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Abstract. Several natural language models rely on an assumption modeling each
word context as a bag of words. We study the combinatorial implications of such
assumption for the corresponding word or sentences representations. In particu-
lar, we present theoretical results concerning the family of sequence graphs, for
which realizations yield equivalent representations given this assumption. Sev-
eral combinatorial problems are presented, depending on three levels of general-
isation (window size, graph orientation, and weights), and whether some of these
are NP-complete is left opened. Based on these results, we also establish different
algorithms, including a dynamic programming formulation, to count and explicit
the different realizations of a sequence graph. This allows us to show that the bag
of words assumption can induce an important number of sentences to have the
same representations, even for relatively short context window sizes.

1 Introduction

Context and motivations. In the fields of Natural Language Processing (NLP) and In-
formation Retrieval (IR), concise representations of words and textual documents are
essential for several tasks, including document classification [27], role labelling [21],
and named entity recognition [17]. In particular, the Bag-Of-Words (BOW) represen-
tations [24,20] encode a text and/or a sentence as a vector of weighted occurrences.
Using BOWs, classic tasks such as document similarity computation and indexing can
be efficiently computed using sparse linear algebra, leading to their presence at the core
of popular software solutions such SMART [23] or Lucene [12].

The invariance of the BOW representation, to permutations of the words in the doc-
ument, can lead to multiple documents being summarized by the same BOW. Indeed,
the number of documents having the same BOW representation grows factorially on
the size of the document. Moreover, this high degree of ambiguity has practical con-
sequences for fine-grained classification tasks, as empirically shown by [15,27] in the
context of multi-label classification. For these reasons, more recent works introduced
the Graph of Words [9,22,18] (GOW), which supplements the content of BOW with
statistics of co-occurrences within a window of fixed size w, introduced to mitigate the
degree of ambiguity induced by the representation. Several models such as word2vec
[16], Glove [19] also use the same type of information and allowed to increase perfor-
mance for multiple tasks in natural language processing.

While GOW representations are more precise, they still induce some level of ambi-
guity, i.e. a given graph can represent several sequences. Our study is thus motivated by
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a quantification of the level of ambiguity, seen as an algorithmic problem, coupled with
an empirical assessment of the consequences of ambiguity in the context of classifica-
tion. As a first natural step, we also consider the realizability of a given GOW, i.e. the
existence of a sequence admitting an input GOW as its representation

After introducing in Section 2 the formal definition of a sequence graph, which is
the combinatorial abstraction of a Graph-Of-Word, and descriptions of our main prob-
lems, we establish in Section 3 complexity aspects of deciding the existence and count-
ing sequences in GOWs associated with a window size w = 2. Then we consider in
Section 4 the general case w ≥ 3, and propose an exponential dynamic programming
algorithm to count admissible sequences. Finally, we assess the prevalence of ambigu-
ity within a synthetic dataset, and observe that sequences invariant with respect to the
GOW representation do not lead to invariance with respect to LSTM, a popular neural
network.

2 Definitions and problem statement

Let x = x1, x2, ..., xp be a finite sequence of discrete elements among a finite vo-
cabulary X . Without loss of generality, we can suppose that X = {1, ..., n}. In the
following, let Ip = {1, ..., p}. This motivates the following definition:

Definition 1. G = (V,E) is the graph of the sequence x with window size w ∈ N∗ if
and only if V = {xi | i ∈ Ip}, and

(i, j) ∈ E ⇐⇒ ∃(k, k′) ∈ I2p , |k − k′| ≤ w − 1 xk = i and xk′ = j (1)

For digraphs, Eq. (1) is replaced with

(i, j) ∈ E ⇐⇒ ∃(k, k′) ∈ I2p , k ≤ k′ ≤ k + w − 1, xk = i and xk′ = j. (2)

Finally, a weighted sequence graph G is endowed with a matrix Π(G) = (πij) such
that

πij = Card {(k, k′) ∈ I2p | k ≤ k′ ≤ k + w − 1, xk = i and xk′ = j}) (3)

We say that x is a w-admissible sequence forG (or a realization ofG), ifG is the graph
of sequence x with window size w.

The natural integers πij represent the number of co-occurrences of i and j in a
window of size w. Hence, the graph of sequence is unique. A w-sequence weighted
digraph can be obtained following algorithm 1; other cases are obtained similarly. The
procedure in algorithm 1 defines a correspondence between the sequence set SX into
the graph set G : φw : X? → G, x 7→ Gw(x).

Problem 1 (REALIZABLE).
Input: Graph G, window size w
Output: True if G is the w-sequence graph of some sequence x, False otherwise.
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Algorithm 1 Construction of a sequence digraph
Input: Sequence x of length p, window size w, p ≥ w ≥ 2
Parameter: Optional list of parameters
Output: (Gw(x), Π)

1: V ← Ø
2: Initiate Π = (πi,j) to d× d matrix of zeros
3: for i = 1→ p− 1 do
4: V ← V ∪ {xi, xi+1}
5: for j = i+ 1→ min(i+ w − 1, p) do
6: πxi,xj ← πxi,xj + 1
7: end for
8: end for
9: return solution

Problem 2 (NUMREALIZATIONS).
Input: Graph G, window size w
Output: The number of realizations of G, i.e. preimages of G through φw such that
|{x ∈ X? | φ(x) = G}| if finite, or +∞ otherwise.

Note that the last problem strictly generalizes the previous one, as REALIZABLE can be
solved by testing the nullity of the number of suitable realization computed by NUM-
REALIZATIONS.

3 Complexity results over 2-sequence graphs

A graph has a sequential realization with w = 2 if and only if it can be drawn with-
out lifting the pen (with possible repetitions). This characterization enables relatively
simple algorithmic treatment, leading to the results summarized in Table 1, which we
further elaborate in this section. Due to length limitations, full proofs are left in the
appendix.

Obviously, the simplest case concerns undirected graphs as stated in:

Proposition 1. If G = (V,E) is unweighted and undirected, with |V | > 1, the follow-
ing are equivalent:
(i) G is connected
(ii) G has a 2-admissible sequence
(iii) G admits an infinite number of 2-admissible sequences

In these conditions, a 2-admissible sequence can start and end at any vertex.

The previous characterization is wrong for digraphs, even with strongly connectiv-
ity. A counter example is depicted in Fig. 1a. However, strong connectivity remains a
sufficient condition:

Proposition 2. Let G = (V,E) a unweighted digraph. If G is strongly connected then
G ∈ Imφ2. A 2-admissible sequence can start or end at any given vertex of G.
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Table 1: Complexity for various instances of our problems (w = 2)

NUMREALIZATIONS REALIZABLE

Data Instance Complexity #Sequences Complexity Characterization

Unweighted graph P {0,+∞} P G connected
Weighted graph #P-hard ??? P ψ(G) (semi)Eulerian
Unweighted digraph P {0, 1,+∞} P Theorem 1
Weighted digraph P BEST Theorem P ψ(G) (semi)Eulerian

Proposition 3. Let G = (V,E) an unweighted digraph. If G is Eulerian or semi-
Eulerian, then G ∈ Imφ2.

Again the converse of Prop. 3 does not hold as depicted in Fig. 1b. The character-
ization of sequence digraph is more subtle. As a start, it is natural to consider directed
acyclic graphs (DAGs):

Proposition 4. Let G = (V,E) a DAG. G is a 2-sequence graph if and only if it is a
straight line, i.eG is a directed tree where each node has at most one child. In this case,
G has a unique 2-admissible sequence.

Every directed graph G is a DAG of its strongly connected components. In the follow-
ing, let R(G) be such reduction of G.

Proposition 5. Let G = (V,E) a unweighted digraph. If G is a 2-sequence graph then
R(G) is a 2-sequence graph.

The converse of Prop. 5 does not hold as depicted in Fig. 1c, 1d. However, let us
add a weight compatibility in R(G) as follows:

Definition 2. Let G be a digraph, and R+(G) be the weighted DAG with the same
vertices and edges as R(G), such that the weight of an edge is attributed the number of
distinct edges from two strongly connected components in G.

1 2 3
(a) 1 2 3 is a 2-admissible sequence but
is G is not strongly connected

1

2 34 5
(b) 3 5 3 1 2 1 2 3 2 4 is a 2-admissible
sequence but the graph is not Eulerian
nor semi-Eulerian

1 2

34
(c) G is not a 2-sequence graph...

c1

c2

(d) ... whereas R(G) is.

Fig. 1: Counter examples for w = 2
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Theorem 1. Let G = (V,E) a unweighted digraph.
G is a 2-sequence graph if and only if R+(G) is a straight line and its weights are

all equal to 1.

Therefore, an algorithm to decide if a digraph is a 2-sequence is obtained by extract
its connected components (there exist linear time algorithms e.g [26]), and to count the
number of distinct edges between these.

Corollary 1. Let G an unweighted digraph. The possible numbers of 2-admissible se-
quences for G is exactly {0, 1,+∞}. Moreover, G admits a unique 2-admissible se-
quence if and only if G is a straight line.

3.1 Weighted 2-sequence graphs

The weighted case cannot be treated similarly due to the weight constraints implying
that a weighted graph has a finite number of admissible sequences. A counter example
is depicted in Fig. 2.

1 2 3
3 1

1

Fig. 2: G is strongly connected but is not a 2-sequence graph

Definition 3. Let ψ(G) be the multigraph with the same vertices as G = (V,E) and
with πij edges between (i, j) ∈ V 2.

Due to the previous study, the characterization of weighted 2-sequence graphs using
ψ(G) is immediate.

Theorem 2. If G is a weighted graph (directed or not), with Π(G) ∈ Md(N), then:
G ∈ Imφ2 ⇐⇒ ψ(G) is connected and semi-eulerian.

Counting the number of eulerian paths in a undirected graph has been proven to be
a #P -complete problem [4]. Since G 7→ ψ(G) is bijective, counting the number of 2-
admissible sequences is also #P -complete. For weighted digraphs, counting Eulerian
trails in G has been well studied.

Proposition 6. If G = (V,E) is a weighted digraph, with Π(G) ∈ Md(N). Then, if
deg(v) is the indegree of a vertex v, the number p2 of 2-admissible sequences is

p2 = t(ψ(G))
∏
v∈V

(
degψ(G)(ψ(v))− 1

)
! (4)

where t(G) is the number of spanning trees. If L is the Laplacian matrix of G, then
t(G) is given by

t(G) =
∏

λi∈Sp(L)
λi 6=0

λi (5)
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1 2 3

(a) G is connected

1 2 3

(b) G is strongly connected
Fig. 3: Counter-examples for w = 3

Proof. Direct consequence of BEST Theorem [5]) and Matrix free theorem [6]) ut

To use formula 4, degψ(G)(ψ(v)) can be obtained using the following formula:
degψ(G)(ψ(v)) =

∑
n∈V πnv +

∑
n∈V πvn.

4 General sequence graphs

The characterization of 3-graphs is not the same for 2-graphs, as shows the counter-
example in Fig 3a: the depicted graph has no self-edge so there must at least one clique
of size 3, which is not the case. Similarly, Fig. 3 depicts a counter example for directed
graphs: G does not have self-edges, so if it had a 3-admissible sequence, such sequence
must be of the form {1 2 3 1..., 1 3 2 1..., 2 3 1 2..., 3 2 1 3..., 2 1 3 2...} but then (2, 1)
would form an edge.

4.1 Direct approach

Similarly to the procedure in Sec. 3.1, we will use an auxiliary graph built on G. Let
H(G) = (E,HE) be the new graph obtained with the following procedure. Two edges
e = (v1, v2), f = (v3, v4) of E are connected in H(G) if and only if:

v2 = v3 and (v1, v4) ∈ E (6)

This defines an injective function h̃ : EH → V 3: an edge of H(G) can be seen
as an unique triplet v1, v2, v3 where (v1, v2), (v1, v3) and (v2, v3) ∈ E. Therefore, by
definition, a walk P in H(G) is always of the form:

P = (t1, t2), ..., (tp−1, tp) s.t ∀i ∈ {1, ..., p− 1}, (ti, ti+1) ∈ E (7)

It is clear that if H(G) is a 2-graph, then G is a 3-graph since there is a walk
going through all edges of H(G) (so visiting every non isolated node and creating
all edges of G). However, the converse is not true as depicted in Fig. 4. In order to
determine if G = (V,E) has an admissible sequence in the general case, a procedure is
to recursively merge pairs of vertices, maintaining constraints depending on E. These
constraints are similar to Eq. 6. We adopt the following notations, ui,j = (ui, uj) and
u1:k = (u1, ..., uk). The iterative procedure for w ≥ 3 is summed up in the following
equation. Namely, ∀k ∈ {2, ..., w − 2}, one has

E(k) = {u1:k+1 ∈ V k+1 | u1:k ∈ E(k−1), u2:k+1 ∈ E(k−1) ∧ (u1, uk+1) ∈ E} (8)

Let H(k) = (E(k−1), E(k)), it can be defined recursively through:

H(0) = G ∀k ∈ N∗, H(k) = f(H(k−1)) (9)

where f transforms edges into vertices and creates edges between new vertices that
verify Eq. 8.
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Definition 4. Let u be a vertex ofH(k) for k ∈ N, u = (u1, ..., uk, uk+1). By definition,
the sequence u1, ..., uk+1 is the authentic sequence of u. We also call an authentic
sequence of a walk on H(k): P = (x1, ..., xk+1), (x2, ..., xk+2), ..., (xv, ..., xv+k) the
sequence x1, x2, ..., xv+k.

In order to obtain admissible sequences of length p, the computation of H(p) re-
quires p iterations, and the number of vertices and edges of H(k) can increase during
iterations (the complete graph is an example for which theses numbers increase expo-
nentially).

Proposition 7. Let x = x1, ..., xp be a w-admissible sequence of a graph (or digraph)
G = (V,E). If w ≤ p, x, then x is an authentic sequence of a walk of length p−w+1
on H(w−2).

Proof. Due to length limitation, we provide a proof sketch: The following property by
induction on k:

∀k ∈ {w, ..., p}, ∃ walk P on H(w−2) such that :

x1:k = P [1]1, P [2]1, ..., P [k − w]1, P [k − (w − 1)]1:(w−1)

– Initialisation: k = 1. By construction of H(w−2), x1 is the first element of the
“static walk”: x1:w−1 ∈ H(w−2).

– Induction: Verification that if x1:k is a walk of length k − w + 1, one can find a
walk of length (k + 1)− w + 1 to generate x1:(k+1).

ut

Theorem 3. LetG a graph and w ∈ N∗−{1, 2}. IfG is undirected then REALIZABLE
is in P .

Proof. An algorithm is obtained by going through all the connected components of
H(w−2). Let C1, ..., Cm the connected components of H(w−2). It is possible to com-
pute them in polynomial time. For each i ∈ {1, ...,m}, and for each of them to con-
struct walks covering all edges in polynomial time (for instance iteratively using short-
est paths). Let W1, ...,Wm such walks and X1, ..., Xm their respective admissible se-
quences.

Using Prop. 7, G is a w-sequence graph if and only if there exists a walk W̃i0 on
some Ci0 creating exactly the edges of G. However, Wi0 creates more edges than any
walk on Ci0 by construction.

In conclusion, the assertion:

∃i ∈ {1, ...,m}, φw(Xi) = G (10)

is a characterization that G is a w-sequence. This assertion is decidable in polynomial
time since for all i, φw(Xi) is computable in polynomial time (cf. Algorithm 1). ut

For digraphs, the analogue of the aforementioned procedure would consist in enu-
merating alll paths in the DAGR(H(w−2)). However, the number of paths can be expo-
nential, even for a sequence graph. Here we do not adress the question if this problem
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is NP-hard. Finally, if x1, ..., xc are vertices of a strongly component of H(w−2), which
order should be considered to form a new vertex attribute xC? The following lemma
shows that this order is not important, as long as it represents a walk in the compo-
nent. Moreover, it is possible to reconstruct all admissible sequences from walks on
R(Hw−2). With the same notations:

Lemma 1. Let x a walk on H(w−2) whose authentic sequence is w-admissible for G.
If x goes through a strongly component C of H(w−2), adding any supplementary path
included in C is stable for w-admissibility. Any graph generated by a walk on H(w−2)

can be generated by a walk on R(Hw−2).

Proof. We present a sketch of the proof. The first statement concerning stability re-
quires a straightforward verification using the definition of H(w−2). Second, a proce-
dure to generate G from a walk on R(H(w−2)) using a walk x1:p on H(w−2)) is to
consider an iterative scheme, and discuss three cases:

– (i) xi and xi+1 are not in a strongly connected component (SCC)
– (ii) xi is not in a SCC and xi+1 is in a SCC
– (iii) xi and xi+1 are both in SCCs

For case (i), we just keep xi and xi+1. For cases (ii) and (iii), we use the first part result
of the Lemma and add covering walks over the strongly connected components. ut

1 2

34

(a)

31

24
23

43

42

41
34

32

(b)

31

2443

41 32

34234

(c)
Fig. 4: Procedure to find a 3-admissible sequence. 34234, 41: is 3-admissible, with au-
thentic sequence 3 4 2 3 4 1

4.2 Dynamic programming formulation

In the previous subsection, we characterized w-sequence graphs but did not present a
way to count admissible sequences in the general case. Although the tractability of our
problems (NP-hardness of REALIZABLE, #P-hardness of NUMREALIZATIONS) cur-
rently remains open, we present in this subsection a method based on dynamic pro-
gramming.

The recursion proceeds by extending a partial sequence, initially set to be empty,
keeping track of for represented edges along the way. Namely, consider Nw[Π, p, u1:w]
to be the number of w-admissible sequences of length p for the graph G = (V,E),
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respecting a weight matrix Π = (πij)i,j∈V 2 , preceded by a subword u1, ..., uw−1.
Then, with the notations of Section 4, we have ∀(u1, u2, ..., uw−1) ∈ V w−1, ∀p ≥ 0:

Nw[Π, p, (u1, ..., uw−1)] =
∑
uw∈V

Nw[Π
′, p− 1, (u2, ..., uw)] (11)

with
Π ′ := (πij − |{k ∈ [1, w1] | (uk, uw) = (i, j)}|)(i,j)∈V 2 . (12)

The base case of this recurrence corresponds to p = 0, and is defined as

∀ Π, Nw[Π, 0, u1:w−1] =

{
1 if Π = (0)(i,j)∈V 2

0 otherwise.
(13)

Finally, this algorithm only computes extensions of a prefix of length w, so one must
marginalize on all possible prefixes to obtain the number Nw[Π, p] of realizations:

Nw[Π, p] =
∑

u1,...,uw−1∈V w−1

Nw[Π
′, p− (w − 1), (u1, ..., uw−1)] (14)

where Π ′ is the update of Π , computed similarly as in Equation (12).
The recurrence can be computed in O(p× |V |w ×

∏
i,j∈V 2 πi,j) time using mem-

oization, for p the sequence length. The complexity can be refined by noting that∑
i,j∈V 2

πi,j ≤ w × p

and it follows that
∏
i,j∈V 2 πi,j ∈ O(2w p). Thus, despite the, apparently extreme, com-

plexity of our algorithm, it is still possible to compute Nw[Π, p, u1:w] for “reasonable”
values of p and w.

5 Application to sequential models

5.1 Number of equivalent sequences for weigthed sequence digraphs

Since the dynamic programming method in Sec. 4.2 is exponential in the wort case,
we provide results for relatively short sequences generated from text data (a dump
of english Wikipedia, 2016) of 500 documents, each of them having a length p ∈
{50, 100, 150}. Each document contained a minimum of 3

4p distinct words. For each
w ∈ 3 → 10, we estimate the number of admissible sequences yielding the same
representations for a set of documents and different window size using the procedure
described in Sec. 4.2 to compute Nw. It should be noted that Nw is a lower bound of
the number of total admissible sequences, since a starting pattern is required (first w
tokens).

Results are reported in the left plot of Fig. 5. For w = 2, the number of sequences
(obtained using Prop. 6) was significantly larger ( > 105), so not reported in the figure
for clarity. As expected, the number of distinct admissible sequences tends to 1 when
the window size increases. This suggests that window sizes used in skip gram models
should be usually larger or equal to 5. In natural language processing, a frequent con-
figuration is w = 10 [19,25]. However, some examples with different realizations exist,
even for w = 10 and p = 50.
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5.2 Comparison with a recurrent neural network

The second experiment we consider is to evaluate the difference of the parameters be-
tween a sequential model trained on two admissible sequences of a given graph. The
sequential model we are considering are a class of recurrent dynamical recurrent mod-
els, referred to as long short term memory (LSTM) networks [13]. These models have
attracted new interest due to experimental progress for time series prediction [11] and
natural language processing [3,7,29]. They do not share the bag-of-words assumption
by construction. Given a window size w, the task we consider is to predict the next ele-
ment of the sequence given the w − 1 previous ones. If the sequences were equivalent
for the sequential model, the weights should numerically converge after training.

To generate pairs of admissible sequences encoding for non trivial graphs (i.e not
the complete graph), we used algorithm based on Lemma 1. We generate w-admissible
sequence (thousand tokens long), for w ∈ {2, 3}, but could not provide other pairs for
w > 3 due to computational time. We compare the pairs of admissible sequences with a
pair of one of the sequence, and a sequence generated randomly uniformly on the same
vocabulary. We implemented the LSTM network using the Python library Keras [8],
a high-level API running over TensorFlow [1]. In order to remove randomness from
the training algorithm, we froze the seed generating initial weights (the optimization
directions being fixed by the data). We chose tanh as main activation function, sigmoid
for the recurrent activations, with 2 units. The number of units is chosen relatively low
in order to obtain a reasonable number of weights (in this case 16).

Two right plots of Fig. 5 reports the results for w ∈ {2, 3}, Wx represents all the
weights of the network for a sequence x. For w = 2, there the difference of the weights
for 2 admissible sequences is lower than with one of the sequence and a random one, but
this proximity does not appear to be significant compared with a random sequence. For
w = 3, the recurrent network has relatively close weights for two admissible sequences
when compared with a random one.

3 4 5 6 7 8 9 10

1

10

100

1,000

Window size

N
w

Length: 50
Length: 100
Length: 150

5 10 15 2530 50

0.1

1

10

Epoch

||W
x
1
−
W

x
2
|| 2

w = 2

Admissible - Admissible
Admissible - Random

5 10 15 2530 50

0.1

1

10

Epoch

w = 3

Admissible - Admissible
Admissible - Random

Fig. 5: Left plot: Average lower bound (Nw) on the average number of sequences. Two
right plots: ||Wx1

−Wx2
||2 = f(Epoch) - LSTM, log− log scale

6 Conclusion

In this preliminary study, we presented some theoretical results and practical algorithms
for the family of sequence graphs. Graphs having this structure have been partially stud-
ied in the Distance Geometry (DG) literature before, mostly to do with proteins, where
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an “atom window” can be defined by using the protein backbone [14], by determining
symmetry structure and the complexity of finding orders to the case where every ele-
ment in a sequence is assigned an individual node in the graph (an element repeating in
a sequence is attributed different vertices), which is not the model we are investigating
in this paper.

We applied these results to experiments for sequential models, with a focus on nat-
ural language modeling. This study can be of use used for several sequential models,
such as continuous bag of words (CBOW), skip-grams ([16,10,28]), pointwise mutual
information models [19] and generative probabilistic models [2,25]. These experiments
suggests that ambiguity induced by graphical representations are not present with re-
current neural networks, suggesting a semantic difference for the initial considered se-
quences.

The hardness of the considered problems remains open for some instances, and we
plan to address their complexity in future work, for instance by exploiting the structural
properties of sequence graphs (e.g. existence of forbidden patterns).
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A Proofs section 3 (w = 2)

Proof (Prop. 1). Let us suppose G has an admissible sequence u. Let a, b two distinct
vertices of G. Then using the definition, a and b must appear at least once in the se-
quence u, i.e uia = a and uib = b. If ia < ib, then the sequence s = (ui | ia ≤ i ≤ ib)
defines a path from a to b since ∀i, esisi+1

∈ E. The case ib > ia is dealt similarly.
This can be proved similarly to (i) =⇒ (ii) for proposition 2 by replacing connectivity
with strong connectivity.

Proof (Prop. 3). This can be proved similarly to (i) =⇒ (ii) for proposition 2 by re-
placing connectivity with strong connectivity. If G is Eulerian or semi-Eulerian, there
exists a walk going through all edges, this walk defines a 2-admissible sequence.

Proof (Prop. 4). If G is a tree where each node has at most one child, since G is finite,
it admits a source node. Therefore a 2-admissible sequence is obtained by simply going
through all vertices from the source node. This is obviously the only one.
Conversely, let us suppose G is a DAG and a 2-sequence graph. If G is not a line, it has
a vertex s having at least 2 distinct children c1 and c2. This is not possible since there
cannot be a walk covering both going from (s, c1) and (s, c2): G would have a cycle
otherwise. Finally the edges of G are going in the same direction: if not, there would
be a vertex v in the line having two parents, say p1 and p2. If a 2-admissible sequence
existed, it would have to go through (v, p1) and (p2, v), creating a cycle, hence the
contradiction.

Proof (Prop. 5). Let G = (V,E) a digraph. If R(G) is a 2-sequence graph, then there
exists a walk x1, ..., xp covering all edges of R(G). Such walk verifies: ∀i, xi ∈ V or
xi represents a strongly component of G. We construct a 2-admissible sequence y for
G the following way:

For all i, if xi and xi+1 are in V , then we set yi ← xi and yi+1 ← xi+1. Otherwise,
if xi or xi+1 represents a strongly component in G, say Ci, then using Prop. 2, there
is a sequence of vertices of V , ui1, ..., u

i
l covering all edges in Ci. We simply update

y concatenating with ui: y ← y ui. The process stops when i = p, and all edges are
covered by the walk y. has no connected components, and verifies the property then it is
clear that G is a sequence graph. Let G1, ..., Gc be its strongly connected components.

If G is a 2-sequence graph, we prove the implication by contradiction. Let us sup-
pose that R(G) is not a 2-sequence graph. Since it is a (weakly) connected DAG, then
using Prop. 4, it cannot be a line, so R(G) has a node S having at least 2 distinct chil-
dren C1 and C2. This means that there exist three distinct corresponding nodes in V , s,
v1 and v2 such that (s, v1) ∈ E and (s, v2) ∈ E. If a walk covering (s, v1) and (s, v2)
existed, such walk would go through the strongly component C1 or C2 and go back
to s (because (v1, s) /∈ E and (v2, s) /∈ E otherwise they would belong to the same
strongly connected component): this is impossible since s would belong to C1 or C2,
and S would not be distinct from S1 or S2.

Proof (Corollary 1). Let G a 2-sequence graph and let us show that G has either a
unique or an infinite number of 2-admissible sequence. G verifies characterization of
Theorem 1. If R(G) has a vertex representing a strongly connected component of G
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(or a vertex with a self loop), then by adding an arbitrary number of cycles to y, the
obtained walk is still admissible. Otherwise, if every vertex of R(G) is in V without
self-loops in E, thenG is a DAG. Using Prop. 4, y is the unique 2-admissible sequence.

Proof (Prop. 6). Direct consequence of BEST Theorem [5]) and Matrix free theo-
rem [6]).

B Proofs section 4 (w ≥ 3)

Proof (Prop. 7). Let x = x1, ..., xp a w-admissible sequence of G. Let P a walk on
H(w−2), andP [i] be the i-th element ofP ,P [i] ∈ H(w−2):P [i] = (P [i]1, ..., P [i]w−1).

Let us suppose that w ≤ p (which we can always do), and let us show the following
property by induction on k:

∀k ∈ {w, ..., p}, ∃ walk P on H(w−2) such that :

x1:k = P [1]1, P [2]1, ..., P [k − w]1, P [k − (w − 1)]1:(w−1)

– Initialisation: k = 1. By construction of H(w−2), x1 is the first element of the
“static walk”: x1:w−1 ∈ H(w−2).

– Induction: let us suppose ∃k ∈ {w, ..., p− 1}, ∀k′ ∈ {w, ..., k}, there exists a path
P on H(w−2) such that:

x1:k′ = P [1]1, P [2]2, ..., P [k
′
− (w − 1)]1:(w−1)

Since x is w-admissible, then by definition:

∀i ∈ {k+1, ...,min{p, k+w}}, ∀j ∈ {i+1, ...,min{p, i+w−1}} : (xi, xj) ∈ E

∀i ∈ {k − (w − 1), ..., k},
∀j ∈ {i+ 1, ...,min{k + 1, i+ w − 1}} : (xi, xj) ∈ E (15)

Therefore, by definition of H(w−2),

ξk+1 = xk+1−(w−1), ..., xk+1 ∈ H(w−2)

.
Let P [k + 1− (w − 1)] =∧ ξk+1, then

P [k + 1− (w − 1)]1:(w−1) = xk+1−(w−1), ..., xk+1

From the induction assumption: ∀i ∈ {w, ..., k − (w − 1)}, P [i]1 = xi. This
ensures that:

x1:(k−(w−1)) = P [1]1, P [2]1, ..., P [k − (w − 1)− (w − 1)]1:(w−1)

x1:(k+1) = P [1]1, P [2]1, ..., P [k − (w − 1)]1,

P [k + 1− (w − 1)]1:(w−1) (16)

which ends the induction and the proof.
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Proof (Lemma 1). Let P = P [1], , ..., P [r] a walk on H(w−2) going through a strongly
connected component C, with an arbitrary ordering of its vertices, i.e C = {c1, ..., cm}.
This means ∃(m0, i0) ∈ {1, ...,m} × {1, ..., r − 1} s.t P [i0] = cm0 and (cm0 , P [i0 +
1]) ∈ E. Let C = cm0 , cj1 , ..., cjv be a path in C with (cjv , P [i0 + 1]) ∈ E. Let Q be
the new path: Q = P [1], ..., P [i0], cj1 , ..., cjv , P [i0 + 1], ..., P [r]. By construction of
H(w−2), the edges created by any walk on H(w−2) are in E, so Q is still admissible.

Let us label every node ofR(H(w−2)) representing a strongly connected component
of H(w−2) by any 2−admissible sequence (one exists thanks to Prop. 2). A walk on
H(w−2): x1, ..., xp can be met by a walk on R(H(w−2)) using the following procedure:

For i ∈ {1, ..., p− 1}:

– if xi, xi+1 ∈ E, we keep xi and xi+1

– if xi ∈ V and xi+1 is in a strongly connected component of H(w−2) (but a node
of R(H(w−2))), represented by c1, ..., cCi

, then a path from xi+1 to c1 exists since
the component is strongly connected: xi+1, p1, ..., pm, c1. We keep

xi, xi+1, p1, ..., pm, c1, ..., cCi

. Using the aforementioned result, this does not perturb admissibility.
– if xi+1 ∈ V and xi is in a strongly connected component of Hw−2, we proceed

similarly (xi and xi+1 are swapped).
– if both xi+1 and xi are strongly connected components of Hw−2, we add interme-

diary nodes to connected both components similarly. ut
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