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Notations and main statements

We consider a topological dynamical system (Ω, σ) where Ω is a compact metric space and σ : Ω → Ω is a continuous map. We denote by P(Ω, σ) the set of probability σ-invariant measures, and for every continuous function f ∈ C 0 (Ω), by f , the ergodic minimizing value of f f := min µ∈P(Ω,σ) f dµ.

(

A minimizing measure is a probability invariant measure realizing the minimum in [START_REF] Bousch | La condition de Walters[END_REF]. We denote by P min (Ω, σ, f ) the set of all the minimizing measures.

Given a continuous function f : X → R, we want to solve the following cohomological equation where (M, u) are the two unknowns,

                  
M is a Borel invariant set, and µ(M) = 1 for some µ ∈ P(Ω, σ), u :

Ω → R is a non-negative Borel function, ∀ω ∈ Ω, f (ω) -f ≥ u • σ(ω) -u(ω), ∀ω ∈ M, f (ω) -f = u • σ(ω) -u(ω). (CE)
A function of the form u • σu for some Borel function is called a coboundary, and u is called a transfer function.

Notice that f could also be seen as an unknown of the cohomological equation. We shall see that, if (M, u, f ) is a solution of (CE), then f is necessarily unique. Notice also that such an invariant measure µ giving a unit mass to M is necessarily a minimizing measure and satisfies supp(µ) ⊆ M. As we are interested in the "largest" set M for which such a transfer function u exists, it is hence natural to consider the following set, called Mather set and defined by

M( f ) := supp(µ) : µ ∈ P min (Ω, σ, f ) . (2) 
It is easy to see that the Mather set is closed, invariant, and is equal to the support of some minimizing measure. The terminology "Mather set", following Mather [START_REF] Mather | Action minimizing invariant measures for positive definite Lagrangian systems[END_REF] (where it is denoted by suppM c before proposition 3), comes from the weak KAM theory initiated by Mañé [START_REF] Mañé | Generic properties and problems of minimizing measures of Lagrangian systems[END_REF] (Theorem B, cohomological equation on each supp(µ)), then extended by Fathi [START_REF] Fathi | Théorèmes KAM faible et théorie de Mather sur les systèmes lagrangiens[END_REF] (theorem 1, sub-cohomological equation on the whole set Ω) and later thoroughly studied by Fathi in [START_REF] Fathi | Weak KAM Theorem in Lagrangian Dynamics[END_REF] (the final terminology in section 4.12).

For "hyperbolic systems", if the dynamical system (Ω, σ) is a Smale space [START_REF] Putnam | A Homology Theory for Smale Spaces[END_REF] (for example a sub-shift of finite type) and the function f is Walters [START_REF] Wp | Invariant measures and equilibrium states for some mappings which expand distances[END_REF] (for example Hölder), then the cohomological equation (CE) admits a solution (M, u) where M = M( f ) and u is Walters, see Bousch [START_REF] Bousch | La condition de Walters[END_REF]. In an opposite direction, if (Ω, σ) is a topological dynamical system admitting invariant measures with different supports, for C 0 generic function f , every minimizing measure µ has full support, supp(µ) = Ω, and there is no solution (M, u) of (CE) with a continuous u, see Bousch [START_REF] Bousch | La condition de Walters[END_REF]. There also exists C ∞ lacunary functions on the circle f : T → R and Liouville numbers α such that on the minimal and uniquely ergodic dynamical system (T, R α ), (R α denotes the rotation by α), there is no solution (M, u) of (CE) with a Borel u, see Katok-Robinson [START_REF] Katok | Cocycles, cohomology and combinatorial constructions in ergodic theory[END_REF] (remarks 1 after theorem 3.5) and Herman [START_REF] Herman | L 2 regularity of measurable solutions of a finite-difference equation of the circle[END_REF].

Our main goal in this paper is to use the weak KAM approach to provide a new way of solving the cohomological equations under weaker conditions. As an application, we slightly improve the classical Gottshalk-Hedlund theorem by proving that condition (4) below is equivalent to the existence of the continuous coboundary.

We also investigate a discounted weak KAM approach to obtain an approximate (or numerical) solution of (CE) in the Gottschalk-Hedlund setting. The numerical scheme may not converge and we identify those coboundaries that can be obtained as a limit. Unless the coboundary is balanced (that we are going to define) the scheme always oscillates.

Our first result is the following.

Theorem 1. Let (Ω, σ) be a topological dynamical system and f : Ω → R be a continuous function. Assume

∀ω ∈ Ω, u(ω) := -inf n≥1 n-1 k=0 f -f • σ k (ω) < +∞. (3) 
Let u + := max(u, 0). Define a Borel set

M := ω ∈ M( f ) : ∀k ≥ 0, f -f -u + • σ + u + • σ k (ω) = 0 . Then (M, u + ) is a solution of the cohomological equation (CE): i. u + is lower semi-continuous, ii. ∀ω ∈ Ω, f (ω) -f ≥ u + • σ(ω) -u + (ω), iii. ∀ω ∈ M, f (ω) -f = u + • σ(ω) -u + (ω), iv. ∀µ ∈ P min (Ω, σ, f ), µ(M) = 1, v. M is an invariant residual subset of M( f ).
A residual set M in a compact space M is a set containing a countable intersection of open and dense subsets in M. Unless u is bounded, condition (3) is not a necessary condition for solving (CE).

The following corollary is an extension of Gottschalk-Hedlund theorem [START_REF] Gottschalk | Toplogical Dynamics[END_REF] for every minimal subsets of the Mather set.

Corollary 2. Let (Ω, σ) be a topological dynamical system, and f : Ω → R be a continuous function. Assume

∃C ≥ 0, ∀ω ∈ Ω, ∀n ≥ 1, n-1 k=0 ( f -f ) • σ k (ω) ≥ -C. Then i. ∀ω ∈ M( f ), ∀n ≥ 1, n-1 k=0 ( f -f ) • σ k (ω) ≤ C,
ii. if µ is invariant and supp(µ) ⊂ M( f ) then µ is minimizing, (the subordination principle),

iii. there exists a lower semi-continuous function u :

Ω → R such that (a) 0 ≤ u ≤ C, (b) ∀ω ∈ Ω, f (ω) -f ≥ u • σ(ω) -u(ω), (c) for every minimal subset X ⊆ M( f ), u is continuous on X and ∀ω ∈ X, f (ω) -f = u • σ(ω) -u(ω).
If (Ω, σ) is minimal, the Mather set must be equal to Ω and we recover the classical Gottschalk-Hedlund theorem. The following statement is a slightly improved extension.

Theorem 3 (Gottschalk-Hedlund [START_REF] Gottschalk | Toplogical Dynamics[END_REF]). If (Ω, σ) is minimal, f ∈ C 0 (Ω), then the following two properties are equivalent:

• ∀ω ∈ Ω, inf n≥1 n-1 k=0 ( f -f ) • σ k (ω) > -∞, (4) 
• ∃u ∈ C 0 (Ω), ∀ω ∈ Ω, f (ω) -f = u • σ(ω) -u(ω).
Notice that if (Ω, σ) is uniquely ergodic, M( f ) = supp(µ) and f = f dµ for a unique ergodic measure µ.

We now consider a weaker form of the cohomological equation that we call discounted cohomological equation:

       ∀ > 0, u : Ω → R is a C 0 function, ∀ > 0, ∀ω ∈ Ω, f (ω) = (1 -)u • σ(ω) -u (ω). (DCE)
Iterating the previous equality,

u (ω) = (1 -)u • σ(ω) -f (ω) = (1 -) 2 u • σ 2 (ω) -f (ω) -(1 -) f • σ(ω) = • • •
we obtain that (DCE) has a unique solution, called discounted transfer function, which is given by the formula,

U [ f ](ω) := - k≥0 (1 -) k f • σ k (ω). ( 5 
)
We question whether the discounted solution U [ f ] converges to some solution of (CE) as → 0. We give a complete answer when f is a coboundary over a minimal system. Definition 4. Let (Ω, σ) be a topological dynamical system, and f : Ω → R be a continuous function.

i. We say that f is a regular coboundary if there exists a continuous function

u : Ω → R such that f = u • σ -u.
ii. We say that f is a balanced coboundary if there exists a continuous function

u : Ω → R such that f = u•σ-u and u dµ is independent of µ ∈ P(Ω, σ).
A balanced coboundary is by definition regular. Our second result is the following.

Theorem 5. Let (Ω, σ) be a topological dynamical system, and f : Ω → R be a regular coboundary.

i. If f is balanced, then there exists a unique u ∈ C 0 (Ω) such that f = u • σu and u dµ = 0, ∀µ ∈ P(Ω, σ). In that case U [ f ] → u uniformly in Ω.

ii. If (Ω, σ) is minimal and f is regular but not balanced, then there exist u ∈ C 0 (Ω) satisfying f = u • σu, two ergodic invariant measures µ 0 , µ 1 satisfying u dµ 0 u dµ 1 , and a residual set M ⊆ Ω such that, for every ω ∈ M, there exists a decreasing sequence ( n ) n≥0 converging to 0 such that

U 2p [ f ](ω) → u -u dµ 0 , U 2p+1 [ f ](ω) → u -u dµ 1 .
The notion of discounted cohomological equation is reminiscent of the notion of discounted weak KAM solution discussed in [START_REF] Davini | Convergence of the solutions of the discounted Hamilton-Jacobi equation: convergence of the discounted solutions[END_REF] in the continuous setting and in [START_REF] Davini | Convergence of the solutions of the discounted equation: the discrete case[END_REF][START_REF] Su | Convergence of discrete Aubry-Mather model in the continuous limit[END_REF] in the discrete setting. Contrary to the phenomenon observed in theorem 5, the discounted weak KAM solution converges to some selected weak KAM solution, called balanced weak KAM solution, see [START_REF] Su | Convergence of discrete Aubry-Mather model in the continuous limit[END_REF] proposition 18 in the discrete setting.

Proofs for the cohomological equation

The fact that f is the unique solution of the cohomological equation (CE) follows readily from the following standard lemma in ergodic theory. We were not able to find a reference of that lemma and as suggested by the referee we give a short proof in the Appendix. Lemma 6. Let (Ω, σ, µ) be a measurable dynamical system (Ω is a Polish space, σ : Ω → Ω is a Borel map, and µ is a σ-invariant probability). Let u :

Ω → R be a Borel function. If (u•σ-u) + ∈ L 1 (µ) then u•σ-u ∈ L 1 (µ) and (u•σ-u) dµ = 0. Corollary 7. If (M, u, f
) is a solution of (CE) then f must be equal to the formula given by equation ( 1)

Proof. As f -f ≥ u • σ -u on Ω, (u • σ -u) + ∈ L 1 (µ) for every µ ∈ P(Ω, σ). Lemma 6 implies that ∀µ ∈ P(Ω, σ), ( f -f ) dµ ≥ 0.
We obtain on the one hand

f ≤ inf µ∈P(Ω,σ)
f dµ.

On the other hand f -f = u • σu on M and μ(M) = 1 for some μ ∈ P(Ω, σ).

Applying again lemma 6 to (M, σ, μ), we obtain ( f -f ) d μ = 0, and

f = f d μ ≥ inf µ∈P(Ω,σ) f dµ.
Proof of theorem 1. Item (i) is a consequence of the fact that the supremum of continuous functions is lower semi-continuous. Item (ii) is an immediate consequence of the following identity:

∀ω ∈ Ω, f (ω) -f = u + • σ(ω) -u(ω). (6) 
Indeed let ω ∈ Ω. One could analyze the infimum in the definition of u in (3) for both cases: the infimum is reached at n = 1 or not, that is, we have either

( f -f )(ω) = -u(ω) < n-1 k=0 f -f • σ k (ω), ∀n ≥ 2, ≤ f -f (ω) -u • σ(ω), u • σ(ω) ≤ 0, f -f (ω) = u + • σ(ω) -u(ω), or ( f -f )(ω) ≥ -u(ω) = inf n≥2 n-1 k=0 f -f • σ k (ω), = f -f (ω) -u • σ(ω), u • σ(ω) ≥ 0, f -f (ω) = u + • σ(ω) -u(ω).
We have proved in particular,

∀ω ∈ Ω, f -f (ω) ≥ u + • σ(ω) -u + (ω).
Lemma 6 implies that u + •σ-u + ∈ L 1 (µ) and (u + •σ-u + ) dµ = 0, ∀µ ∈ P(Ω, σ).

The proof of item (iv) will follow from the fact that u ≥ 0, µ(dω) a.e. for every µ ∈ P min (Ω, σ, f ). Let u -:= (-u) + and µ be a minimizing measure. We have

0 = f -f dµ = (u + • σ -u) dµ = (u + • σ -u + ) + u -dµ, u -dµ = 0 ⇒ u • σ k (ω) ≥ 0, µ(dω), ∀k ≥ 0, a.e.
which implies µ(M) = 1.

The proof of item (v) will follow from the following two facts. First fact: Let R be the set of points of continuity of u belonging to the Mather set. As u is lower semi-continuous, R is a residual set of M( f ). See [START_REF] Lojasiewicz | An introduction to the Theory of Real Functions[END_REF] for a detailed proof: a lower semi-continuous function is a Baire function of first category (Theorem 3.3.4), and the set of points of discontinuity of a Baire function of first category is a F σ of empty interior (Theorem 3.5.3).

Second fact: u ≥ 0 on R. Indeed let ω ∈ R. Then ω ∈ supp(µ) for some minimizing measure µ. By contradiction, if u(ω) < 0, we would have u < 0 on a neighborhood U containing ω. Since U ∩ supp(µ) ∅, we would have µ(U) > 0, contradicting u ≥ 0, µ a.e. Therefore, u ≥ 0 for any ω ∈ R, which implies [START_REF] Gottschalk | Toplogical Dynamics[END_REF] holds with u + (ω) instead of u(ω).

Hence, ∩ k≥0 σ -k (R) is again residual, invariant, contained in M, which completes the proof of (v).

Proof of corollary 2. Theorem 1 implies the existence of a lower semi-continuous function u : Ω → R and a residual subset M ⊆ M( f ) such that

• ∀ω ∈ Ω, f (ω) -f ≥ u • σ(ω) -u(ω), • ∀ω ∈ M, f (ω) -f = u • σ(ω) -u(ω), • ∀ω ∈ Ω, 0 ≤ u(ω) ≤ C. The proof of item (i) follows from, ∀ω ∈ M, ∀n ≥ 1, n-1 k=0 f -f • σ k (ω) = u + • σ n (ω) -u + (ω) ≤ u + • σ n (ω) ≤ C,
and from the fact that M is residual and in particular dense in the Mather set.

The proof of item (ii) follows from item (i). If supp(µ) ⊆ M( f ), then

∀n ≥ 0, n f dµ ≤ n f + C ⇒ f dµ = f .
The proof of item (iii) follows from theorem 1 applied tof on any (X, σ). Indeed, thanks to item (i), we have sup µ∈P(X,σ)

f dµ = f and ∀ω ∈ X, sup n≥1 n-1 k=0 f -f • σ k (ω) < +∞.
There exists a non-positive upper semi-continuous function v :

X → R such that ∀ω ∈ X, f (ω) -f ≤ v • σ(ω) -v(ω). Then ∀ω ∈ X, u • σ(ω) -u(ω) ≤ f ω) -f ≤ v • σ(ω) -v(ω).
Since uv is lower semi-continuous on X, uv attains its infimum on X. Define

D := min (u -v)(ω) : ω ∈ X , X := {ω ∈ X : (u -v)(ω) ≤ D}. Since (u -v) • σ ≤ (u -v), X is compact, σ-invariant, therefore by minimality is equal to X: u -v = D on X, u and v restricted to the X are continuous and f -f = u • σ -u = v • σ -v on X.
We will need the following lemma for the proof of theorem 3. See proposition A.7 in Morris [START_REF] Morris | Mather sets for sequences of matrices and applications to the study of joint spectral radii[END_REF] for a proof. Lemma 8. Let (Ω, σ) be a topological dynamical system and f ∈ C 0 (Ω). Then

∃ω * ∈ Ω, ∀n ≥ 0, 1 n n-1 k=0 f • σ k (ω * ) ≤ min µ∈P(Ω,σ) f dµ.
Proof of theorem 3. It follows from lemma 8 and by assumption of the theorem, there exists ω * ∈ Ω and a constant C ≥ 0 such that

∀n ≥ 0, -C ≤ n-1 k=0 ( f -f ) • σ k (ω * ) ≤ 0. Then ∀m, n ≥ 0, m+n-1 k=m ( f -f ) • σ k (ω * ) ≥ -C.
By minimality of (Ω, σ), the orbit of σ k (ω * ) k≥0 is dense,

∀ω ∈ Ω, ∀n ≥ 1, n-1 k=0 ( f -f ) • σ k (ω) ≥ -C.
We conclude the proof by using corollary 2.

Proofs for the discounted cohomological equation

Notice that the unique solution of (DCE), equation ( 5), can be written as

U [ f ](ω) = - 1 f dµ ,ω , ∀ω ∈ Ω,
where µ ,ω := k≥0 (1-) k δ σ k (ω) is a probability measure not necessarily invariant.

The proof of item (i) of theorem 5 follows from the following lemma.

Lemma 9. Let be f ∈ C 0 (Ω).

i. If ∀µ ∈ P(Ω, σ), f dµ = 0, then f dµ ,ω → 0 uniformly in ω ∈ Ω.

ii.

If f = u • σ -u, then U [ f ](ω) = u(ω) -u • σ dµ ,ω , ∀ω ∈ Ω.
Proof of item (i). We first prove that lim sup →0 sup ω∈Ω f dµ ,ω = 0.

Let ( n ) n≥0 be a sequence tending to 0 and realizing the above lim sup. Let (ω n ) n≥0 be a sequence of points of Ω realizing the supremum of f dµ n ,ω for each n . Choose a sub-sequence of ( n ) n≥0 , that we denote in the same way, such that (µ n ,ω n ) n≥0 converges to some probability measure µ. Notice that ∀n ≥ 0, ∀g ∈ C 0 (Ω), (1n )µ n ,ω n (g • σ) = µ n ,ω n (g)n g(ω n ).

Taking n → +∞, we obtain µ ∈ P(Ω, σ) and lim sup Similarly we show lim inf →0 inf ω∈Ω f dµ ,ω = 0. Item (i) is proved.

Proof of item (ii). We observe

u = u • σ -f = (1 -)u • σ -f + u • σ = k≥0 (1 -) k (-f + u • σ) • σ k u(ω) = U [ f ](ω) + u • σ dµ ,ω .

  ,ω = lim →0 f dµ n ,ω n → f dµ = 0.
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Proof of item (i) of theorem 5. If f is a balanced coboundary, f = u • σu for some u satisfying u dµ = 0, ∀µ ∈ M(Ω, σ). Then, thanks to lemma 9,

In particular, such a transfer function u is unique.

The proof of the second item of theorem 5 will be given after the two following lemmas.

Lemma 10. Let (Ω, σ) be a minimal dynamical system, and µ 0 , µ 1 be two ergodic measures. Then there exists a residual subset M ⊆ Ω such that for every ω ∈ M there exists a sequence of integers (N p ) p≥1 such that

where [p] = p mod 2.

Proof. Let i = 0, 1. As µ i is ergodic, thanks to Birkhoff's ergodic theorem, for every p ≥ 1, q ≥ 1,

is an open and dense set of supp(µ i ). As (Ω, σ) is minimal, supp(µ i ) = Ω. The set

Then M is a residual set. If ω ∈ M, we construct by induction a sequence of integers (N p ) p≥1 satisfying the properties of the above lemma:

and so on.

Denote by A n,ω := 1 n n-1 k=0 δ σ k (ω) the empirical measure.

Lemma 11. For every > 0, ω ∈ Ω, n ≥ 2

Proof. We have

Proof of item (ii) of theorem 5. Let (Ω, σ) be a minimal dynamical system and f be a non-balanced coboundary: f = u • σu, u dµ 0 u dµ 1 for some ergodic measures µ 0 , µ 1 . Let M be the residual set given by lemma 10. Let ω ∈ M and (N p ) p≥1 be the sequence of integers given by lemma 10. Let p := ln(N p ) N p . Define

Then, using lemma 11,

We conclude the proof of the theorem using item (ii) of lemma 9.

Appendix

Proof of lemma 6. We define for every integer N ≥ 0 the truncated function

As u N ∈ L 1 (µ), by invariance of µ with respect to σ, we obtain

By Fatou's theorem,

The heart of the proof is to show the following a priori estimate (everywhere)

Notice first that it is enough to assume u N • σu N > 0. In particular, this implies u < N (otherwise we would have u N • σ > N which is not allowed), and for the same reasons u • σ > -N. We thus obtain on the set {u

We just have proved (u • σu) -∈ L 1 (µ), and u • σu ∈ L 1 (µ). By applying the same a priori estimate to v = -u and by noticing v N = -u N , we obtain

By the dominated convergence theorem applied to [START_REF] Herman | L 2 regularity of measurable solutions of a finite-difference equation of the circle[END_REF], we get (u • σu) dµ = 0.