N
N

N

HAL

open science

Sequence graphs realizations and ambiguity in language
models

Sammy Khalife, Yann Ponty, Laurent Bulteau

» To cite this version:

Sammy Khalife, Yann Ponty, Laurent Bulteau. Sequence graphs realizations and ambiguity in lan-
guage models. COCOON 2021 - 27th International Computing and Combinatorics Conference, Oct

2021, Tainan, Taiwan. 10.1007/978-3-030-89543-3 13 . hal-02495333v4

HAL Id: hal-02495333
https://hal.science/hal-02495333v4
Submitted on 18 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02495333v4
https://hal.archives-ouvertes.fr

SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN
LANGUAGE MODELS

SAMMY KHALIFE, YANN PONTY, AND YANN PONTY

ABSTRACT. Several popular language models represent local contexts in an
input text x as bags of words. Such representations are naturally encoded by a
sequence graph whose vertices are the distinct words occurring in x, with edges
representing the (ordered) co-occurrence of two words within a sliding window
of size w. However, this compressed representation is not generally bijective,
and may introduce some degree of ambiguity. Some sequence graphs may admit
several realizations as a sequence, while others may not admit any realization.
In this paper, we study the realizability and ambiguity of sequence graphs from
a combinatorial and computational point of view. We consider the existence
and enumeration of realizations of a sequence graph under multiple settings:
window size w, presence/absence of graph orientation, and presence/absence of
weights (multiplicities). When w = 2, we provide polynomial time algorithms
for realizability and enumeration in all cases except the undirected/weighted
setting, where we show the #P-hardness of enumeration. For w > 3, we prove
hardness of all variants, even when w is considered as a constant, with the
notable exception of the undirected/unweighted case for which we propose
an XP algorithms for both (realizability and enumeration) problems, tight
due to a corresponding W([1]-hardness result. We conclude with practical ILP
and dynamic programming formulations for the problem. This work leaves
open the membership to NP for both problems, a non-trivial question due to
the existence of minimum realizations having exponential size on the instance
encoding.

1. INTRODUCTION

The automated treatment of familiar objects, either natural or artificial, always
relies on a translation into entities manageable by computer programs. A com-
mon challenge in data science is the choice of a vector or matrix representation,
called embeddings, for a sequence of words from a vocabulary. Selecting and com-
puting the right embedding therefore poses a central problem for the application
of machine learning techniques. In particular, embeddings of words and textual
documents representations are essential for several tasks in natural language pro-
cessing, including document classification [15], role labelling [12], and named entity
recognition [9]. Models based on pointwise mutual information, or Graph-Of-Words
(GOW) [6l 13, 10] supplement the content of bag-of-words with statistics of co-
occurrences within a window of fixed size w, thus mitigating the degree of ambiguity.

JOHNS HOPKINS UNIVERSITY, DEPARTMENT OF APPLIED MATHEMATICS AND STATISTICS

CNRS, ECOLE POLYTECHNIQUE, INSTITUT POLYTECHNIQUE DE PARIS, 91128 PALAISEAU, FRANCE

CNRS, UNIVERSITE GUSTAVE EIFFEL, 77454 MARNE-LA-VALLEE

E-mail addresses: khalife.sammmy@jhu.edu, yann.ponty@lix.polytechnique.fr,
laurent.bulteau@u-pem.fr.

2020 Mathematics Subject Classification. 68T07, 68Q19, 05D10, 11J85.
1

2 SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS

Several models [8, [T, [T, [14] also use the same type of information and constitute
strong baselines for natural language processing.

While these representations are more precise than the traditional bag-of-words,
sometimes referred to as Parikh vectors in the literature, they still induce some level
of ambiguity, i.e. a given graph can represent several sequences (see Figure [1| and
for illustrations). Our study aims at quantifying this level of ambiguity, seen as an
algorithmic problem.

DEFINITIONS AND PROBLEM STATEMENT

Let x = x1,23,...,, be a finite sequence of discrete elements among a finite
vocabulary X. Without loss of generality, we can suppose that X = {vq, -+ ,v,}.
In the following, for any integer p > 0, let [p] := {1, ..., p} and consider the following
definition:

Definition 1. G = (V, E) is the sequence graph (or w-sequence graph) of the
sequence x with window size w € NT (w > 0) if and only if V = {v € X |3 €
[p], v=a;}, and

(1) (u,v) €E <= Ik,E)ep)? 0<|k—FK|<w—1, u=mxk, v=ap
A sequence graph G is endowed with a weight matriz II(G) = (m;;) such that
(2) iy =Card {(k, k) e p*| 0< |k —K|<w—1, z;, =iand zy = j}

For digraphs, the absolute value in Statements and is replaced with
kE<k <k+w-—1. We say that x is a w-realization of G (or a realization if there
is no ambiguity), if G is the graph of sequence x with window size w.

Linux — is — not — UNIX — but Linux — is — not — UNIX — but

(A) Unambiguous graph (w = (B) Ambiguous graph (w =
3) 2)

FIGURE 1. Sequence digraphs (or directed graphs-of-words) built
for the sentence “Linux is not UNIX but Linux” using window sizes
w = 3 (a) and w = 2 respectively (b). In the second case, the
sequence graph is ambiguous, since any circular permutation of the
words admits the same representation.

SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS

N,
N

abracadabra
abrabradaca
abracabrada
abrabracada
abradabraca

abradacabra

Faerp

abracadabra
abracadbara
abarcadabra
abarcadbara
abracadabra

abracadbara

3

(A) w =2, G has 30 re-

alizations

(B) w = 3, G has 6 real-

izations

c‘f/b c4/'b

a
abracadabra
d / abracaadbra d\ /

r abrcaadabra r

(¢) w =4, G has 3 real-
izations

abracadabra

(D) w = 5, G has one
realization

FIGURE 2. Sequence digraphs (or directed graphs-of-words) built
for the sentence “abracadabra” using window sizes 2 (a), 3
(b), 4 (c) and 5 (d).

Given w, the graph of a sequence z is unique. The natural integers m;; represent
the number of co-occurrences of ¢ and j in all windows of size w. A linear time
algorithm to construct a weighted sequence digraph is presented in Algorithm [I} the
other cases (unweighted, undirected) are obtained similarly. In the unweighted case,
the map thus defined from the sequence set X* to the graph set G is referred to
as ¢u: X* = G, 2 — Gy (x). Based on these definitions, we consider the following
problems:

Problem 1 (Weighted-REALIZABLE (W-REALIZABLE)).
Input: Graph G (directed or undirected), weight matriz 11, window size w
Output: True if (G,1I) is the w-sequence graph of some sequence x, False otherwise.

Problem 2 (Unweighted-REALIZABLE (U-REALIZABLE)).
Input: Graph G (directed or undirected), window size w
Output: True if G is the w-sequence graph of some sequence x, False otherwise.

We denote D-REALIZABLE (resp. G-) the restricted version of REALIZABLE
where the input graph G is directed (resp. undirected), and W-REALIZABLE (resp.
U-) the restricted version of REALIZABLE where the input graph G is weighted
(resp. unweighted), possibly in combination with the D- or G- variants. We write
REALIZABLE,, for the case where w is a fixed positive integer. We also consider the
variants of W-REALIZABLE, denoted GW-REALIZABLE and DW-REALIZABLE where
the input graph is restricted to be respectively undirected and directed. We define
GU-REAL1ZABLE and DU-REALIZABLE similarly. Finally, we write (GW-, DW-,
...)REALIZABLE,, for the case where w is a fixed positive integer.

Problem 3 (Unweighted-NUMREALIZATIONS (U-NUMREALIZATIONS)).
Input: Graph G (directed or undirected), window size w

4 SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS

Output: The number of realizations of G, i.e. preimages of G through ¢,, such
that [{z € X* | ¢w(z) = G}| is finite, or +00 otherwise.

Problem 4 (Weighted-NUMREALIZATIONS (W-NUMREALIZATIONS)).
Input: Graph G (directed or undirected), weight matriz II, window size w
Output: The number of realizations of G in the weighted sense.

Similarly, we use the same prefix for the directed or undirected versions of (D-,
G-, i.e. DU- for directed and unweighted). We also denote NUMREALIZATIONS,, for
the case where w is a fixed strictly positive integer. Note that NUMREALIZATIONS
generalizes the previous one, as REALIZABLE can be solved by testing the nullity of
the number of suitable realization computed by NUMREALIZATIONS.

DW Directed weighted DU Directed unweighted
GW Undirected weighted GU Undirected unweighted

Algorithm 1 Construction of II associated to a weighted sequence digraph
Parameters: Window size w
Input: Sequence x of length p, p > w > 2
Output: Weighted adjacency matrix IT

1: Initiate IT = (m; ;) to an n X n matrix of zeros
2: fori=1—-p—1do

33 forj=i+1—min(i+w-1,p) do

4: T x; ¢ Tagz; +1

5: end for

6: end for

7: return II

RELATED WORK

Sequence graphs encode the information of several co-occurences based mod-
els [IL II]. To the best of our knowledge, the ambiguity and realizability questions
addressed in this work were never addressed by prior work in computational linguis-
tics. It may seem that the inverse problems we are considering in this work are similar
to the Universal Reconstruction of a String [5], which consists in determining the set
of strings of a fixed length having as many distinct letters as possible, satisfying sub-

strings equations of the form: s[gy ---qp] = s[qy ---qp], -+, s[ri -] = s[ry -1y,
(here, s[q1 ...qp] refers to the substring sy, ...s,,). The strictly increasing indices
ai’s, ¢)’s, -+, ri’s and r}’s, as well as the length of s are given as input. The problem

is to find a string s verifying these set of constraints, with a maximum number of
distinct letters. We shall see that these problems are actually very different, and in
particular, our complexity results imply the absence of reduction to the Universal
Reconstruction of a String, which can be solved in linear time.

Furthermore, some similarities exist with another inverse problem studied in the
Distance Geometry (DG) literature. The input of a DG instance consists of a set
of pairwise distances between points, having unknown positions in a d-dimensional
space. A DG problem then consists in determining a set of positions for the points (if
they exist), satisfying the distance constraints. Since a position is fully characterized
from d + 1 neighbors, the problem can be solved by finding a sequential order in the

SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS 5

points, such that the assignment of a point is always by at least d + 1 among its
neighbors [7] (called linear ordering). Therefore, finding a linear ordering shares
some level of similarity with our inverse problems since a realization for a window
w = d + 2 also represents a linear ordering of its nodes, in which w — 1 =d+ 1 of
the neighbors have lower value with respect to the order. However, linear ordering
in DG to solve our problems is insufficient. First, each element of the sequence z is
associated with a unique vertex. This is not the case we investigate here, since a
symbol can be repeated several times, but only one vertex is created in the graph.
This implies that the vertex associated to the i*" element (i > w) of z can have
strictly less than w — 1 distinct neighbors in its predecessors in z. Second, DG
graphs are essentially undirected, and loops are not considered, since an element is
at distance 0 from itself.

The remaining of the article is organized as follows. In Section [2] we present our
main theoretical results. Full proofs are given in Sections |3| (w = 2) and {| (w > 3).
In Section [5] we propose an integer program and a dynamic programming algorithm
to respectively recognize a sequence graph and count its realizations. Finally, in
Section [6] we conclude with a short discussion and a first step towards an answer
to the belonging of our problems to NP, by proving the existence of graphs whose
minimal realizations have exponential size.

2. THEORETICAL RESULTS

In this section, we present our main theoretical results in Subsections 2.1] and [2:2}
Full proofs are given in Sections [3 and [respectively.

2.1. A complete characterization of 2-sequence graphs. A graph has a
realization with w = 2 when there exists a path visiting every vertex and covering all
of its edges (at least once for the unweighted case and exactly 7. for the edge e in the
weighted case). This characterization enables relatively simple characterization and
algorithmic treatment, leading to the results summarized in Table[I} The additional
definitions are given below.

TaBLE 1. Complexity for various instances of our problems (w = 2)

NUMREALIZATIONS, REALIZABLE-
Data Instance Complexity #Sequences Complexity Characterization
GU P {0, +o0} P G connected
GW #P-hard {0,1} U 2N* P 1(G) (semi-)Eulerian
DU P {0,1, 400} P G is a simple step
DW P N (BEST Theorem) P (G) (semi-)Eulerian

Definition 2. Let (G) be the multigraph with the same vertices as G = (V, E)
and with m;; edges between (i,j) € V2.

Definition 3. A graph G (possibly oriented) is Eulerian if and only if there exists
a cycle visiting every edge of G exactly once. We call such cycle a Eulerian path. G
1s semi-FEulerian if and only if there exists a path whose starting vertex is distinct
from the last vertex, and visiting every edge of G exactly once. We call such path a
semi-Eulerian path.

6 SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS

Definition 4. Let G be a digraph. R(G) is the Directed Acyclic Graph (DAG)
obtained by contracting its strongly connected components into a node; an edge
between two mew nodes is created if and only if there is an edge between two nodes
of two strongly connected components of G. RY(Q) is the weighted DAG obtained
from R(QG), such that the weight of an edge is the number of distinct arcs from two
strongly connected components in G.

Definition 5. Let G be a digraph. G is said to be a simple step graph if and only
if RY(G) is a directed path and its weights are all equal to 1.

1—»3 1—»3
24— 4 2—» 4
(A) G is asimple step (B) G is not a simple
step

2.2. Main complexity results for w > 3. In this subsection we present the
remaining complexity results, which are summarized in Theorem [1| and Table
We first show that GU-REALIZABLE,, € P, Yw > 3. Besides, for GU, the number
of realizations of a graph G is either 0 (not realizable), 400 (realizable and there
exists a cycle in a component of H generating G), or 1 (realizable but no cycle in
any component of H generating G). These three cases can be tested in polynomial
time using our algorithm, showing that GU-NUMREALIZATIONS,, € P, Vw > 3. All
proofs of the following statements are given in Section

Theorem 1. For w > 3, all variations of NUMREALIZATIONS,, and REALIZABLE,,
are NP-hard, except GU. Besides, NUMREALIZATIONS, REALIZABLE are para-NP-
hard for all variations, except GU, in which case they are both W/[1]-hard and
XP.

TABLE 2. Complexity for various instances of our problems (w > 3).
We remind that a para-NP-hard problem does not admit any XP
algorithm unless P=NP.

Constant w, w > 3 Parameter w
NUMREALIZATIONS,, REALIZABLE, NUMREALIZATIONS REALIZABLE
Variation Complexity Complexity Complexity Complexity
GU P P W[1]-hard; XP W[1]-hard; XP
GW NP-hard NP-hard para-NP-hard para-NP-hard
DU NP-hard NP-hard para-NP-hard para-NP-hard
DW NP-hard NP-hard para-NP-hard para-NP-hard

In the following, CLIQUE is the problem which takes as input an undirected graph
G and should return the maximal size of a clique in G.

Proposition 1. CLIQUE admits a polynomial time parameterized reduction to
GU-REALIZABLE.

Corollary 1. GU-REALIZABLE is W[1]-hard for parameter w.

SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS 7

3. THE SPECIAL CASE OF 2-SEQUENCE GRAPHS (w = 2)

In this section we present the proofs of the results gathered in Table[I} Apart
from the GU variant, we use direct reductions to standard well-known problems
in graph theory. The DU variant can be treated with a reduction to simple step
graphs (cf. Definitions [4] and [f]). The weighted cases (GW and DW) cases are
treated with direct reductions to the problem of existence and counting Eulerian
cycles or trails in a graph.

3.1. The unweighted variants: GU and DU. The following three propositions
follow immediately from the definitions:

Proposition 2. If G = (V, E) is unweighted and undirected, with |V| > 1, the
following are equivalent:
(i) G is connected
(i) G has a 2-realization
(iii) G admits an infinite number of 2-realizations.
In these conditions, a 2-realization can start and end at any vertez.

The previous characterization is wrong for strongly connected digraphs. A
counterexample is depicted in Fig. However, strong connectivity remains a
sufficient condition:

Proposition 3. Let G = (V, E) a unweighted digraph. If G is strongly connected
then G has a 2-realization. A 2-realization can start or end at any given vertex of

G.

Proposition 4. Let G = (V,E) an unweighted digraph. If G is Eulerian or
semi-Eulerian, then G has a 2-realization.

Again the converse of Prop. [d] does not hold as depicted in Fig. BB} As a start, it
is natural to consider directed acyclic graphs (DAGs):

Proposition 5. Let G = (V,E) be a DAG. G is a 2-sequence graph if and only if
it is a directed path, i.e G is a directed tree where each node has at most one child
and at most one parent. In this case, G has a unique 2-realization.

Proof. If G is directed path, since G is finite, it admits a source node. Therefore a
2-realization is obtained by simply going through all vertices from the source node.
This is obviously the only one.

Conversely, let us suppose G is a DAG and a 2-sequence graph. If G is not a
directed path, there are two cases: either there exists a vertex having two children,
or two parents. Let s be a vertex having 2 distinct children ¢; and co. This is not
possible since there cannot be a walk going through (s,c¢;) and (s,c2): G would
have a cycle otherwise. Finally a vertex v cannot have two parents p; and po: if
a 2-realization existed, it would have to go through (p1,v) and (pa,v), creating a
cycle, hence the contradiction. (I

Proposition 6. Let G = (V, E) a digraph. If G is a 2-sequence graph then R(G) is
a 2-sequence graph.

Proof. Let G be a 2-sequence graph, and let us suppose that R(G) is not a 2-
sequence graph. Since R(G) is a (weakly) connected DAG, then using Prop. [5} it
cannot be a directed path, so R(G) has either a node having two children or two

8 SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS

1—»2—»3

(A) 123 is a 2
realization but is G is
not strongly connected

<+—>

B4

2
3
(c) G is not a 2-
sequence graph...

<+—>

1

1= 2 —»3
()
G is
strongly
con-
nected
but is
not
a 2-
sequence
graph
be-
cause
of its
weights

1
4 <4—2<4—>» 35
(B) 3531212324 is
a 2-realization but the
graph is not
Eulerian

semi-

C1
C2

(D) ... whereas R(G)
is.

F1GURE 3. Counterexamples for w = 2

parents. Let S be a node of R(G) having at least 2 distinct children Cy and Cs.
This means that there exist three distinct corresponding nodes in V', s, v; and vg
such that (s,v1) € F and (s,v2) € E. Since G is a 2-sequence graph, there exists
a walk covering (s,v1) and (s, vz), such walk would make S, C; and C5 the same
node in H(G), hence the contradiction. The case for which a vertex has two parents

is dealt with similarly.

The converse of Prop. [f] does not hold as depicted in Fig. [3 and

SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS 9

1 2 23
43 24
43 24
42 31 w
34234 31
41 32 |
4 «—»3 V34 41 32
(A) (B) (c)
G H R(H)

FIGURE 4. Procedure to find a 3-realization (DU variant). The
walk 34234, 41 in R(H) gives the 3-realization: 342341

Theorem 2. Let G = (V, E) be an unweighted digraph. G is a 2-sequence graph if
and only if it is a simple step.

Proof. If G is a 2-sequence graph, R(G) is a 2-sequence graph using Prop. @ Also
Prop. [5| implies that R(G) and RT(G) are directed paths. Moreover, if RT(G) had
a weight strictly greater that 1, then there would be more than one edge between
two strongly connected components C; and Cs. All these edges go in the same
direction otherwise C7 U Cy would form a strongly connected component. This is a
contradiction since any 2-realization would have to go from C to Cy and then come
back to C (or conversely), which would would make Cy U Cy a strongly connected
component.
Conversely, let us suppose R*(G) is a directed path and its weights are equal to
one. By definition, there exists a list of sets of vertices P = (1, ..., z,) such that:
(i) the entries of P form a partition of V(G), i.e. x; C V(G) with |z;| > 1,
Uieq,... py @i = V(G) and for any i # j, z; Na; = 0.
(ii) For any i € {1,--- ,p — 1}, there exists a unique element of x; X x;; which
is an edge of G.

We construct a 2-realization y for G by means of the following procedure.

Base case: If z is a singleton, i.e. 1 = {v} with v € V(G), we simply set y + v.
Otherwise, 1 is a strongly connected component G and we add to y any of the
2-realizations of x;.

Forie{1,..,p—1}:

e If x; and x;41 are both singletons, we simply add the vertex of x;;1 to the
sequence .

e If z; is a singleton and |x;11]| > 1, then by assumption, there exists only one
edge e € E(G) whose source is in z; and target is in 2,41, say (v,w) € E(G). Since
the induced subgraph G[z;;1] is strongly connected, using Prop. [3| there exists a
walk on G[z;1] starting on w and going through every of its edges. We add the
vertices of this walk to y.

e If |x;| > 1 and x;41 is a singleton, then there exists only one edge between a
vertex of z; and a vertex of x; 1 say e = (v, w). By construction, all the edges of
G|z;] have already been visited by a walk whose vertices have been added to y in
the previous step. Suppose that the last vertex visited is z. Therefore, we add to y
the vertices of walk from z to v that arrive strictly after z, and then w.

o If |x;| > 1 and |z;41| > 1, then there exists only one edge between a vertex
of z; and a vertex of x;41 say e = (v, w). By construction, all the edges of G[x;]

10 SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS

have already been added to y. Suppose at the previous step the last vertex added
is z € x;. We first consider a walk starting at z and ending on w, and add all the
vertices of this walk strictly after z. Then, consider a walk starting at w and which
visits every edge of x;11 (again the existence is such walk follows from Prop. . We
add all vertices of this walk that arrive strictly after w.

End For
The process stops when ¢ = p — 1, and all edges of G are covered by y. O

An immediate consequence of Theorem [2]is the existence of a polynomial time
algorithm to decide if an unweighted digraph is a 2-sequence graph; because verifying
that a digraph is a simply step is in P. Another consequence of Theorem [2|is the
following:

Corollary 2. Let G an unweighted digraph. The possible numbers of 2-realizations
for G is exactly {0,1,4+00}. Moreover, G admits a unique 2-realization if and only
if G is a directed path.

Proof. Let G a 2-sequence graph and let us show that G has either a unique or an
infinite number of 2-realizations. G verifies characterization of Theorem [2| If R(G)
has a vertex representing a strongly connected component of G (or a vertex with a
self loop), then by adding an arbitrary number of cycles to y, the obtained walk is
still a realization. Otherwise, if every vertex of R(G) is in V without self-loops in
E, then G is a DAG. Using Prop. [f] y is the unique 2-realization.]

3.2. The weighted variants: GW and DW. The weighted case cannot be
treated similarly due to the weight constraints implying that a weighted graph has
a finite number of realizations. A counterexample is depicted in Fig. [3¢|

Theorem 3. If G is a weighted graph (possibly directed), with II(G) a n x n matriz
of natural integers, then: G is 2-realizable if and only if ¥ (G) is connected and
(semi-) Eulerian.

This theorem follows from the following stronger result, that also relates the
number of 2-realizations to the number of (semi-)Eulerian paths of ¥(G).

Lemma 1. Let G = (V, E) a weighted 2-sequence graph (possibly oriented). Let €
be the set of (semi-)Eulerian paths of 1(G) and S be the set of 2-realizations of G.

Then
&l =18] =!

ecE

Proof. First note that (semi-)Eulerian paths of ¢(G) (writing h for the number of
edges in 1(G)) can be characterized by a pair (uouy ...up,e;...e,) where each u;
is a vertex of G, e ...ej, is a permutation of the edges of ¥(G), and e; = (u;—1, u;)
(directed case) or e; = {u;—1,u;} (undirected case). Note that uwouy...up is a
2-realization of G, and that, conversely, a (semi-)Eulerian path can be obtained
form any wou; ...uy by taking e; to be one copy of (u;—1,u;) or e; = {u;_1,u;} for
each i (the path indeed goes through all 7, copies of each edge between u and v in
1 (G) by definition of weighted 2-realizations).
Consider the map:

3) f:€—S

(uoul...uh,el...eh) — (uoul uh)

SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS 11

We have already noted that f is surjective, however it is not necessarily injective
(visiting multiple copies of the same edge in different orders give the same 2-
realization but with different (semi-)Eulerian paths). An element x € € can be
thought of a list of edges of G, each appearing 7. times, since each edge ¥ (G) is
obtained by copying 7. times every edge of G. Therefore this map is not injective,
as soon as there is one m, > 0, because one can permute the corresponding edges in
the (semi-)Eulerian path, and the corresponding 2-sequence is the same.

We thus consider the following relation R on &£: For two (semi-)Eulerian paths
P, and P, PPRP, <= P; can be obtained from P, by permuting edges of ¥(G)
that are copies of the same edge in G. R is an equivalence relation because it
is symmetric, transitive and reflexive. Let £/R be £ quotiented by R. We have
PIRP, < f(P1) = f(P2) (equivalently, P; and P» yield the same sequence of
vertices), so |S| is the number of equivalence classes of R, or equivalently, |£/R|. Note
that each equivalence class of R has cardinality [] . 7! (number of permutations
which are product of permutations with disjoint supports, where each support has
size m¢). Therefore |S| = |E/R| = [E]([].cpme) " O

On the one hand, counting the number of (semi-)Eulerian paths in a undirected
graph is a #P-complete problem [2]. Since G — ¥(G) is bijective, counting the
number of 2-realizations is also #P-complete. On the other hand, counting (semi-
)Eulerian paths of a weighted digraph is in P, and can be derived using the following
proposition:

Proposition 7. Let G = (V, E) be a weighted digraph, with TI(G) € M4(N). Then,
if deg(v) is the indegree of a vertex v, the number py of 2-realizations is given by

(4) -If Y(G) is Eulerian, P2 = M H (degw(G) (¥(v)) — 1)!

HGGE et Lev

where t(G) is the number of spanning trees of a graph G. If L is the Laplacian
matriz of G, then t(G) can be expressed as

t@= I

Xi€Sp(L)
Xi#£0
- If ¥(Q) is semi-Eulerian, make it Eulerian by adding one arc (u,v) between
the two vertices with unbalanced degrees (u is the one with the least outdegree, v has
the least indegree). Then apply formula to Y(Q) + (u,v), and divide by the output
by number of vertices |V|.

Proof. The case of (@) being Eulerian is a direct consequence of Lemma [1| BEST
Theorem [3] and Matrix Tree Theorem [4].

When 9(G) is semi-Eulerian, this follows from the fact that ¢(G) is semi-Eulerian
if and only if ¢(G) + (u,v) is Eulerian where: u is the the vertex whose outdegree is
less than its indegree, and v is the vertex whose indegree is less than its outdegree.
In that case, the number of semi-Eulerian paths of ¢(G) is exactly the number of
Eulerian paths of ¥(G) + (u, v) divided by |[¢(G)| = |V (since for one semi-Eulerian
path in ¢(G) there are exactly |V| Eulerian paths in ¥(G) + (u,v)). O

To relate formulato the initial parameters of our problem, note that degy, (¥ (v)) =
ZnGV Tno-

12 SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS

4. GENERAL CASE WITH ARBITRARY WINDOW SIZE (w > 3)

The characterization of general sequence graphs, such as 3-sequence graphs
is not the same for 2-sequence graphs, as shows the counterexample in Fig
the depicted graph has no self-edge so there must be at least one clique of size
3. Similarly, Fig. depicts a counterexample for directed graphs: G does
not have loops, so if it had a 3-realization, such sequence must be of the form
{1231...,1321...,2312...,3213...,,2132...} but then (3,1) would form an edge.

1 2—3 l«—>»2<+—»3

(a) G (B)

is con- G s

nected strongly

but con-

not nected

a 3 but is

sequence not

graph a 3-
sequence
graph

FiGURE 5. Counterexamples for w = 3

4.1. A polynomial time algorithm for GU-REALIZABLE,,. We first introduce
a couple of definitions and notations for the gadgets used in our polynomial time
algorithm to solve GU-REALIZABLE,,,.

Definition 6. Let G = (V, E) be an undirected graph. H(QG) is the directed graph
defined as follows:

V(H(@) ={(u,v) v e V(G),v € V(G),{u,v} € E(G)}
and e = (v1,v2), f = (v3,v4) are adjacent in H(G) if and only if:
(5) vo =vg and {v;, 1} € FE

An edge of H(G) can be seen as an unique triplet vy, ve, vy where {v1,va}, {vi,v4} €
E. When there is no ambiguity on the graph G considered, H(G) will simply be
referred to as H. We will also use u; j as a shorthand for the pair (u;,u;) and ui.x
for the k-tuple (uy,...,ux). For k> 1, we also define H®) := (E®) E*+1)) to be
the directed graph such that:

(6) E(k) = {ul:(k-i-l) S Vk+1 | Ui:k € E(kil),u%(;ﬁ_l) € E(kil) A {ul,ukH} S E}

In the description above, an element of E*) (pair of elements of V¥ wverifying
Ugk = Vi (k1) and {ui,vr} € E) is represented as the (k + 1)-tuple uy,(pq1)-
Alternatively:

(7) HO .— g = (V,E) Vk e N*, H® .— @(H(k‘l))

where ® transforms edges into vertices and creates edges following Eq. [0

SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS 13

Remark 1. By definition, a walk P in H(G) is always of the form:
(8) P= (tl,tg), ey (tp_l,tp) s.t Vie {1, D — 1}, (tiati+1) ek

It is clear that if H(G) is a 2-graph, then G is a 3-graph since there is a walk going
through all edges of H(G). The converse is not true in general as depicted in Fig. .
In order to decide if G = (V, E) has a realization in the general case, we recursively
merge pairs of vertices, hence the definition. However, the number of vertices and
edges of H®) can increase exponentially with respect to k (the complete graph is an
example). The next Proposition states a correspondence between realizations of the
original graphs, and walks on H®@=2),

07 i e 113
1 2 ’\ 311 >
21 >‘> 11 D
/ 131
3 12 211 <> 112
(A) (B) ()
G H H®

FIGURE 6. Example of construction of the gadgets H and H®.

Definition 7. Let u be a vertex of H*®) for k € N, u = (uy, ..., ug, upy1). The se-
quence ui, ..., upt1 1S the authentic sequence of u. We call an authentic sequence
of a walk on H®: P = (21, ..., x541), (T2s oo Thg2)s oonr (T ooy Toyr) the sequence
L1, T2y evey To+k-

Proposition 8. Let x = x1,...,x, be a w-realization of a graph (or digraph)
G=(V,E). If w < p, then = is an authentic sequence of a walk of length p —w + 1
on Hw=2),

Proof. If P is a walk on H(®“=2), let P[i] be the i-th element of P, P[i] € H("~2):
Pli] = (P[i]1, ..., P[i]w—1). Let & = z1,..., 2, be a w-realization of G.
We here suppose that w < p (which we can always do), and show the following
property by induction on k:
Vk € {w—1,...,p}, Iwalk P on H®=2) guch that :
r1.x = P11, P2]1, ..., P[k — (w — 1)]1, P[k + 1 — (w — 1)]1:(w—1)

e Base case: k = w — 1. 1.1 is the authentic sequence of P = P[1] = 1.1 €
H®=2),

e Induction step: let us suppose the property is verified for k € {w —1,...,p — 1},
i.e there exists a walk P on H(*~2) such that:

r1.x = P[1]1, P2]1, ..., P[k — (w — 1)]1, P[k + 1 — (w — 1)]1:(w—1)
Since x is a w-realization, all the elements at distance at most w are edges of G:
Vie{lk+1—(w—1),..k}, Vie{i+1,...,min{k+1,i+w—1}}: (z5,2;) € E

This means in particular that zp11_(w—1), -, Trt1 € HWw=2),

14 SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS

FIGURE 7. Illustration of the reduction for Proposition The
source graph G has vertices {u,v,w,x}. Vertices a and b and
dashed arcs are added in the reduction. A realization follows a path
visiting both vertices a and b: the first w vertices of the transition
(highlighted in red) must form a clique in the graph.

Let Plk+2— (w—1)]1:(w-1) = Th41—(w—1)s --» Tht1. From the induction assump-
tion: Vi € {1,...,k — (w — 1)}, P[i]1 = x;. This ensures that:

T (et1y) = P11, P21, .., Pk +1 — (w —1)]1, P[k + 2 — (w — 1)]1:(w—1)
which ends the induction and the proof. O

Proposition 9. Let w € NT be any positive integer. GU-REALIZABLE,, is in P.

Proof. The case for w = 1 is trivial, and w = 2 has been treated. For w > 3, an
algorithm is obtained by going through all the connected components of H(¥=2),
Let C4, ..., C,, the connected components of H(¥~2). On the one hand, it is possible
to compute them in polynomial time. On the other hand, one can construct walks
covering all of their respective edges in polynomial time (for instance iteratively
using shortest paths). Let W1, ..., W,, such walks and X3, ..., X,, their respective
admissible sequences.

Using Prop. G is a w-sequence graph if and only if there exists a walk
Wio on some Cj, creating exactly the edges of G. However, W;, creates more
edges than any walk on C;, by construction. In conclusion, the assertion: Ji €
{1,...,m}, ¢ (X;) = G is a characterization of G being a w-sequence. This assertion
is decidable in polynomial time since for all 4, ¢,,(X;) is computable in polynomial
time (cf. Algorithm [T). O

Remark 2. For digraphs, the analogue of the aforementioned procedure would
consist in enumerating all paths in the DAG R(H“=2)). However, the number of
those paths can be exponential, even if the initial graph is a sequence graph.

Remark 3. Proposition[d provides a polynomial time algorithm for GU-REALIZABLE,,.
If 1, ...,z are vertices of a strongly component C of H"=2), one may wonder
in which order should the attributes of the vertices be considered to form a new
attribute xc. This order is not important, as long as the walk visits every edge in

the component. Moreover, it is possible to reconstruct all admissible sequences from
walks on R(HW=2)),

Proposition 1. CLIQUE admits a polynomial time parameterized reduction to
GU-REALIZABLE.

SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS 15

Proof. Let G = (V, E) be a simple graph. Let G’ be a graph constructed from G
adding two nodes a and b with loops, such that a and b are connected to each vertex
of G. Let k be a strictly positive integer and w = k + 1. We will show that G has a
k-clique if and only if G’ is ((k 4 1) = w)-realizable.

First, let us suppose that G has a k-clique. Let C' be an arbitrary sequence
of the vertices of one of its k-cliques. Let v1, ..., vjy| be the vertices of G and
{ur,ur}, ., {wp), ujp } beits edges. We write A (resp. B) for the string containing
w successive copies of a (resp. b). Then, the following sequence is a w-realization of
G

Aupuy Auguy A ... Aup uiE‘ A C Buvi Buy B ...Buy,
Now let us suppose that G’ is w-realizable and let © = z1, ..., x, be a w-realization
of G'. Without loss of generality, we can suppose a appears before b in x. Let
ip be the index of the first appearance of b and let i, be the largest index of the
appearance of a before i,. Then i, — i, > w, otherwise there would be an edge
between a and b. Furthermore, since G is simple, there cannot be two repetitions

of a vertex in the sequence x;,11,..., %, +w—1. Due to the definition of a sequence
graph, all vertices {x;, 41,..., i, +w—1} are connected, forming a clique in G of size
w — 1 = k, which ends the proof. ([

4.2. NP-Hardness Reductions. We prove in this section our three NP-hardness
for any constant window size (at least 3).

Proposition 10. DU-Realizable,, GW-Realizable,,, and DW-Realizable,, are all
NP-hard for any w > 3.

We prove each case directly or indirectly by reduction from restricted versions
of HAMILTONIAN PATH. We first verify the NP-hardness of these variants (see
lemma . We then focus on the unweighted case (see lemma , for which we
introduce an intermediate variant with optional arcs. Finally for the weighted cases,
we use the same reduction for both directed and undirected cases (simply ignoring
arc orientations in the latter case, see lemma [5]).

All our NP-hardness reductions are from Hamiltonian Path, where we require
that the input graph contains up to two degree-one vertices. More formally, we
reduce from the following intermediate problem:

Hamiltonian Variants The following is a folklore result, which we include here
for completeness.

Lemma 2. Hamiltonian Path is NP-hard even with either of the following two
restrictions:

HP1 the input graph has no self-loop, is directed and has a source vertex s (i.e.
with in-degree 0)

HP2 the input graph has no self-loop, is undirected and has two degree-1 vertices
s and t.

Proof. The first reduction is from Hamiltonian Cycle in directed graphs: pick any
vertex v and duplicate it into vy, vs. Each arc (v,u) becomes (vq,u) and each arc
(u,v) becomes (u,v2). Then any cycle in the orginal graph is equivalent to a path
in the new graph from vy to vs.

The second reduction is from Hamiltonian Cycle in undirected graphs: pick any
vertex v and duplicate it into v1, ve. Eache edge {u,v} becomes two edges {u, v}

SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS

16
s ap. -~~~ b s c
o ,»oo" P | - \,».0
1 7 I 7 v
I I I I v
4 1 1,.4 11,.4 1.4 1 4
X X x X x X X Ty T
1 .2]1 39, .4")/ .Gluf 7 ¢ 8 %
o [I
e [[I
"y, [I
e ' e ' e ! []
1y oy I
@ Iy oy 1
i Iy I
I []
e I e I/ e I 'Y
I I I
@ ‘l l i J Ai 1 I L I I L J
1 4y ! 1 ¥ 1 40! 1 4 1
X X X i X X i X X
2e " 3, 4e ’” 5, 6o ,' 7 3¢ 9,
I I 1
I I [
]]]
. . ®
81 ar by a

FIGURE 8. Left: an instance G of Hamiltonian Path with a source
vertex s and solution (s, a,b,c). Right: the corresponding instance
G’ of OptionalRealizableg. Heavy (red) arcs are compulsory, light
(blue) arcs are a solution path in the graph, dashed (green) arcs are
optional arcs issued from the intput graph. Other optional arcs are
not depicted. Three size-6 windows are overlined: A window using
vg and vy realizes the compulsory arc for vertex v, a window using
uy and vg enforce that the arc (u,v) exists in G, other windows
with w — 1 separator vertices x; help structure the whole sequence.

and {u,v2}. Add pending vertices s and ¢ connected to v; and vs respectively. Then
any cycle in the orginal graph is equivalent to a path in the new graph with {s, vy}
O

at one end and {¢,v2} at the other.

Reduction for DU-Realizable
In the directed and unweighted setting, we use the following intermediate general-
ization which allows some arcs to be ignored in the realization. For convenience in
the final reduction, we further assume that the first w — 1 elements of the sequence

are given in input.

Problem 5. OptionalRealizable,,
Input: directed unweighted graph D = (V, A) without self-loops, a subset A. C A
.y Sw—1) of w— 1 distinguished

of compulsory arcs, a starting sequence P = (s1,
vertices of V.
Question: Is there a sequence S, starting with P, such that the graph of S with

window size w contains only arcs in A and (at least) all arcs in A.?

Lemma 3. For any fired w > 3, OptionalRealizable,, is NP-hard.

Proof. By reduction from HAMILTONIAN PATH (see lemma[2} HP1). Given a directed
graph G = (V, A) with a source vertex s and no self-loop, build an instance of
OptionalRealizable,, with directed unweighted graph G’ = (V’, A’), compulsory arcs
A, and starting sequence P as follows (see Figure [§| for an example).

SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS 17

We introduce vertices denoted vg,v; for each vertex v of the original graph, as
well as a grid of vertices :c;, foreach 1 < p <2n+4+1,1 <i < w — 2. The overall
vertex set is thus

V“:(LJ“@WG>U{%|1§p§2n+ngigw_2}
veV

The set of compulsory arcs is A, = {(vg,v1) | v € V'}. We further introduce the
following optional arcs:
e arcs (u1,vg) for each (u,v) in A
e arcs (xépfl,vo), (Uo,xép), (xép,vl), (Ul,xgpﬂ) foreachveV,1<p<mn,

1< <w—2. _
e arcs (z},2)) for i < jand and 1 <p < 2n+ 1; and (z, ;) for j <4 and
1<p<2n
The starting sequence is defined as P = (x1,...,2% "2 s0). Note that the resulting

graph has no self-loop.

Claim: (G',P, Al) is a yes-instance for OptionalRealizable,, < G admits a
Hamiltonian path

< Let vP be the p-th vertex of V in the Hamiltonian path (and vf), v} be the
corresponding vertices in G'). Without loss of generality, since s has degree 1,
v! =s. For 1 < p <n, let X? be the sequence a3, ...z, 3oz}, ... x5 v}, Let
Xt =gl 2¥~? and S be the concatenation X' ... X"+, By construction S
starts with P. Further, for each compulsory arc (vg, v1), if v = vP, then compulsory
arc (vo,v1) is realized in subsequence XP. Finally, it can be checked that the graph
of S contains only arcs of A’. Indeed, the sequence uses the following arcs: (vo,v1)
for each v (which are compulsory arcs), arcs (v, v5") for each arc (v, vP*1) of
the hamiltonian path, so (v?, v?™1) € A and (vF,vE™") € A’, arcs with an endpoint
v; and an endpoint xJ, (which satisfy the parity conditions so they belong to A’),
and finally arcs of the form (2}, 2%), either with ¢ = p (in which case i < j) or with
¢ =p+1 (in which case by the window size we have j < 4): both kinds are also in
A

= Consider a sequence S, an occurrence of x; in S for some 1 < i < w— 2,
1 < p < 2n (note that p # n + 1), and let S” be the subsequence of S containing
the w — 1 characters following /. Let T = ... 22 and U =z, ... 2},
(note that T is possibly empty). T and U are seen both as strings and as sets of
vertices. The out-neighborhood of ac;, contains all vertices of T U U, as well as all
vertices v, for v € V, where ¢ = 0 if p is odd and ¢ = 1 if p is even. Since there
are k — 2 vertices in 7'U U, and no vertex has a self-loop, then by the pigeon-hole
principle string S’ must contain at least one vertex vy, v € V. Since there are no
arc (vg,vy) for v,v" € V, S’ contains exactly one vertex v,, thus it also contains all
vertices of T'U U. Based on the direction of the arcs in TU U U {v,}, it follows that
S =T v, U.

Let X, be the string xllj e m;’_Q. From the arguments above, and the fact that
S starts with X (since P uses vertices of X), there exist indices 41,71, ..., %n, jn
such that

S = X10?1X20;1X39?2X4U}3X5 . X2n+1

From the window size w, there must exist an arc (v?p, v}p) for each p, so by con-
struction 7, = j,. Furthermore, these arcs are compulsory for each vertex 19, so

18 SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS

(i1,...,in) is a permutation of {1,...,n}. Finally, there also exist an arc (v} ,v; .)
in G', so there exists an arc (v;,,v;,,,) in G. Thus, (v;,,...,v;,) is a Hamiltonian
path in G. O

We can now prove that DU-Realizable,, is NP-hard by reduction from OptionalRealizable,,.
Lemma 4. For any fized w > 3, DU-Realizable,, is NP-hard.

Proof. Assume that we are given a directed unweighted graph G = (V, A), a subset
A. C A of compulsory arcs (let A, = A\ A. be the set of optional arcs), and a
starting sequence P = (s1...8,-1) of vertices of V. The following reduction is
illustrated in fig. [9]

Let m = |A,|, write A, = {(u1,v1), ..., (Um,Vm)}. Create G’ by adding w(m +
1) + m separator vertices: w(m + 1) vertices y; withl <p<m+4land1l<i<w,
and m vertices z, for 1 < p < m. Build the strings

m
1 1
7 = (H(yp .. .y;“upzpvp)> Ymtl - Y1
p=1
Z’ = Z51 oo Sw—1
The arc set can be concisely defined as follows : take the set A and insert all arcs
realized by Z’ involving at least one separator vertex to G’. In details, the additional
arcs are the following (where indices i, j, p necessarily satisfy 1 <i<w, 1 <j<w
and 1 < p < m):
o (yl,y}) for i < j and y;},yzﬂ) for j <i—4,

yﬁnﬂ,yfnﬂ) for ¢ < j and (yinﬂ,sj) for j < 1,

(
e (yp,up) for 2 <iand (up,y),,) for i <w -3,
(yp, 2p) for 3 < and (z,,;,,) for i <w —2,

(y;,vp) for 4 <1i and (vp,yiJrl) for i <w —1,
(up, zp) and (zp, vp).

Claim: G has a realization with optional arcs < G’ has a realization

= Build a realization for G’ by concatenating Z with the realization for G
starting with s;...s,_1. All optional arcs of G’ are realized in Z, all compulsory
arcs of G’ are realized in the suffix (the realization of G'), and all arcs involving a
separator are realized in Z’. No forbidden arc is realized.

< Let S be a realization of G’. We prove by induction on ¢, for 1 < ¢ < |Z],
that (i) S and Z’ have the same prefix of length-(¢ +w — 1) and (ii) any separator
in Z[1,...,q] may only appear in S[1,...,q]|.

For ¢ = 1, this is obtained by the fact that Z[1] = y} has in-degree 0 in G’
(so S starts with y1) and its out-neighborhood forms a size-(w — 1) tournament
corresponding to Z[2...w], so the length-w prefix of S is Z[1...w]. Consider now
1 < ¢ <|Z|. By induction S and Z’ have the same prefix of length-(¢ + w — 2),
and separators up to position ¢ — 1 in Z do not have any other occurrence in S.
Let ¢’ = q if S[qg| is a separator (case A), and ¢’ = ¢+ 1 otherwise (case B). In
both cases, S[¢] is a separator, its in-neighborhood contains at least one separator
Z[q—1] or Z[g — 2], so in particular vertex S[¢'] may not have any other occurrence
in the sequence (otherwise Z[q— 1] and/or Z[g— 2] would also have two occurrences).
Furthermore, the out-neighborhood of S[¢'] is N = {Z'[¢' +1],...,Z'[¢ + w — 1]}
without self-loops, so S[¢’+1,...,¢' +w—1] is a permutation of N. In case A, w—2

SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS 19

A T R A A D R - A

LTI AN

FI1GURE 9. Reduction from OptionalRealizable,, to DU-Realizable,,
with w = 3. The input instance is the highlighted graph with white
vertices (including two optional dashed blue arcs), as well as the
starting sequence (s1,52). The reduction adds the black vertices y},
and zp, and the corresponding black and grey arcs. Any solution
is thus forced to first realize all optional arcs, and then realize the
rest of the graph starting with s;, s, and including all compulsory
arcs and, as needed, some of the optional arcs again.

vertices of N are already accounted for (by induction) in S[¢’+1,...,¢' +w—2], so
the remaining vertex Z'[¢' + w — 1] must be in position ¢ + w — 1 in S. In case B,
elements of N are all in Z, so they form a tournament and, again, the next w — 1
positions in S and Z’ must be equal.

Overall, we have S = Z5’ with the following properties: the length-(w — 1) prefix
of S’ is the starting sequence P, and no separator appears in S’. Thus S’ realizes
only arcs from G. Moreover no compulsory arc of G is realized in Z, nor with one
vertex in Z and one in S’ (since such arcs start with a separator), so all compulsory
arcs are realized in S’. Overall, G is a yes-instance of OptionalRealizable,, with
sequence S’.

O

Now, let us prove that GW-Realizable,, and DW-Realizable,, are NP-hard for all
w > 3, by reduction from Hamiltonian Path (see lemma |2 HP2). We focus on
the directed case first, the undirected case will simply use the underlying graph
introduced in this reduction.

Lemma 5. For any fized w > 3, DW-Realizable,, and GW-Realizable,, are NP-hard.

Proof. Reduction for DW-Realizable

Given G = (V, E) with degree-1 vertices s and ¢, write d,, for the degree of each
vertex u € V, and k = w — 2 (note that k > 1 since we chose w > 3). We write
§n = ds and & = d, — 1 for u € V' \ {s}; and 67 = d; and 65** = d, — 1
for u € V '\ {t} (6! and §9* can be seen as the remaining in- and out-degree
in the oriented graph where edges are replaced by double arcs after removing an
hamiltonian s — ¢ path). We write 6, = §7* + 62“¢. Build a directed weighted graph
G' = (V', A) as follows. For each u € V, add v and a new vertex denoted v’ to V'.
Create additional dummy vertices sg, s, @ and b. The overall vertex set is thus

20 SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS

V"= {a,b, 50,50} UU,ey {1, w'}. The arcs of A are given in Figure [10} as the union
of the start gadget, the queue gadget, and the vertex and edge gadgets respectively
for each vertex and edge of G.

Start Gadget: Queue Gadget:

5 @2m-n+2)(4 +2m—n

Rsop(g/)kva “\Q
T b

(3"

Vertex Gadget Edge Gadget
(for each vertex u, including s and t): (for each {u,v}):

5 k+1)
U 4—r» vV
/ \ ﬂém k+1 +k (kél)
| e —)
5out k+1> +k)

FIGURE 10. Subgraphs used in the reduction from Hamiltonian
Path to DW-Realizables. Weights on double arcs apply to both
directions. Note that arcs (¢,b) appear in two different gadgets, so
their weights should be summed

Reduction for GW-Realizable

Build the directed graph G’ as above, and let G/, be the undirected version of G':
remove arc orientations, for u # v the weight of {u, v} is the sum of the weight of
(u,v) and (v,u) in G’ (the weight of loops is unchanged).

We prove the following three claims:
(i) G Hamiltonian = G’ has a realization
(ii) G’ has a realization = G!, has a realization
(iii) G), has a realization = G is Hamiltonian

Proof of Claim (i). Assume that G has a Hamiltonian path and denote its vertices
as ui,us,...u, according to their position along the path (wlog., u1 = s and
u, = t). Let (v1,w1),...(VUm,wn) be the pairs of connected vertices in G that
are not consecutive vertices of the hamiltonian path (formally, it corresponds to
the set U, yyep{(u,v), (v,u)} \ {(ui,uit1) | 1 <7 < n}). Note that there are
m’ = 2m — (n — 1) such pairs. We now show that the sequence S defined as follows
is a realization of G.

SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS 21

G’ p
u
s u v’
S v
b
S0 w
/
So t w'
tl

F1cURE 11. Reduction from Hamiltonian Path to DW-Realizable.
Left: the input graph G with degree-one vertices s and ¢ (and hamil-
tonian Path (s,u,v,w,t)). Each edge becomes two arcs (in each
direction) in the edge gadgets of the resulting graph G’. Center: the
first part of the path realizing most edges of G’ (in particular those
involving vertex a), following the hamiltonian path. In particular,
bold arcs from the input graph are realized. Right: the remaining
arcs (such as (u,w), but also (w,u), (u,s), (v,u), etc.) are realized
using a succession of round-trips with vertex b. Self-loops represent
iterations of k = w — 2 or w occurrences.

S = Sinitspathsqueue with

Lk
Sinit = S0 So

Spath = ass' P aubububa. . cauk_ ul,_jul_att 't a

. w ,k kiw k k w k k w
Squeue =0 v7bwi b vy bwy ... b v, bw b

m—n

Note that a sequence of the form z* ay” yields (%) loops for z, (%) loops for y,
as well as (g) arcs (x,y) (indeed, there are 1 +2+ ...+ w —2 = (g) such arcs). A
sequence of the form bx* b* yields in particular an arc (b,r) of weight k and arc
(z,b) of weight (%).

We verify for each gadget that all arcs are indeed realized with the correct weight.
Indeed, the start gadget corresponds exactly to arcs in S;,;; or overlapping S;ni
and Spqin. Regarding the vertex gadget for w € V', Spqun realizes all arcs involving
two distinct vertices among a,u,u’. Span also yields (’;) + (k;rl) self-loops for u,
and Syyeye yields the remaining 6, (g) self-loops (since each vertex appears d,, times
there). Syueue also realizes all arcs between u and b. For an edge gadget {u,v} if
(u,v) (resp. (v,w)) is part of the hamiltonian path, then the arc is realized in Spu¢p,
otherwise it is realized in Sgyeue. Finally, the arcs in the queue gadget are realized

either in Sqyeue, either as overlapping arcs between Spq:n and Squeue-
O

Proof of Claim (ii). Clear, any realization for G’ is a realization for G,. O

22 SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS

Proof of Claim (iii). Pick a realization S of G),. Define the weight of a vertex in
G, as the sum of the weights of its incident edges (counting loops twice). From the
construction, we obtain the following weights for a selection of vertices:

e s, has weight w — 1
e u has weight 2(w — 1) foru e V
e a has weight 2(n + 1)(w — 1)

From the weight of s, it follows that this vertex must be an endpoint of S (wlog,
S starts with sj). It follows that for any other vertex v with weight 2i(w — 1), v
must have exactly 7 occurrences in S (in general it can be either i or ¢ + 1, but if v
has i+ 1 occurrences it must be both the first and last character of S, i.e. v =s{: a
contradiction). Thus each «’ occurs once and a occurs n 4 1 times in S.

Each u' occurs once, so order vertices of V' according to their occurrence in S (i.e.
V ={uq,...,u,} with u} appearing before u}, etc.). For each i, the neighborhood
of u; in S contains a twice, one a on each side (since there is no (a, a) loop). Other
neighbors of u} may only be occurrences of u;, so each u} belongs to a factor, denoted
X, of the form aufujufa. Two consecutive factors X;, X;11 may overlap by at
most one character (a), and if they do, then there exists an arc (u;, u;41) in A ,
hence an edge {u;, u;+1} (since w > 3) in E. There are n such factors X,,,, and only
n + 1 occurrences of a, so all as except extreme ones belong to the overlap of two
consecutive X;s, and there exists an edge {u;,u;4+1} for each ¢. Thus (ug,...,u,) is
a Hamiltonian path of G. O

All together, claims (i), (ii) and (iii) show the correctness of the reductions for
both GW-Realizable and DW-Realizable since they yield :
G is Hamiltonian < G’ has a realization
G is Hamiltonian < G, has a realization O

5. EFFECTIVE GENERAL ALGORITHMS

5.1. REALIZABLE,, Linear integer programming formulation. Let G = (V, E)
be a graph with integer weights m.cr . In this model, we represent a sequence x over
the alphabet {1,...n}, as a (0 — 1) matrix X € M,, ,({0,1}) encoding the sequence

T
1 ifx;, =1

Xij = -
’ 0 otherwise

We represent the set of sequences over the alphabet {1,...n} by the (0 — 1) matrices
such that Vj € {1,...,p},> 1, X;,; = L.

Given a window size w, a unit of Te—(v1,v2) COITESPONds to the appearance of two
elements vy, vy at a distance ¢ € {1,...,w — 1} in the sequence. Now, let us consider
a fixed distance i, and a starting index j € {1,...,p — i}, we use a intermediary
slack variable y$(i) € {0,1} to model the presence of such appearance using the
constraint:

(9) le,ij2~,j+i = yJe(Z)

SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS 23

Then, the Boolean variable y5 (i) is equal to 1 when v; is located at position j
and vq at position j + i. We linearise Eq. [J] as:

7X1)17j + yj(l) S 0
(10) = Xop j+i +y; (i) <0
X1+ Xoy jri —yj(1) <1

Each slack variable y§(¢) is attributed to an edge e, a relative distance i € {1,...,w —
1} and a starting position k& € {1,...,p —i}. Given our constraint formulation, every
slack variable is attributed 3 constraints. For a digraph, the number of possible pair
positions for a unit of m.—(,, 4,) is given by:

w—1

C=> (p—i)=pw—1)-

i=1

w(w —1)

2

—w-1p-3

)

Therefore, in our model, C' corresponds to the number of slack variables attributed
to constraints for an edge of the graph.

On the contrary, the absence of an edge e = (v1, v2), corresponding to m. = 0, can
be modeled for a distance i € {1,...,w — 1} and a starting position j € {1,...,p — i}
as:

Xo1,j + Xosjri <1

Then, REALIZABLE,, can be formulated as a linear integer program:

min S w) +)
Xe{0,1}pxn ye{0,1}I7I ceEEie{l,A..,w—l}

under the constraints

n
Vjie{l,..,p} > Xi=1
=1

~Xu1 +y5(i) <0
— Xpp14i +97(1) <0
Ve = (vi,v2) € E X1+ Xop 140 —yi(0) <1 Xor1+ Xy 144 <1
Ve = (vy,vy) ¢ E : :
Vie{l,.,w—1} |_x, bl (i) <0 Xy, it Xy, <1
—Xopp Fyp—(i) <0
KXoy p—i + Xugp — ?J;—z‘(i) <1
and Ve € E S)+ s (6) > e

ie{l,...,w—1}

If the objective function reaches) _, 7 at its minimum then the output of
REALIZABLE,, (G, II) is True, and False otherwise.

24 SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS

5.2. NUMREALIZATIONS,, Dynamic programming formulation. We did not
present a way to count realizations in the general case. We present in this subsection
a method based on dynamic programming valid for all cases.

The recursion proceeds by extending a partial sequence, initially set to be
empty, keeping track of for represented edges along the way. Namely, consider
Ny [IL, p,u] to be the number of w-realizations of length p for the graph G = (V, E),
respecting a weight matrix II = (7;); jev2, preceded by a sequence of nodes
u = (ug,...,up)) € V*. It can be shown that, for all ¥p > 1, II € NIVl and
u € V= N,[II,p,u] obeys the following formula, using the notations of Section

Nu H/uv ’p_17(u17'“7u|u\7v) lf‘u‘ <w-—1
(11) Nw [Hapvu] = Z (u,0) }

veV
with H’(u,v) = (m; — {k € [1,]u]] | (ur,v) = (4,5)}]),5)ev2- The base case of this

recurrence corresponds to p = 0, and is defined as
0 otherwise.

Nw Hl(u)va_1a(u2’...,uw_17v):| lf‘u‘ =w-—1

(12) VII, N, [II,0,u] = {

The total number of realizations is then found in Ny, [II, p, €], i.e. setting u to the
empty prefix €, allowing the sequence to start from any node.

The recurrence can be computed in O(|V[* x []; jey2(mi,; + 1)) time using
memoization, for p the sequence length. The complexity can be refined by noting

that:
Z Tij SWXp
i,jeEV?
To investigate the worst case scenario, we can consider the optimisation problem:

(13) maxy [[; jeye(mi; +1) such that >, . m ; = wp.
This problem is equivalent to maximise a product under a budget constraint. When
n? > w x p, which is the case in practice, the maximum is reached for a Boolean
matrix II = (m; ;) € {0, 1}|V‘2, verifying the constraint. This property can be
deduced from the inequality:
1<a<b—-1 =loga+logb <log(a+ 1)+ log(b—1)
= ab< (a+1)(b—-1)

It follows that, in the worst-case scenario, [, oy (m; +1) € O(2"P), giving an
overall complexity of O(]V[*2¥?). Thus, despite the apparently high complexity of
our algorithm, it is still possible to compute N, [II, p, u1.,] for “reasonable” values
of p and w. Indeed, succinct experiments showed that the table could be computed
in less than a minute for values up to |V| = 20, p = 100 and w = 3. See Figure
for an instance and the resulting sequences obtained by our algorithm.

6. DISCUSSION AND OPEN PROBLEMS

In this study, we presented a new series of inverse problems related to the
ambiguity of popular representations in text mining and natural language processing.
We characterized their complexity class, except the belonging in NP for w > 3.
Given a sequence, computing its graph representation can be done in O(d? + p), if

SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS 25

12/9\7 1

/b

%, 0000000010010 1
3 '4,1 00001001101000
\VA‘I‘,/’ 10000100100001
\ N[A 4 12120121221010
8/ 00110010100000
S \ 10000000100101
' 01120101110000
‘All‘ 00001010101000
7 2 10111110101101
01010001100000
o 0001101010000 0
0000000000000 0O0
I 00020010010000
— *3 00000000000100
(A) Sequence (B) Weights matrix
graph II

312369317810468325081311
312369317810463825081311

(c) Different realiza-
tions

FicURE 12. Example of realizations in the DW variant, as obtained
using our dynamic programming algorithm: (a) a 5-sequence graph
on |V| = 14 (vertices are labelled with integers from 0 to 13). (b)
the corresponding weight matrix IT of size 14 x 14. (c) two possible
realizations of length p = 20.

p is the length of the sequence and d the size of the vocabulary. However, this does
not prove that REALIZABLE nor NUMREALIZATIONS are in NP, because the said
realization could be exponentially large with respect to the number of vertices or
the window size. Although we cannot settle this question in general, we prove this
situation occurs in the directed case (DU and DW), for which some graphs have
minimal realizations whose length scales exponentially with the window size. This
is formally stated in Proposition 11| for DU-REALIZABLE.

Proposition 11. For any positive integers n and k, there exists a graph of size
3kn + 1 such that any DU-realization with a window of size k + 1 has length at least
2knk.

Proof. See Figure [I3]for an example. Our construction uses three sets of vertices
A, B and C of size k x n each (vertices are labelled respectively a; ;, b; ; and ¢; ;
with 1 <4 < k and 0 < i < n), plus an additional start vertex s. The column
of a vertex in AU B U C is its first index, the value is its second index, the rank
of a vertex v is an integer in Z/2kZ equal to the column of v if v € A and to its
column plus k if v € BU C. Vertex s has column, value and rank 0. Given a
k-tuple T = (j1, ..., jx) with values in [0,n — 1], the successor of T is the k-tuple

26 SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS

201332 =% 201333 =>201333=>2022000 =>

[OX®)

0000
0000

@]
(@]

Ficure 13. Illustration of the construction in Proposition |11 for
a graph with an exponentially long realization, with n = 4 and
k = 6. Top: a fragment of the path, starting with the substring
@1,2G2,003,104,305,306,2: in a correct realization, such a fragment
(with value (2,0,1,3,3,2)) must be followed by the highlighted
vertices with successive values (2,0,1,3,3,3) and (2,0,2,0,0,0).
Vertices are drawn multiple times, to avoid overlappings in the
drawing, but there are indeed only n x k vertices in each of A, B
an C. This counting behavior must be repeated from (0,0, 0,0, 0, 0)
to (3,3,3,3,3,3), yielding a path of length at least 45. Bottom:
example of arcs outgoing from two A vertices that enforce this
behavior. Each vertex in A is connected to a single vertex in the
corresponding column in each of B and C, where B is used to keep
the same value and C is used to increment a column.

T =(0,...0,52 + 1,50+41,-..Jx) where x is the smallest index such that j, <n —1,
i.e. all n* such tuples form a path from (0,...,0) to (n —1,...n — 1).

We build a DAG on vertex set AU B U C U {s} with the following arcs. Vertex
s has outgoing arcs to each of a; for all 7. Each vertex a;; with 1 <4 <k and
0 < j < n has an outgoing arc to each a; ;» with ¢ > ¢, to each b, ;» with i’ < i, to
b; j and to ¢; j+1 mod n- Bach vertex b; ; and each ¢; ; with 1 <i <kand0<j<n
has an outgoing arc to each by j with i’ > 4, to each a; j with ¢ < i and to a, ;.
Finally, for ¢ < k, each ¢; o is connected to ¢;41 ; for all 0 < j < n.

Let S be a realization of G with window size k + 1. Clearly S necessarily starts
with s (the only vertex with in-degree 0). Let 1 < p < |S| — k. Consider the
substring S’ = S[p...p + k]. Note that by construction a vertex of rank r only has
outgoing arcs to vertices with rank r + ¢ with 0 < ¢ < k. In particular, two vertices
of the same rank cannot be in S’. Thus, let r be the rank of S[p], then all other
vertices of S” have rank in [r + 1,7 + k]. In particular, the second vertex S[p + 1] in
S’ has out-going arcs to k — 1 vertices with ranks among [r + 1,7 4 k], which is only
true for vertices of rank r — 1, 7, or » + 1. Thus S[p + 1] has necessarily rank r + 1.

SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS 27

Hence, since S[1] = s has rank 0, then S[i] has rank ¢ — 1 for 1 < ¢ < |S|—k. In
particular, S[1,...,k + 1] = sago ... ako-

Let a; ; € A and p such that S[p| = a; ;. Then S[p + k] is one of b; j,¢; j41. For
S[p] = b;j € B or Sp] =¢;; € C then S[p+ k| = a;;. Thus, in most cases, the
value of S[p] and S[p + k] are equal, except in the following cases: S[p] = a;; and
S[p+k] = ¢; j+1. Then by the incoming arcs of ¢; j+1, necessarily S[p+k—i'] = ¢;—ir
for all 0 < i’ <. S[p] = ¢; n and S[p+ k] = a; 0. Let p be a position such that S[p]
has rank 1, let T'= (j1,...,jg) be the tuple of values of S[p]...S[p+ k — 1], let T"
be the tuple of values of S[p+ k]...S[p + 2k — 1], and T” be the tuple of values
of S[p+2k]...S[p+ 2k —1]. Then if S[p + k]...S[p + 2k — 1] does not contain
any vertex in C, then T'=T" = T”. Otherwise, let x be the first index such that
Je <mn—1,then T = (0,...,0,j: + 1, jut1,---,Jk), and T = T" is the successor
of T.

To conclude, S contains ag g . . . ak,o, i.e. a substring with tuple of values (0, ..., 0).
It also contains ¢ g, which has only incoming arcs from ay -1 and from each c; o
with ¢ < £, thus S also contains a1 5,—1...axn—1C1,0-.-Ck0, hence S contains the
tuple (n—1...n—1). Since S must use consecutive tuples according to the successor
relation, it must contain substrings with rank 1 to k& with each tuple from (0,...,0)
to (n—1...n—1), i.e. it has length at least (2k)n".

Note that the above proof does not guarantee the actual existence of such a
realization. However, the construction can be adapted to this end, by provid-
ing an exponential-length sequence using only arcs from the DAG (starting with
5a1,0...ag,o and ending with a1 ,—1...axn—1), and filtering out those edges that
are not realized. Thus, any sequence realizing the resulting graph still requires an
exponential length, and the graph is realizable by construction. 0

Remark 4. The existence of instances with exponentially large DW-realizations is
due to encoding of the input, and the length p of the realization. By definition, the
length of DW-realization of an instance (G,11) depends linearly on the sum of the
coefficients of I, whereas the encoding of the entries of I can be done logarithmically
with respect to the values of 1.

ACKNOWLEDGMENTS

The authors wish to express their gratitude to Guillaume Fertin and an anonymous
reviewer of an earlier version of this manuscript, for their valuable suggestions and
constructive criticisms.

REFERENCES

[1] Arora, S., Li, Y., Liang, Y., Ma, T., Risteski, A.: A latent variable model approach to
pmi-based word embeddings. Transactions of the Association for Computational Linguistics 4,
385-399 (2016)

[2] Brightwell, G.R., Winkler, P.: Counting eulerian circuits is# p-complete. In:
ALENEX/ANALCO. pp. 259-262. Citeseer (2005)

[3] de Bruijn, N.G., van Aardenne-Ehrenfest, T.: Circuits and trees in oriented linear graphs.
Simon Stevin 28, 203-217 (1951)

[4] Chaiken, S.: A combinatorial proof of the all minors matrix tree theorem. SIAM Journal on
Algebraic Discrete Methods 3(3), 319-329 (1982)

[5] Gawrychowski, P., Kociumaka, T., Radoszewski, J., Rytter, W., Waleri, T.: Universal
reconstruction of a string. Theoretical Computer Science 812, 174-186 (2020)

28

(6]

[7

8

9

(10]

(11]

(12]

(13]

14]

(15]

SEQUENCE GRAPHS REALIZATIONS AND AMBIGUITY IN LANGUAGE MODELS

Gibert, J., Valveny, E., Bunke, H.: Dimensionality reduction for graph of words embedding.
In: International Workshop on Graph-Based Representations in Pattern Recognition. pp.
22-31. Springer (2011)

Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applica-
tions. Siam Review 56(1), 3—69 (2014)

Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781 (2013)

Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Lingvisticae
Investigationes 30(1), 3-26 (2007)

Peng, H., Li, J., He, Y., Liu, Y., Bao, M., Wang, L., Song, Y., Yang, Q.: Large-scale
hierarchical text classification with recursively regularized deep graph-cnn. In: Proceedings of
the 2018 World Wide Web Conference. pp. 1063-1072 (2018)

Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word representation. In:
Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP). pp. 1532-1543 (2014)

Roth, M., Woodsend, K.: Composition of word representations improves semantic role labelling.
In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP). pp. 407-413 (2014)

Rousseau, F., Kiagias, E., Vazirgiannis, M.: Text categorization as a graph classification
problem. In: Proceedings of the 53rd Annual Meeting of the ACL and the 7th IJCNLP
(Volume 1: Long Papers). pp. 1702-1712 (2015)

Sanjeev, A., Yingyu, L., Tengyu, M.: A simple but tough-to-beat baseline for sentence
embeddings. Proceedings of ICLR (2017)

Skianis, K., Malliaros, F., Vazirgiannis, M.: Fusing document, collection and label graph-based
representations with word embeddings for text classification. In: Proceedings of the Twelfth
Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-12). pp.
49-58 (2018)

	1. Introduction
	Definitions and problem statement
	Related work
	2. Theoretical results
	2.1. A complete characterization of 2-sequence graphs
	2.2. Main complexity results for w 3

	3. The Special Case of 2-Sequence Graphs (w=2)
	3.1. The unweighted variants: GU and DU
	3.2. The weighted variants: GW and DW

	4. General Case with Arbitrary Window Size (w3)
	4.1. A polynomial time algorithm for GU-Realizablew
	4.2. NP-Hardness Reductions

	5. Effective general algorithms
	5.1. : Linear integer programming formulation
	5.2. : Dynamic programming formulation

	6. Discussion and open problems
	Acknowledgments
	References

