Constantino J Miguel
email: constantino.jacob@gmail.com

Francisco Badaró Neto
email: fjbvneto@gmail.com

Paulo N M Sampaio

The CAARF approach towards Monitoring and analysis of Contextual data within SDN networks

Keywords: Quality of Service, Quality of Experience, Quality of Devices, Software-Defined Networks, Network Monitoring, Contextual Analysis

Software-Defined Networks (SDN) modified the way network traffic can be monitored and analyzed, allowing for new approaches for network optimization. This paper presents an approach for monitoring and analyzing context-based data flow considering the global state of the computational environment (users, presentation/communication devices, and network infra-structure). The proposed solution relays on the development and deployment of an API called Context-Aware Adaptive Routing Framework (CAARF-SDN). CAARF-SDN is a context-based service that provides the monitoring and optimization of the SDN traffic. In this paper we present the CAARF-SDN based monitoring through the implementation of a virtual network using Mininet in order to analyze contextual information such as Quality of Service (QoS), Quality of Device (QoD) and Quality of Experience (QoE). For this purpose, different scenarios are proposed in order to validate the so-called network Quality of Context (QoC) which is related to the global state of the computational environment and allows for the optimization of the network.

I. INTRODUCTION

In 2017 the global data traffic on the Internet reached 1,5 ZB (Zettabytes), with an estimate to climb up to 4,8 ZB in 2022 [START_REF]Cisco Visual Networking Index: Forecast and Methodology, 2017-2022[END_REF]. With the growing demand of bandwidth, different contributions are required in the traffic engineering domain in order to optimize the use of network resources. Therefore, new proposals for the network optimization need to be developed, and in this context, monitoring network data is crucial for the correct implementation of optimization strategies.

The framework Context-Aware Adaptive Routing Framework applied to SDN (CAARF-SDN) [START_REF] Neto | Context-based Dynamic Optimization of Software Defined Networks[END_REF] [START_REF] Miguel | Data collection in SDN networks with contextual analysis[END_REF] was proposed as a solution for the automatic analysis and optimization of the network resources. This framework proposes the analysis of different metrics (Key Performance Indexes -KPI), which can be Quality of Service (QoS), Quality of Device (QoD) and Quality of Experience (QoE). QoS is related to the traffic delivery under the infrastructure´s perspective. QoD is related to presentation and communication device´s performance and features. QoE decribes the quality of presentation under the user´s perception of the service delivered. The cutting-edge aspect about CAARF-SDN is related to the integrated deployment of these three metrics in order to provide the optimization of SDN traffic to improve user´s perception of the service delivered.

The architecture of CAARF-SDN is composed of four main modules, depicted in Figure 1: MONITORING, OPTIMIZATION, DEPLOYMENT AND INTEGRATION. The MONITORING module is responsible for coordinating the monitoring activities of the required data (KPIs) in order to determine the Quality of Context (QoC) and notify the OPTIMIZATION module of a context modification. The OPTIMIZATION module is responsible to determine the optimal path for traffic delivery based on the QoC. The DEPLOYMENT module is responsible to generate the configuration directives of the optimal path. The INTEGRATION module is responsible for adapting the DEPLOYMENT module´s configuration directives to the format suitable to the adopted SDN´s controller. Therefore, the former module makes CAARF-SDN agnostic to any type of network paradigm such as SDN, GMPLS, ASON, among others [START_REF] Neto | Context-based Dynamic Optimization of Software Defined Networks[END_REF]. This paper details the MONITORING module and its interactions with all the CAARF-SDN modules. Therefore, the main contributions of this paper are: This paper is organized through the following sections: Section II presents some related works; Section III discusses how the QoE is obtained and how the KPIs are applied to determine the QoC; Section IV introduces the main aspects entailing the monitoring of contextual information; Section V describes the experiment carried out, the emulation of an SDN network and the CAARF-SDN monitoring using Mininet in order to validate the concepts proposed, and; Section VI presents some conclusions and future perspectives.

II. RELATED WORKS

The monitoring of data within SDN networks is based on the combination of information managed by the SDN controller concerning the status of the network. A monitoring tool should meet the following requirements: scalability, non-intrusiveness, interoperability, robustness and fault-tolerance. Nevertheless, these requirements are not fully implemented within several solutions due their implementation complexity [START_REF] Taherizadeh | Monitoring self-adaptive applications within edge computing frameworks: A state-of-the-art review[END_REF].

Therefore, different monitoring tools were studied and compared. One of these contributions identified in the literature is work of Tambourine [START_REF] Song | Cache management algorithm of load balancer for large-scale SNMP monitoring system[END_REF] that introduces a software of reverse proxy using the HTTP protocol to communicate through an API REST with monitored devices using the SNMP [START_REF]User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)[END_REF] protocol. The main goal is to come up with a monitored information cache in order to prevent overloading the Network Management System (NMS) server.

Similarly, PayLess [START_REF] Chowdhury | PayLess: A low cost network monitoring framework for Software Defined Networks[END_REF] presents a framework for monitoring SDN networks through its Northbound interface. This solution offers a RESTful API to support other types of applications compatible with this interface. Nevertheless, it generates a JSON-like information as an output, which narrows down the integration with other tools.

MonSamp [START_REF] Raumer | MonSamp: A distributed SDN application for QoS monitoring[END_REF] introduces a SDN monitoring application for QoS data based on its traffic. Two main aspects are outlined: (1) It is possible to monitor flows without affecting performance, and;

(2) SDN switches of different providers and virtual switches can present different behaviors, even if they execute the same version of OpenFlow, which requires a further tuning of the monitoring process.

Compared to the previous contributions, the CAARF-SDN MONITORING module provides: (i) Monitoring user information (QoE), network environment (QoS) and presentation and communication devices (QoD); (ii) Mapping the network topology in real-time, and; (iii) Analysis of the monitored information, verification of the global state of the computational environment (QoC) and notification of contextual modification towards the OPTIMIZATION module. Table I outlines the main differences among the solutions studied.

Monitoring QoE Monitoring Tambourine X X X PayLess X X MonSamp X X CAARF- SDN X X X X X
Next section discusses further aspects about contextual information monitored.

III. MONITORING CONTEXTUAL INFORMATION

As introduced in [2] [3], the notion of QoC was proposed in order to evaluate accuracy of contextual information related to QoS, QoD and QoE. Therefore, to determine QoC the Key Performance Indexes (KPIs) were proposed, such as [START_REF] Neto | Context-based Dynamic Optimization of Software Defined Networks[END_REF]:

• QoS: delay, jitter, packets loss, bandwidth, throughput, etc.;

• QoD: CPU usage, Memory usage, Battery level, GPS positioning, etc., and;

• QoE: estimated MOS and factor R.

As a reminder, a Mean Opinion Score (MOS) [START_REF]Mean opinion score (MOS) terminology[END_REF] is a numerical measure of the human-judged overall quality of an event or experience. In this approach, MOS is derived, as an adaptation of factor R, using metrics such as delay, jitter and packet loss, as presented in [START_REF] Neto | Context-based Dynamic Optimization of Software Defined Networks[END_REF], and illustrated in Figure 2. The proposed KPIs in [START_REF] Neto | Context-based Dynamic Optimization of Software Defined Networks[END_REF] are extensible to any traffic metrics supported by the monitoring protocol, as for instance some details of the traffic features that can be monitored using Netflow/IPFIX. In other words, any metrics monitored using ICMP, SNMP, Neflow v9/IPFIX [START_REF]Cisco Systems NetFlow Services Export Version 9[END_REF].

IV. MONITORING MODULE

The CAARF-SDN MONITORING module was proposed to support several types of technologies and network topologies. The architecture of the MONITORING module is depicted in Figure 3. This architecture is composed of the following submodules:

• Network Management System (NMS): this module is supported by Prometheus [START_REF]Prometheus[END_REF], which supports SNMP communication and provides an API that facilitates integration to different solutions; • Integration API Reader: this module is responsible for the access to the Integration module, which in turn is configured to access the SDN controller; • Topology Mapping: module that processes the information from NMS and Integration API reader modules. This module aims at storing network topology in a database belonging to the Context Management module; • Context Management: module that stores the information about the current state of the network. This module is composed of the following components: (i) Network Logging Records, responsible for storing all the monitored information; (ii) QoC Analysis, which is responsible for the QoC derivation from all the monitored ports; (iii) Notification, when the QoC values fall under certain acceptable limits a notification of context modification should be sent to the OPTIMIZATION module, and; • API Reader Service: responsible to communicate with the API service agent running on the user presentation device (client). The main goal is to extend the scope of information monitored in order to improve the accuracy of the QoC calculus. Next section describes the derivation of the QoC within a simulated environment.

V. EXPERIMENT AND ANALYSIS

In order to illustrate the application of CAARF-SDN this paper applies scenarios using audio and video stream applications. Due to the nature of these applications, traffic conditions variation causes a loss on quality perception providing a poor user experience. One of the goals of this work is to illustrate how user experience is improved through the implementation of the proposed model based on a network scenario within a controlled domain. The experiment aims at unveiling how the QoC is calculated in each port of the components of the network, relating this information with user experience determined by the estimated QoE, leading to a traffic optimization.

The experiment was carried out in an environment with virtual machines with support to Mininet. Mininet creates a testing environment that enables the development of programs for SDN networks, allowing the experiment to be easily replicated if needed.

The environment was simulated in a computer with Intel Core i7 processor with 16 GB RAM. The virtualization program deployed is the Oracle VirtualBox [START_REF]Oracle VM VirtualBox[END_REF]. Three virtual machines were configured according to Table II. The software Mininet is executing on virtual machine 1 and is responsible for managing the virtual network depicted in Figure 4. The software HP VAN SDN CONTROLLER [START_REF] Packard | HPE VAN SDN Controller 2.7 Administrator Guide[END_REF] is executing on virtual machine 2 which is responsible for maintaining the SDN controller. At last, virtual machine 3 hosts the monitoring applications such as Prometheus [START_REF]Prometheus[END_REF] to support capturing QoE and SNMP information; CAARF-SDN to monitor and optimize traffic based on the context of the computational system; NoSQL and MongoDB [START_REF]mongoDB[END_REF] which are applied by CAARF-SDN as database repository, and; Grafana [START_REF] Grafana | Grfana Labs[END_REF] for the visualization of results in real-time. The virtual topology of the network depicted in Figure 4 is composed of the following elements:

• h1, h2 and h3 are the hosts and servers within this topology;

• t2 is the server that generates noise to the communication, and;

• c1 is the gateway between Mininet and the external environment, in this case the virtual machine 3. This topology can also be visualized through the management panel of the HP VAN SDN CONTROLLER.

The Mininet network is created using a Python script. Each element of the network is created using Open vSwitch. Both Mininet and Open vSwitch were updated to support version 1.3 of OpenFlow (they originally support version 1.0). This new version impacts on how instructions are passed to the SDN controller, considering that each provider has its own format, which reinforces the need for the CAARF-SDN´s INTEGRATION module.

When the virtual machines are turned on several basic services are initialized. The CAARF-SDN´s MONITORING module executing over a Node.js service works as an orchestrator of different available monitoring and analysis tasks. The MONITORING module generates a request message to the SDN controller through the INTEGRATION module each 5 seconds in order to capture the state of all the traffic variables. The MONITORING module also expects the QoE information from the presentation devices, as well as the SNMP information captured by Prometheus. At this initial moment the SDN controller´s flow table is empty.

The next step is the execution of a script that configures the Mininet testing environment. Once the virtual network is created, and the contact with the SDN controller is established, the system creates the basic flow tables to provide the configured topology. At this moment, three Linux xTerm terminals are launched to initialize the traffic simulation. The Linux program sipp [17] simulates a VoIP traffic emulating the SIP protocol. Initially sipp is configured to a rate of 30 calls per seconds between client h2 and server h1.

The sipp´s priority is modified within Linux. Therefore, since one of the metrics monitored is the CPU usage for each component of the network, the sipp´s traffic within the virtual environment should be monitored to enable a better result evaluation.

Despite sipp generates estatistical data for each call, the estimated QoE requires data related to delay, jitter and packet loss between h1 and h2, as depicted in Figure 2. In order to acquire this information, the program mtr [START_REF] Mtr | [END_REF] was applied. The mtr output information were configured using JSON format in order to be sent to CAARF-SDN´s MONITORING module.

In this moment, the traffic situation would be considered as normal. The QoC for each port of the components of the network, as well as the users´s QoE, which would have a value, according to [START_REF] Neto | Context-based Dynamic Optimization of Software Defined Networks[END_REF] [3], above 2 which would be the minimal acceptable to a VoIP quality. The data monitored is often stored and analyzed by the MONITORING module, in other words, the QoC is recalculated in each access to the SDN controller.

The next step of the simulation is the noise generation. For this purpose, the software iperf was deployed using server t2. The exceeding traffic will overload the system, consequently modifying the QoC and QoE. Nevertheless, the notification of optimization will only be triggered when the user´s QoE is close to a critical value.

Figure 5 illustrates this situation demonstrating this correlation between CPU usage in the components of the network and variation of the user´s QoE. As previously described, as soon as an overload on the components of the network takes place (indicated on the graph of Figure 5 with label "cpu load ovs", which is related to the CPU usage of each component of the Open vSwitch network) the QoE drops, triggering the notification process to the OPTIMIZATION module. As the noise goes down, or with the dynamic reprogramming of flow table by the DEPLOYMENT and INTEGRATION modules, the traffic status becomes regular.

When reprogramming flow tables, the optimized flow tables will have higher priority than those initially configured. Consequently, the new tables have a higher preference on the traffic forwarding within the network component.

In order to validate the strategy for obtaining QoC on the simulated environment, the CPU usage has been chosen to be monitored from the ovs-vswitchd as information of the load of the component of the network. This process when submitted to a high traffic load did not exceed 5% of total CPU usage. This was a strong limiting factor for the execution of tests in this experiment. Therefore, in order to validate the process, a multiplying value was proposed to demonstrate a CPU usage higher than the real usage.

All the data monitored and also the calculations results are stored by the MONITORING module within MongoDB. Parameters such as rx_ratio, tx_ratio, collision_ratio and qos originally did not exist on the SDN controller being generated by the MONITORING module.

It is important to note that Mininet has some limitations such as [START_REF]Mininet[END_REF]: • The current Mininet based networks cannot exceed available CPU or bandwidth on the same server. This limitation has been experimented in this work since the measurement of the QoD metric CPU usage turns out to be inaccurate, and; • Currently Mininet cannot execute applications or OpenFlow Switches non-compatible to Linux. This limitation has not been experimented in this work. Some other generic limitations observed during the execution of this experiment due some features of Mininet were related to the observation of some specific details, as for instance when monitoring performance of a device with switching control based on dedicated ASIC compared to a device with switching control based on software on a non-dedicated hardware. This observation was motivated by the existing differences of specific features of internal components of devices which vary among producers. These differences cause an important impact on the network performance, and often are weighted when choosing these devices.

Another limitation observed is related to the fact that Mininet is based on the virtualization of systems. Therefore, the adoption of Mininet can be problematic when the virtualization overhead is a drawback when executing simulation scenarios with high computing demand. Consequently, sharing resources with the hosting server makes it difficult to experiment a real performance analysis. For instance, sharing CPU and memory between the emulated environment and the host server, would be a limiting aspect that would compromise accuracy of the KPI monitored (CPU usage).

VI. CONCLUSIONS

This paper introduced the development of the CAARF-SDN´s MONITORING module, illustrating the derivation of QoC from the monitored QoS, QoE and QoD. Although QoC is a key aspect for optimizing traffic within this approach, this aspect is out of the scope of this paper.

The main contribution of this work is to demonstrate how different KPIs can be monitored and collected from different sources, providing an integrated view of the monitored environment aiming at improving the user´s experience. Nevertheless, the complexity of this solution is high given the need to integrate heterogeneous monitoring technologies each one specific to the monitored device.

As for future works, these experiments should be carried out in a real environment, if possible, using devices from different producers, in order to achieve a higher accuracy concerning the monitored KPIs.

1)

 1 The presentation of a dynamic and scalable solution to provide the context-based traffic optimization through the proposal of CAARF-SDN networks; 2) The proposal of a context model based on the concepts of Quality of Service (QoS), Quality of Device (QoD) and Quality of Experience (QoE); 3) The deployment of a generic context model based on a JSON notation to describe the context notification provided by the user, presentation and communication devices; 4) The introduction of the implemented architecture of CAARF-SDN identifying its main modules and their interactions; 5) At last, a further presentation of the MONITORING module discussing and illustrating how it works using Mininet [4].

Fig. 1

 1 Fig. 1 Conceptual Architecture of CAARF-SDN.

Fig. 2

 2 Fig. 2 Estimated derivation of MOS

Fig. 3

 3 Fig. 3 Architecture of the MONITORING module.

Fig. 4

 4 Fig. 4 Mininet visualization of the testing scenario

Fig. 5

 5 Fig. 5 Testing scenario for the derivation of QoC using Mininet

TABLE II

 II

			-CONFIGURATION OF THE VIRTUAL ENVIRONMENT	
	VM	Software	RAM (MB)	CPU	Disk (GB)	OS
	1	Mininet	1024	1	8	Ubuntu
	2	HP SDN	3072	2	150	Debian
		Controller				
	3	Prometheus	2048	2	100	Ubuntu
		Grafana				
		CAARF-SDN				
		MongoDB