, as long as it represents a walk in the component. Moreover, it194

is possible to reconstruct all admissible sequences from walks on R(Hw−2). With the same195

notations:196

I Lemma 5. Let x a walk on H(w−2) whose authentic sequence is w-admissible for G. If x197

goes through a strongly component C of H(w−2), adding any supplementary path included in198

C is stable for w-admissibility. Any graph generated by a walk on H(w−2) can be generated199

by a walk on R(H(w−2)).200
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1 2

34
(a) G

31

24
23

43

42

41
34

32

(b) H

31

2443

41 32

34234

(c) R(H)

Figure 4 Procedure to find a 3-admissible sequence. 34234, 41: is 3-admissible, with authentic
sequence 3 4 2 3 4 1

Proof. We present a proof sketch. The first statement concerning stability requires a201

straightforward verification using the definition of H(w−2). Second, a procedure to generate202

G from a walk on R(H(w−2)) using a walk x1:p on H(w−2)) is to consider an iterative scheme,203

and discuss three cases:204

(i) xi and xi+1 are not in a strongly connected component (SCC)205

(ii) xi is not in a SCC and xi+1 is in a SCC206

(iii) xi and xi+1 are both in SCCs207

For case (i), we just keep xi and xi+1. For cases (ii) and (iii), we use the first part result of208

the Lemma and add covering walks over the strongly connected components. J209

3.4 Main complexity results210

In this subsection we present the remaining complexity results, which are summarized in211

Table 2. In the previous subsection, we proved that GU-Realizablew ∈ P, ∀w ≥ 3. Besides,212

for GU, the number of realizations of a graph G is either 0 (not realizable), +∞ (realizable213

and there exists a cycle in a component of H generating G), or 1 (realizable but no cycle214

in any component of H generating G). These three cases can be tested in polynomial time215

using our algorithm, showing that GU-NumRealizationsw ∈ P, ∀w ≥ 3. In the remaining216

of this section, we present the reductions we used for the other instances.217

Table 2 Complexity for various instances of our problems (w ≥ 3). We remind that a para-NP-
hard problem does not admit any XP algorithm unless P=NP.

Constant w, w ≥ 3 Parameter w
NumRealizationsw Realizablew NumRealizations Realizable

Variation Complexity Complexity Complexity Complexity

GU P P W[1]-hard; XP W[1]-hard; XP
GW NP-hard NP-hard para-NP-hard para-NP-hard
DU NP-hard NP-hard para-NP-hard para-NP-hard
DW NP-hard NP-hard para-NP-hard para-NP-hard

I Proposition 6. Clique admits a polynomial time parameterized reduction into GU-218

Realizable.219

Proof. Let G = (V,E) be a simple graph. Let G′ be a graph constructed from G adding220

two nodes a and b with loops, such that a and b are connected to each vertex of G. Let k be221

a strictly positive integer and w = k + 1. We will show that G has a k-clique if and only if222

G′ is w-realizable.223
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First, let us suppose that G has a k-clique. Let C be an arbitrary sequence of the vertices
of one of its k-clique. Let v1, . . . , v|V | be the vertices of G and (u1, u

′
1), . . . , (u|E|, u′|E|) be

its edges. In the following xw represents the w-repetition of x. Then, the following sequence
is a w-realization of G′:

aw u1 u
′
1 a

w u2 u
′
2 a

w . . . aw u|E| u
′
|E| a

w C bw v1 b
w v2 b

k . . . bwv|V |

Now let us suppose that G′ is w-realizable and let x = x1, . . . , xp be a w-realization of G′.224

Without loss of generality, let us suppose a appears before b in x. Let ib be the index of225

the first appearance of b and let ia be the largest index of the appearance of a before ib.226

Then ib − ia ≥ w, otherwise there would be an edge between a and b. Furthermore, since227

G is simple, there cannot be two repetitions of a vertex in the sequence xia+1, . . . , xia+w−1.228

Due to the definition of a sequence graph, all vertices {xia+1, . . . , xia+w−1} are connected,229

forming a clique in G of size w − 1 = k, which ends the proof. J230

I Corollary 7. GU-Realizable is W[1]-hard for parameter w.231

DU-Realizable is NP-hard for w ≥ 3232

Consider the following intermediate problem:233

OptionalRealizablew Given a directed unweighted graph D = (V,A), a subset A′ ⊆ A of234

compulsory arcs, two distinguished vertices s, s′ ∈ V . Is there a sequence S such that the235

graph of S contains only arcs in A and (at least) all arcs in A′.236

We first prove that this problem is NP-hard, then show how it reduces to DU-Realizable.237

OptionalRealizablew, w ≥ 3 is NP-hard238

Given G = (V,A) and a start vertex s, build a directed weighted graph G′ = (V ′, A′) as239

follows:240

Vertex set: V =
⋃
v∈V {v0 | v1} ∪ {xip, 1 ≤ p ≤ 2n+ 1, 1 ≤ i ≤ w − 2}241

Arc set,242

optional arcs (xi2p−1, v0), (v0, x
i
2p), (xi2p, v1), (v1, x

i
2p+1) for each v ∈ V , 1 ≤ p ≤ n,243

1 ≤ i ≤ w − 2.244

optional arcs (u1, v0) for each (u, v) in A245

compulsory arcs (v0, v1) for each v ∈ V246

optional arcs (xip, xjp) for i < j and (xip, x
j
p+1) for j ≤ i247

Start vertices are (x1
0, . . . , x

k−2
0 , s).248

G′ is a yes-instance ⇔ G admits a hamiltonian path249

⇐ Let vp be the pth vertex of V in the hamiltonian path. Let Xp be the sequence250

x0
2p−1 . . . x

w−2
2p−1v

p
0x

0
2p . . . x

w−2
2p vp1 . Let Xn+1 = x0

2n . . . x
w−2
2n , and S be the concatenation251

X1 . . . Xn+1. It can be checked that S contains only arcs of A and all compulsory arcs.252

⇒ Consider a sequence S, an occurrence of xip in S for some 1 ≤ i ≤ w − 2, 1 ≤ p ≤ n253

(note that p 6= n+ 1), and let S′ be the subsequence of S containing the w − 1 characters254

following xi2p+1. Let T = xi+1
p . . . xw−2

p and T = x1
p+1 . . . x

i
p+1 (note that T is possibly255

empty). T and U are seen both as strings and as sets of vertices. The out-neighborhood256

of xip contains all vertices of T ∪ U , as well as all vertices vq for v ∈ V , where q = 0 if p is257

odd and q = 1 if p is even. Since there are k − 2 vertices in T ∪ U , and no vertex has a258

self-loop, then by the pigeon-hole principle string S′ must contain at least one vertex vq,259

v ∈ V . Since there are no arc (vq, v′q) for v, v′ ∈ V , S′ contains exactly one vertex vq, thus260



S. Khalife, Y. Ponty, and L. Bulteau 9

it also contains all vertices of T ∪ U . Based on the direction of the arcs in T ∪ U ∪ {vq}, it261

follows that S′ = T · vq · U .262

Let Xp be the string x1
p . . . x

w−2
p . From the arguments above, and the fact that S starts

with X1, there exist indices i1, j1, . . . , in, jn such that

S = X1v
0
i1X2v

1
j1
X3v

0
i2X4v

1
j3
X5 . . . X2n+1

From the window size w, there must exist an arc (v0
ip
, v1
jp

) for each p, so by construction263

ip = jp. Furthermore, these arcs are compulsory for each vertex v0, so (i1, . . . , in) is a264

permutation of {1, . . . , n}. Finally, there also exist an arc (v1
jp
, v0
ip+1

) in G′, so there exists265

an arc (vip , vip+1) in G. Thus, (vi1 , . . . , vin) is a hamiltonian path in G.266

DU-Realizablew is NP-hard267

By reduction from OptionalRealizablew. Given a directed unweighted graph G = (V,A), a268

subset A′ ⊆ A of compulsory arcs (let A′′ = A \A′ be the set of optional arcs), an integer w,269

and w − 1 distinguished vertices s1 . . . sw−1 ∈ V .270

Let m = |A′′|, write A′′ = {(u1, v1), . . . , (um, vm)}. Create G′ by adding w(m + 1)
separator vertices yip, 1 ≤ p ≤ m+ 1 and 1 ≤ i ≤ w and m vertices zp. Build the strings

Z =
(

m∏
p=1

(y1
p . . . y

w
p upzpvp)

)
y1
m+1 . . . y

w
m+1

Z ′ = Zs1 . . . sw−1

. Add all arcs realized by Z ′ involving yip and/or zp to G′.271

G has a realization with optional arcs ⇔ G′ has a realization272

⇒ Build a realization for G′ by concatenating Z with the realization for G starting with273

s1 . . . sw−1. All optional arcs of G′ are realized in Z, all compulsory arcs of G′ are realized274

in the suffix (the realization of G′), and all arcs involving a separator are realized in Z ′. No275

forbidden arc is realized.276

⇐ Let S be a realization of G′. The set of in-neighbors of any separator has size at most277

w − 1 and induce a tournament in G′ (this is clear for all arcs involving separators, it is also278

true for a potential pair of vertices (ui, vi) of G since G has no length-2 cycle. So the w − 1279

characters before any separator are ordered as in Z. Furthermore each separator (except280

y1
1) contains at least one other separator in each in-neighborhood, so any occurrence of a281

separator is actually the last character of a substring of S equal to a prefix of Z. Since y1
1282

has in-degree 0, it may only appear as the first character of S, and any prefix of Z in S283

is also a prefix of S. Moreover since ywm+1 must appear in S, we have S = ZS′ with no284

separator appearing in S′. Thus S′ realizes only arcs from G. From the out-neighborhood of285

y1
m+1, . . . , y

w
m+1, we have that S starts with s1, . . . sw−1. Moreover no compulsory arc of G is286

realized in Z, nor with one vertex in Z and one in S′ (since such arcs start with a separator),287

so all compulsory arcs are realized in S′. Overall, G is a yes-instance of OptionalRealizablew288

with sequence S′.289

GW-Realizablew, DW-Realizablew are NP-hard for all w ≥ 3290

By reduction from a variant of hamiltonian path:291

Input: Undirected graph G with two degree-1 vertices.292

Question: Does G have a hamiltonian path?293
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Start Gadget:

s0

s′0

a

s

k (
k
2
)
k(
k+1

2
)

(
k
2
)

Queue Gadget:

a

s

tb

(
k
2
)

(
k+1

2
)

+ 2k

(
k+1

2
)

+ 2k

(
k+1

2
)

k + 1

(2m− n+ 2)
(
w
2
)

+ 2(m− n)

Vertex Gadget
(for each vertex u, including s and t):

a bu

u′

2du
(
k
2
)

+
(
k+1

2
)

k

k

1
(du − 1)(

(
k+1

2
)

+ 2k)

Edge Gadget
(for each {u, v}):

u v(
k+1

2
)

Figure 5 Subgraphs used in the reduction from Hamiltonian Path to DW-Realizable3. Weights
on double arcs apply to both directions. Note that some arcs appear in different gadgets, in
which case the weights should be summed (in particular, so loops on s and t have total weight
2du

(
k
2

)
+
(

k+1
2

)
+
(

k
2

)
)

Note that this variant of HP is easily shown to be NP-hard from Hamiltonian cycle via294

the following reduction: given a graph G on which we need to find a hamiltonian cycle,295

pick any vertex v, duplicate it into v1, v2 (each edge {u, v} becomes two edges {u, v1} and296

{u, v2}), and add pending vertices s and t connected to v1 and v2 respectively.297

Reduction for DW-Realizable298

Given G = (V,E) with degree-1 vertices s and t, build a directed weighted graph299

G′ = (V ′, A) as follows:300

Vertex set. For each u ∈ V , create a vertex denoted u′. Create two additional dummy301

vertices a and b. Let V ′ := {a, b, s0, s
′
0} ∪

⋃
u∈V {u, u′}. The arcs are given in Figure 5, as302

the union of the start gadget, the queue gadget, and the vertex and edge gadgets respectively303

for each vertex and edge of G.304

Reduction for GW-Realizable305

Build the directed graph G′ as above, and let G′u be the undirected version of G′: remove306

arc orientations, for u 6= v the weight of {u, v} is the sum of the weight of (u, v) and (v, u) in307

G′ (the weight of loops is unchanged).308

Main claims309

We prove the following three claims:310

(i) G hamiltonian ⇒ G′ has a realization311

(ii) G′ has a realization ⇒ G′u has a realization312

(iii) G′u has a realization ⇒ G hamiltonian313

All together, they show the correctness of the reductions for both GW-Realizable and314

DW-Realizable since they yield :315

G hamiltonian ⇔ G′ has a realization316

G hamiltonian ⇔ G′u has a realization317
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318

Proof of Claim (i). G has a hamiltonian path, let (u1 = s, u2, . . . , un = t) be its hamiltonian319

path and (v1, w1), . . . (vm′ , wm′) be the pairs of connected verices except pairs (ui, ui+1) (i.e.320

the set
⋃
{u,v}∈E{(u, v), (v, u)} \ {(ui, ui+1) | 1 ≤ i < n}. Note that m′ = 2m − (n − 1).321

Define sequence S as follows.322

S :=
∣∣∣∣ s′0 sk0 a sk s′ sk a uk2 u′2 uk2 a . . . a ukn−1 u

′
n−1 u

k
n−1 a t

k t′ tk a

bw vk1 bw
k
1 b

w vk2 bw
k
2 . . . b

w vkm−n bw
k
m−n b

w

Note that a sequence of the form xk a yk yields
(
k
2
)
loops for x,

(
k
2
)
loops for y, as well323

as
(
k+1

2
)
arcs (x, y) (indeed, there are 1 + 2 + . . .+ w − 2 =

(
k+1

2
)
such arcs). A sequence324

of the form b xk bw yields in particular an arc (b, x) of weight k and arc (x, b) of weight325 (
k+1

2
)

+ k. J326

Proof of Claim (ii). Clear, any realization for G′ is a realization for G′u. J327

Proof of Claim (iii). Pick a realization S of G′u. Define the weight of a vertex in Gu as the328

sum of the weights of its incident edges (counting loops twice). From the construction, we329

obtain the following weights for a selection of vertices:330

s′0 has weight w − 1331

u′ has weight 2(w − 1) for u ∈ V332

a has weight 2(n+ 1)(w − 1)333

From the weight of s′0, it follows that this vertex must be an endpoint of S (wlog, S334

starts with s′0). It follows that for any other vertex v with weight 2i(w − 1), v must have335

exactly i occurrences in S (in general it can be either i or i+ 1, but if v has i+ 1 occurrences336

it must be both the first and last character of S, i.e. v = s′0: a contradiction). Thus each u′337

occurs once and a occurs n+ 1 times in S.338

Each u′ occurs once, so order vertices of V according to their occurrence in S (i.e.339

V = {u1, . . . , un} with u′1 appearing before u′2, etc.). For each i, the neighborhood of u′i in340

S contains a twice, one a on each side (since there is no (a, a) loop). Other neighbors of341

u′i may only be occurrences of ui, so each u′i belongs to a factor, denoted Xi, of the form342

au∗i u
′
iu
∗
i a. Two consecutive factors Xi, Xi+1 may overlap by at most one character (a), and343

if they do, then there exists an edge {ui, ui+1} (since w ≥ 3) in G. There are n such factors344

Xui
, and only n+ 1 occurrences of a, so all as except extreme ones belong to the overlap of345

two consecutive Xis, and there exists an edge {ui, ui+1} for each i. Thus (u1, . . . , un) is a346

hamiltonian path of G. J347

4 Effective general algorithms348

4.1 Realizablew Linear integer programming formulation349

Let G = (V,E) be a graph with integer weights πe∈E . In this model, we represent a sequence350

x over the alphabet {1, ...n}, as a (0− 1) matrix X ∈Mn,p({0, 1}) encoding the sequence x:351

Xi,j =
{

1 if xj = i

0 otherwise
352
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It should be noted that the set sequence of sequences over the alphabet {1, ...n} is exactly
represented by the (0− 1) matrices such that

∀j ∈ {1, ..., p}
n∑
i=1

Xi,j = 1

Given a window size w, a unit of πe=(v1,v2) corresponds to the appearance of two elements353

v1, v2 at a distance i ∈ {1, ..., w− 1} in the sequence. Now, let us consider a fixed distance i,354

and a starting index j ∈ {1, ..., p− i}, we use a intermediary slack variable yej (i) ∈ {0, 1} to355

model the presence of such appearance using the constraint:356

Xv1,jXv2,j+i = yej (i) (8)357

Then, the Boolean variable yej (i) is equal to 1 when v1 is located at position j and v2 at358

position j + i. We linearise Eq. 8 as:359

−Xv1,j + yej (i) ≤ 0
−Xv2,j+i + yej (i) ≤ 0

Xv1,1 +Xv2,j+i − yej (i) ≤ 1
(9)360

Each slack variable yek(i) is attributed to an edge e, a relative distance i ∈ {1, ..., w − 1} and
a starting position k ∈ {1, ..., p− i}. Given our constraint formulation, every slack variable
is attributed 3 constraints. For a digraph, the number of possible pair positions for a unit of
πe=(v1,v2) is given by:

C =
w−1∑
i=1

(p− i) = p(w − 1)− w(w − 1)
2 = (w − 1)(p− w

2 )

Therefore, in our model, C corresponds to the number of slack variables attributed to361

constraints for an edge of the graph.362

On the contrary, the absence of an edge e = (v1, v2), corresponding to πe = 0, can be363

modeled for a distance i ∈ {1, ..., w − 1} and a starting position j ∈ {1, ..., p− i} as:364

Xv1,j +Xv2,j+i ≤ 1365

Then, Realizablew can be formulated as the following linear integer program:366

min
X∈{0,1}p×n,y∈{0,1}|E|×C

∑
e∈E

∑
i∈{1,...,w−1}

ye1(i) + ...+ yep−i(i)367

under the constraints368

∀j ∈ {1, ..., p}
n∑
i=1

Xi,j = 1369

∀e = (v1, v2) ∈ E

∀e
′

= (v
′

1, v
′

2) /∈ E
∀i ∈ {1, ..., w − 1}



−Xv1,1 + ye1(i) ≤ 0
−Xv2,1+i + ye1(i) ≤ 0

Xv1,1 +Xv2,1+i − ye1(i) ≤ 1
...

−Xv1,p−i + yep−i(i) ≤ 0
−Xv2,p + yep−i(i) ≤ 0

Xv1,p−i +Xv2,p − yep−i(i) ≤ 1

Xv′1,1 +Xv′2,1+i ≤ 1
...

Xv′1,p−i +Xv′2,p
≤ 1

370
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and ∀e ∈ E
∑

i∈{1,...,w−1}

ye1(i) + ...+ yep−i(i) ≥ πe371

If the objective function reaches
∑
e∈E πe at its minimum then the output of Realizablew(G,Π)372

is True, and False otherwise.373

4.2 NumRealizationsw Dynamic programming formulation374

We did not present a way to count admissible sequences in the general case. Although the tract-375

ability of our problems (NP-hardness of Realizablew, #P-hardness of NumRealizationsw)376

currently remains open for some cases, we present in this subsection a method based on377

dynamic programming valid for all cases.378

The recursion proceeds by extending a partial sequence, initially set to be empty, keeping379

track of for represented edges along the way. Namely, consider Nw[Π, p,u] to be the number380

of w-admissible sequences of length p for the graph G = (V,E), respecting a weight matrix381

Π = (πij)i,j∈V 2 , preceded by a sequence of nodes u := (u1, . . . , u|u|) ∈ V ?. It can be shown382

that, for all ∀p ≥ 1, Π ∈ N|V 2| and u ∈ V ≤w, Nw[Π, p,u] obeys the following formula, using383

the notations of Section 3.2:384

Nw [Π, p,u] =
∑
v∈V

Nw
[
Π′(u,v), p− 1, (u1, ..., u|u|, v)

]
if |u| < w − 1

Nw

[
Π′(u,v), p− 1, (u2, ..., uw−1, v)

]
if |u| = w − 1

(10)385

with Π′(u,v) := (πij −|{k ∈ [1, |u|] | (uk, v) = (i, j)}|)(i,j)∈V 2 . The base case of this recurrence386

corresponds to p = 0, and is defined as387

∀ Π, Nw[Π, 0,u] =
{

1 if Π = (0)(i,j)∈V 2

0 otherwise.
(11)388

The total number of admissible sequences is then found in Nw[Π, p, ε], i.e. setting u to the389

empty prefix ε, allowing the sequence to start from any node.390

The recurrence can be computed in O(|V |w ×
∏
i,j∈V 2(πi,j + 1)) time using memoization,

for p the sequence length. The complexity can be refined by noting that:∑
i,j∈V 2

πi,j ≤ w × p

To investigate the worst case scenario, we can consider the optimisation problem:391

maxΠ
∏
i,j∈V 2(πi,j + 1) such that

∑
i,j πi,j = w p. (12)392

This problem is equivalent to maximise a product under a budget constraint. When n2 ≥ w×p,393

which is the case in practice, the maximum is reached for a Boolean matrix Π = (πi,j) ∈394

{0, 1}|V |2 , verifying the constraint. This property can be deduced from the inequality:395

1 ≤ a < b− 1 =⇒ log a+ log b < log(a+ 1) + log(b− 1)396

=⇒ ab < (a+ 1)(b− 1)397
398

It follows that, in the worst-case scenario,
∏
i,j∈V 2(πi,j + 1) ∈ O(2w p). Thus, despite the,399

apparently extreme complexity of our algorithm, it is still possible to compute Nw[Π, p, u1:w]400

for “reasonable” values of p and w.401
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Figure 6 Left plot: Average lower bound (Nw) on the average number of sequences. Two right
plots: ||Wx1 −Wx2 ||2 = f(Epoch) - LSTM, log− log scale

5 Application to sequential models402

5.1 Number of equivalent sequences for weighted sequence digraphs403

Since the dynamic programming method in Sec. 4.2 is exponential in the wort case, we404

provide results for relatively short sequences generated from text data (a dump of English405

Wikipedia, 2016) of 500 documents, each of them having a length p ∈ {50, 100, 150}. Each406

document contained a minimum of 3
4p distinct words. For each w ∈ 3→ 10, we estimate the407

number of admissible sequences yielding the same representations for a set of documents408

and different window size using the procedure described in Sec. 4.2 to compute Nw. Due409

to memory limitations, it should be noted that Nw is a lower bound of the number of total410

admissible sequences, since a starting pattern (first w tokens) is fixed.411

Results are reported in the left plot of Fig. 6. For w = 2, the number of sequences412

(obtained using Prop. 19) was significantly larger ( > 105), so not reported in the figure413

for clarity. As expected, the number of distinct admissible sequences tends to 1 when the414

window size increases. This suggests that window sizes used in skip gram models should415

be usually larger or equal to 5. In natural language processing, a frequent configuration is416

w = 10 [18, 21]. However, some examples with different realizations exist, even for w = 10417

and p = 50.418

5.2 Comparison with a recurrent neural network419

The second experiment we consider is to evaluate the difference of the parameters between420

a sequential model trained on two admissible sequences of a given graph. The sequential421

model we are considering are a class of recurrent dynamical recurrent models, referred to as422

long short term memory (LSTM) networks [12]. These models have attracted new interest423

due to experimental progress for time series prediction [11] and natural language processing424

[3, 6, 25]. Given a window size w, the task we consider is to predict the next element of the425

sequence given the w − 1 previous ones. If the sequences were equivalent for the sequential426

model, the weights should numerically converge after training.427

To generate pairs of admissible sequences encoding for non trivial graphs (i.e not the428

complete graph), we used algorithm based on Lemma 5. We generate w-admissible sequence429

(thousand tokens long), for w ∈ {2, 3}, but could not provide other pairs for w > 3 due430

to computational time. We compare the pairs of admissible sequences with a pair of one431

of the sequence, and a sequence generated randomly uniformly on the same vocabulary.432

We implemented the LSTM network using the Python library Keras [7], a high-level API433
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running over TensorFlow [1]. In order to remove randomness from the training algorithm,434

we froze the seed generating initial weights (the optimization directions being fixed by the435

data). We chose tanh as main activation function, sigmoid for the recurrent activations, with436

2 units. The number of units is chosen relatively low in order to obtain a reasonable number437

of weights (in this case 16).438

Two right plots of Fig. 6 reports the results for w ∈ {2, 3}, Wx represents all the weights439

of the network for a sequence x. For w = 2, there the difference of the weights for 2 admissible440

sequences is lower than with one of the sequence and a random one, but this proximity does441

not appear to be significant compared with a random sequence. For w = 3, the recurrent442

network has relatively close weights for two admissible sequences when compared with a443

random one.444

6 Conclusion445

In this study, we revisited a series of problems related to the ambiguity of sequence graphs446

representations, which are popular in the context of text mining and natural language447

processing. We derived theoretical properties and practical algorithms for the family of448

sequence graphs.449

This study can be of use used for several sequential models, such as continuous bag of450

words (CBOW), skip-grams ([10, 14, 24]), pointwise mutual information models [2, 18, 21].451
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A Additional figures526

Algorithm 1 Construction of a sequence digraph
Input: Sequence x of length p, window size w, p ≥ w ≥ 2
Parameter: Optional list of parameters
Output: (Gw(x), Π)
1: V ← Ø
2: Initiate Π = (πi,j) to d× d matrix of zeros
3: for i = 1→ p− 1 do
4: V ← V ∪ {xi, xi+1}
5: for j = i+ 1→ min(i+ w − 1, p) do
6: πxi,xj

← πxi,xj
+ 1

7: end for
8: end for
9: return solution

1 2 3
(a) 1 2 3 is a 2-admissible sequence but is G
is not strongly connected

1

2 34 5
(b) 3 5 3 1 2 1 2 3 2 4 is a 2-admissible sequence
but the graph is not Eulerian nor semi-
Eulerian

1 2

34
(c) G is not a 2-sequence graph...

c1

c2

(d) ... whereas R(G) is.

1 2 33 1

1

(e) G is strongly con-
nected but is not a 2-
sequence graph

Figure 7 Counter examples for w = 2

B Results and proofs Sec. 3.1 (w = 2)527

In this section, we present the results for digraphs and w = 2. Obviously, the simplest case528

concerns undirected graphs as stated in:529

I Proposition 8. If G = (V,E) is unweighted and undirected, with |V | > 1, the following530

are equivalent:531

(i) G is connected532

(ii) G has a 2-admissible sequence533

(iii) G admits an infinite number of 2-admissible sequences534

In these conditions, a 2-admissible sequence can start and end at any vertex.535
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Proof. Let us suppose G has an admissible sequence u. Let a, b two distinct vertices of G.536

Then using the definition, a and b must appear at least once in the sequence u, i.e uia = a537

and uib = b. If ia < ib, then the sequence s = (ui | ia ≤ i ≤ ib) defines a path from a to b538

since ∀i, esisi+1 ∈ E. The case ib > ia is dealt similarly. J539

The previous characterization is wrong for digraphs, even with strongly connectivity. A540

counter example is depicted in Fig. 7a. However, strong connectivity remains a sufficient541

condition:542

I Proposition 9. Let G = (V,E) a unweighted digraph. If G is strongly connected then543

G ∈ Imφ2. A 2-admissible sequence can start or end at any given vertex of G.544

Proof. This can be proved similarly to (i) =⇒ (ii) for proposition 9 by replacing connectivity545

with strong connectivity. J546

I Proposition 10. Let G = (V,E) an unweighted digraph. If G is Eulerian or semi-Eulerian,547

then G ∈ Imφ2.548

Proof. If G is Eulerian or semi-Eulerian, there exists a walk going through all edges, this549

walk defines a 2-admissible sequence. J550

Again the converse of Prop. 10 does not hold as depicted in Fig. 7b. The characterization551

of sequence digraph is more subtle. As a start, it is natural to consider directed acyclic552

graphs (DAGs):553

I Proposition 11. Let G = (V,E) a DAG. G is a 2-sequence graph if and only if it is a554

directed path, i.e G is a directed tree where each node has at most one child and at most one555

parent. In this case, G has a unique 2-admissible sequence.556

Proof. If G is directed path, since G is finite, it admits a source node. Therefore a 2-557

admissible sequence is obtained by simply going through all vertices from the source node.558

This is obviously the only one.559

Conversely, let us suppose G is a DAG and a 2-sequence graph. If G is not a directed560

path, there are two cases: either there exists a vertex having two children, or two parents.561

Let s be a vertex having 2 distinct children c1 and c2. This is not possible since there cannot562

be a walk going through (s, c1) and (s, c2): G would have a cycle otherwise. Finally a vertex563

v cannot have two parents p1 and p2: if a 2-admissible sequence existed, it would have to go564

through (p1, v) and (p2, v), creating a cycle, hence the contradiction. J565

Every directed graph G is a DAG of its strongly connected components. In the following,566

let R(G) be the DAG obtained by contracting the strongly connected components of G.567

I Proposition 12. Let G = (V,E) a digraph. If G is a 2-sequence graph then R(G) is a568

2-sequence graph.569

Proof. Let G be a 2-sequence graph, and let us suppose that R(G) is not a 2-sequence graph.570

Since R(G) is a (weakly) connected DAG, then using Prop. 11, it cannot be a directed path,571

so R(G) has either a node having two children or two parents. Let S be a node of R(G)572

having at least 2 distinct children C1 and C2. This means that there exist three distinct573

corresponding nodes in V , s, v1 and v2 such that (s, v1) ∈ E and (s, v2) ∈ E. Since G is a574

2-sequence graph, there exists a walk covering (s, v1) and (s, v2), such walk would make S,575

C1 and C2 the same node in H(G), hence the contradiction. The case for which a vertex has576

two parents is dealt with similarly. J577
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The converse of Prop. 12 does not hold as depicted in Fig. 7c, 2. However, let us add a578

weight compatibility in R(G) as follows:579

I Definition 13. Let G be a digraph, and R+(G) be the weighted DAG obtained from R(G),580

such that the weight of an edge is attributed the number of distinct arcs from two strongly581

connected components in G.582

I Theorem 14. Let G = (V,E) be an unweighted digraph.583

G is a 2-sequence graph if and only if R+(G) is a directed path and its weights are all584

equal to 1.585

Proof. If G is a 2-sequence graph, R(G) is a 2-sequence graph using Prop. 12. Also Prop. 11586

implies that R(G) and R+(G) are directed paths. Moreover, if R+(G) had a weight strictly587

greater that 1, then there would be strictly more than one edge between two connected588

components C1 and C2. All these edges go in the same direction otherwise C1 ∪ C2 would589

form a strongly connected component. This is a contradiction since any 2-admissible sequence590

would have to go from C1 to C2 and then come back to C1 (or conversely) which would591

would make C1 ∪ C2 a strongly connected component.592

Conversely, let us suppose R+(G) is a a directed path and its weights are equal to one.593

First, there exists a walk x1, ..., xp covering all edges of R+(G) verifying: (i) ∀i, xi ∈ V or xi594

represents a strongly connected component of G, (ii) there is only one edge in G between595

from xi to xi+1 and (iii) x has no repetition, i.e there is no common vertex in G between xi596

and xi+1. We construct a 2-admissible sequence y for G by means of the following procedure.597

Initialisation: If x1 ∈ V , we simply set y ← x1. Otherwise, x1 corresponds to a strongly598

connected component C1 of G and we add to y any 2-admissible sequence of C1.599

For i ∈ {1, .., p− 1}:600

• If (xi, xi+1) ∈ E: we add xi+1 to the sequence y.601

• If xi ∈ V and xi+1 is a strongly connected component Ci of G: By assumption, there602

exists only one edge of G from xi to a vertex of Ci, say ci0. Since Ci is strongly connected,603

using Prop. 9, Ci has a walk going through all of its edges and starting in ci0, say ci0, ..., cip.604

We add ci0, ..., cip to y.605

• If xi corresponds to a strongly connected component Ci and xi+1 ∈ V : we perform606

similar operations by stopping on the single node of Ci that has a edge to xi+1 (this is607

possible thanks to Prop. 9).608

• xi and xi+1 both correspond to strongly connected components Ci and Ci+1 , there609

exists only one edge between in E between Ci and Ci+1, say ei = (vi, vi+1). We can complete610

y by a walk from the last vertex visited which belong to Ci and vi, and then by a 2-admissible611

sequence through Ci+1 starting in vi and ending in vi+1.612

End For613

The process stops when i = p− 1, and all edges are covered by the sequence y. J614

Therefore, an algorithm to decide if a digraph is a 2-sequence is obtained by extract its615

connected components (there exist linear time algorithms e.g [22]), and to count the number616

of distinct edges between these.617

I Corollary 15. Let G an unweighted digraph. The possible numbers of 2-admissible sequences618

for G is exactly {0, 1,+∞}. Moreover, G admits a unique 2-admissible sequence if and only619

if G is a directed path.620

Proof. Let G a 2-sequence graph and let us show that G has either a unique or an infinite621

number of 2-admissible sequence. G verifies characterization of Theorem 14. If R(G) has622
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a vertex representing a strongly connected component of G (or a vertex with a self loop),623

then by adding an arbitrary number of cycles to y, the obtained walk is still admissible.624

Otherwise, if every vertex of R(G) is in V without self-loops in E, then G is a DAG. Using625

Prop. 11, y is the unique 2-admissible sequence. J626

Weighted 2-sequence graphs627

The weighted case cannot be treated similarly due to the weight constraints implying that a628

weighted graph has a finite number of admissible sequences. A counter example is depicted629

in Fig. 7e.630

I Definition 16. Let ψ(G) be the multigraph with the same vertices as G = (V,E) and with631

πij edges between (i, j) ∈ V 2.632

Due to the previous study, the characterization of weighted 2-sequence graphs using ψ(G) is633

immediate.634

I Theorem 17. If G is a weighted graph (directed or not), with Π(G) ∈ Md(N), then:635

G ∈ Imφ2 ⇐⇒ ψ(G) is connected and semi-Eulerian.636

Proof. G ∈ Imφ2 means that there is a trail going through each edge (i, j) ∈ E exactly πi,j637

times. This trail corresponds to a semi-Eulerian path in ψ(G). J638

I Lemma 18. Let G = (V,E) a weighted 2-sequence graph (possibly oriented). Let E be the639

set of Eulerian paths of ψ(G) and S be the set of 2-realizations of G. Then640

E = (#S)
∏
e∈E

πe! (13)641

Proof. We will first prove it for digraphs. If e = (v1, v2) is an edge of a digraph, we will642

represent the source and target vertex of e as e(s) and e(t). Let (e1, e2, ..., eh) be a Eulerian643

path of ψ(G) defined as a sequence of its edges. Then ∀(i, j) ∈ {1, ..., h}2, ei 6= ej and644

∀i ∈ {1, ..., h− 1}, ei(t) = ei+1(s). Let us consider the transformation:645

E −→ S
(e1, e2, ..., eh) 7→ (e1(s), e2(s), ..., ep−1(s), eh(t))

(14)646

We have already shown this transformation is surjective: any 2-sequence of G can be647

obtained with a Eulerian path of ψ(G). We will now consider the action of Sh on E .648

For a Eulerian path, let us suppose that two edges of ψ(G) have been permuted, say649

e1 and ei0 without loss of generality. If the two corresponding sequences are the same:650

(ei0(s), e2(s), ..., eh(t)) = (e1(s), e2(s), ..., ei0(s), ..., eh(t)). Obviously, ei0(s) = e1(s). Also651

e1(t) = e2(s) implies ei0(t) = e1(t). This shows that ei0 and e1 are associated to the652

same edge in E. Therefore, given a 2-sequence, the choice of a corresponding Eulerian653

path correspond to the choice of σ = (τ1, ..., τ|E|) where τe is a permutation of {1, ..., πe}.654

Therefore #E = (#S)
∏
e∈E πe!.655

If G is undirected, the proof is still valid, but the operators e 7→ e(s) and e 7→ e(t) are656

now induced the natural direction of the considered Eulerian path. J657

Counting the number of Eulerian paths in a undirected graph has been proven to be a658

#P -complete problem [4]. Since G 7→ ψ(G) is bijective, counting the number of 2-admissible659

sequences is also #P -complete. Finally, counting Eulerian trails of weighted digraphs has660

been well studied, hence the following proposition:661



22 REFERENCES

I Proposition 19. If G = (V,E) is a weighted digraph, with Π(G) ∈Md(N). Then, if deg(v)662

is the indegree of a vertex v, the number p2 of 2-admissible sequences is663

p2 = t(ψ(G))∏
e∈E πe!

∏
v∈V

(
degψ(G)(ψ(v))− 1

)
! (15)664

where t(G) is the number of spanning trees of a graph G. If L is the Laplacian matrix of G,665

then t(G) is given by666

t(G) =
∏

λi∈Sp(L)
λi 6=0

λi (16)667

Proof. Direct consequence of BEST Theorem [8]) and Matrix tree theorem [5]) J668

To use formula 15, degψ(G)(ψ(v)) can be obtained using the following formula: degψ(G)(ψ(v)) =669 ∑
n∈V πnv +

∑
n∈V πvn.670

C Proofs section 3.2 (w ≥ 3)671

Proof of Proposition 3. Let x = x1, ..., xp be a w-admissible sequence of G. Let P be a walk672

on H(w−2), and P [i] be the i-th element of P , P [i] ∈ H(w−2): P [i] = (P [i]1, ..., P [i]w−1).673

Let us suppose that w ≤ p (which we can always do), and let us show the following
property by induction on k:

∀k ∈ {w − 1, ..., p}, ∃ walk P on H(w−2) such that :

x1:k = P [1]1, P [2]1, ..., P [k − (w − 1)]1, P [k + 1− (w − 1)]1:(w−1)

• Initialisation: k = w − 1. By construction of H(w−2), x1:w−1 is the authentic sequence of
“static walk”: P = P [1] = x1:w−1 ∈ H(w−2).
• Induction: let us suppose the property is verified for k ∈ {w− 1, ..., p− 1}, i.e there exists
a walk P on H(w−2) such that:

x1:k = P [1]1, P [2]2, ..., P [k − (w − 1)]1, P [k + 1− (w − 1)]1:(w−1)

Since x is w-admissible, then by definition:

∀i ∈ {k + 1− (w − 1), ..., k}, ∀j ∈ {i+ 1, ...,min{k + 1, i+ w − 1}} : (xi, xj) ∈ E

Therefore, by definition of H(w−2), ξk+1 = xk+1−(w−1), ..., xk+1 ∈ H(w−2).674

Let P [k + 2− (w − 1)] =∧ ξk+1, then

P [k + 2− (w − 1)]1:(w−1) = xk+1−(w−1), ..., xk+1

Besides, from the induction assumption: ∀i ∈ {1, ..., k − (w − 1)}, P [i]1 = xi. This ensures
that:

x1:(k+1) = P [1]1, P [2]1, ..., P [k + 1− (w − 1)]1, P [k + 2− (w − 1)]1:(w−1)

which ends the induction and the proof. J675

Proof of Lemma 5. Let P = P [1], , ..., P [r] a walk on H(w−2) going through a strongly676

connected component C, with an arbitrary ordering of its vertices, i.e C = {c1, ..., cm}. This677

means ∃(m0, i0) ∈ {1, ...,m} × {1, ..., r − 1} s.t P [i0] = cm0 and (cm0 , P [i0 + 1]) ∈ E(w−2).678

Let PC = cm0 , cj1 , ..., cjv
be a path in C with (cjv

, P [i0 + 1]) ∈ E(w−2). Let Q be the new679
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path: Q = P [1], ..., P [i0], cj1 , ..., cjv , P [i0 + 1], ..., P [r]. By construction of H(w−2), the edges680

(between elements of V ) created by any walk on H(w−2) are in E, so Q is still admissible.681

Let us label every node of R(H(w−2)) representing a strongly connected component of682

H(w−2) by any 2−admissible sequence (one exists thanks to Prop. 9). A walk on H(w−2):683

x1, ..., xp can be met by a walk on R(H(w−2)) using the following procedure:684

For i ∈ {1, ..., p− 1}:685

if xi, xi+1 ∈ E(w−2), we keep xi and xi+1686

if xi is a vertex of H(w−2) and xi+1 is in a strongly connected component of H(w−2) (but
a node of R(H(w−2))), represented by c1, ..., cCi

, then a path from xi+1 to c1 exists since
the component is strongly connected: xi+1, p1, ..., pm, c1. We keep

xi, xi+1, p1, ..., pm, c1, ..., cCi

Using the aforementioned result, this does not perturb admissibility.687

if xi+1 is a vertex of H(w−2) and xi is in a strongly connected component of H(w−2), we688

proceed similarly (xi and xi+1 are swapped).689

if both xi+1 and xi are strongly connected components of H(w−2), we add intermediary690

nodes to both components similarly.691

J692
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