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Abstract

Graph canonization (that solves also the graph isomorphism question) is an old
problem that still attracts a lot of attention today, mainly because of the
ubiquitous aspect of graph-based structures in computer science applications.
This article present the proofs of correctness for the SCOTT algorithm, a graph
canonization algorithm designed to provide a Canonical form for general graphs,
namely graphs for which vertices and edges are coloured (labelled). These proofs
ensure that the three canonical forms provided by SCOTT are valid, namely a
canonical adjacency matrix, a canonical rooted tree (or DAG) and a canonical
string. In addition, some crude lower and upper complexity bounds are presented
and discussed. Finally some empirical evaluation is provided on a difficult
synthetic benchmark with some comparison with the state of the art algorithms.

Keywords: graph canonization; graph isomorphism; rooted tree; SCOTT
algorithm

1 Introduction
Graphs are particularly well suited for representing sets of inter-connected entities

involving directed or bidirectional links that are potentially inhomogeneous (labelled

or colored). Telecommunication or transportation networks, molecular structures or

social relations are examples of systems that are quite well represented using graphs.

However, this data structure is difficult to handle mostly because the algorithmic

complexity for classical data management operations, such as indexing and retrieval

(including exact or approximate searching), sub-graph pattern mining, etc., is in

general very high compared to string or tree structures.

In particular, characterizing uniquely a graph (up to an isomorphism) is challeng-

ing. This old problem, which is referred to as graph canonization, is still nowadays

the object of active research in discrete mathematics and computer science. It ap-

pears, at least to our knowledge, that this problem is not natively solved by state of

the art algorithms for general graphs, namely graphs for which vertices and edges

are potentially labeled.

We address in this article the canonization of such general graphs. Our contribu-

tion is three folds:

• we provide the proof of validity for the Scott canonization algorithm that

we have previously presented in [1],

• from this proof we extend the Scott algorithm to derive three possible can-

onization outputs: a string trace, a DAG tree and an adjacency matrix,
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• we detail the complexity analysis for the Scott algorithm.

The applications are related to the speed-up of the searching operation in large

graph database. For exact search (up to an isomorphism) the string trace or a

hashing of this trace will be obviously quite efficient to process. For similarity or

approximate search, string or tree editing distances are also more efficient than

graph editing distances.

We also conjecture that canonical adjacency matrices will find application in ma-

chine learning approaches developed for graph processing, such as graph convolu-

tional and attention networks models. By reducing the variability of the input data,

the convergence of such models may be possibly improved as well as the the size of

the training dataset.

In the second section of this article we formalize the canonization problem, while

briefly presenting the state of the art in this domain including the Scott algorithm.

Scott is built around two successive reversible constructions: i) the reversible trans-

formation of any labelled graph into a labelled rooted tree which is the purpose of

the fourth section, ii) the reversible canonization of any labeled trees (or DAG) that

will be addressed in the third section. The validity proof of the Scott algorithm

is decomposed into the validity of these two steps that are detailed into these two

sections. The fifth section covers the complexity analysis for the Scott algorithm.

The last section is decicated to concluding remarks and perspective issues.

2 Problem statement and state of the art
2.1 Graph isomorphism

A graph G = (VG, EG) ∈ G is a data structure composed with a set of vertices or

vertices VG that are connected through edges belonging to set EG.

Let G = (VG, EG) and H = (VH , EH) two graphs: an isomorphism f : VG → VH

from G to H is a bijection from the set of vertices G to the set of vertices H that

preserves the edges of the two graphs.

If f exists, then G and H are isomorphic, and we note G ' H.

G ' H ⇐⇒ ∃ f, ∀ u, v ∈ VG, (u, v) ∈ EG ⇔ (f(u), f(v)) ∈ EH

in spite of the numerous works undertaken on the isomorphism of graphs problem

[2, 3], its class of complexity remains unknown [4, 5]. Basically, if it is not yet proved

that this problem is NP-complete, in another hand, no polynomial algorithm has

yet been proposed for general graphs. Hence, this problem has its own class of

complexity noted GI (Graph Isomorphism) [6, 7]. Recent work conjectures that

this problem is quasi-polynomial [8], but once again, no definitive proof has been

published yet.

2.2 Graph canonization

Computing for any graph G a canonical representative is another avenue to tackle

the isomorphism problem. This representative is unique up to an isomorphic trans-

formation, hence it represents the isomorphic equivalence class associated to G,
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noted [G][1]. As a result, two isomorphic graphs have a same canonization. The

canonization function Canon is thus a morphism from the set of graphs G to the

quotient set G/ '.

Canon : G→ G/ '

G ' H ⇐⇒ Canon(G) = Canon(H)

The graph canonization problem (GC) is obviously at least as complex as the GI

problem and in general it induces some computation overhead. However its solutions

provide supplementary services which can be very useful when addressing indexing

and retrieval of graphs in large datasets.

2.3 Existing graph canonization algorithms

Polynomial complexity algorithms solving the GC problem exist for a large num-

ber of restricted classes of graphs (bounded degree [9], planar graphs [10], etc.).

However, for general graphs the best known algorithms implemented so far remain

exponentially complex in the general case.

[11] details an exhaustive state of the art of these implementations. In addition

the authors propose an evaluation benchmark for these algorithms on complex iso-

morphism cases built using the synthesis protocols defined in [12]. saucy [13, 14],

conauto ([15]), bliss [16, 17] and nauty/traces [18, 19, 20] algorithms are thus com-

pared in conditions that are close to the worse case situation.

Among these algorithms, only bliss, nauty and traces provide a canonical labeling

for partially labelled graphs. Their operating principle is based on the search for a so-

called fair coloration (cf. bibliography) of the vertices, which then allows to induce

an order relation on the set of vertices using search trees (with backtracking), whose

progressive pruning allows a drastic reduction of the space of possible solutions.

Once such an order relation is available, it is then possible to canonically enumerate

all the constituent elements of a graph in a canonical way.

Unfortunately, there is no proof yet that these approaches based on vertex colour-

ing can provide a solution in the context of non-homogeneous edges, i.e. when the

edges are also labelled (or coloured), other than by exploiting a deep rewriting of

the graph. Typically, by duplicating the graph into as many edge modalities as

necessary and then masking them respectively. This difficulty motivated the devel-

opment of the Scott algorithmic approach for which we present validity proof in

the following sections. Moreover, most of the algorithms forming the state of the

art are based on a backtracking method, mentioned above. To our knowledge, none

of them use graph re-writings, although this process may offer great advantages,

such as the native processing of the colored edges.

[1]”is isomorphic to” relation is noted '
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2.4 The Scott algorithm

The Scott algorithm addresses the GC problem in three main steps:

Step. 1 Ordering of the vertices in levels, given a previously determined root

(cf. section 3).

Step. 2 Rewriting, in a reversible way, edges that induce cycles (cf. section 4).

Step. 3 Canonical encoding of the resulting tree (cf. section 4).

Figure 1 illustrates on a simple example the three steps listed above. The following

sections detail and formalize each of these steps, culminating in the final canonical

form. The grammar used is described in §4.4. (Grammar refgrammar:newick)

The first two steps consists in converting any graph into a rooted tree namely a

directed acyclic graph (DAG). We will show that this conversion is reversible up

to an isomorhism, which means that in an isomorhism class, each graph will be

associated to a unique graph representative. We prove this main result in section 4.

The third step consists in producing from the rooted tree a string trace that is

unique up to an isomorphism. This second result is proved in section 3. Furthermore,

the reversibility of this procedure is ensured.

3 Canonical representative for (rooted) trees
3.1 Definitions

Let Σ be a set of symbols (an alphabet). The set of strings constructed from the

symbols of Σ is noted Σ∗ =
⋃
n ∈ N Σn, with Σn being the set of strings of size n.

We consider that the set Σ∗ is ordered by the lexicographic order, which we note

(Σ∗, ≤).

For any graph G = (V, E) ∈ G, let eG(·, ·) : V × V → N be the function that

returns the value (possibly null) attached to the edge existing between two vertices

i and j, which is nothing but the value AGij where AG is the adjacency matrix of G.

Let T ⊂ G be the subset of graphs such that all t = (V, E) ∈ T satisfies:

• t is acyclic and fully connected

• it exists a unique minimal length path between any two vertices in V .

• t has exactly n − 1 edges, with n = |V |
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Figure 1: Scott applied to a simple example
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More precisely, we are interested in planar rooted trees tρ in which one of the

vertices, ρ ∈ V , is identified as a root vertex.

For such tree tρ, to each ν ∈ V , one can affect a level N , that is related to the

length of the unique path connecting it to the root vertex ρ. This length is denoted

‖ µ(ν, ρ) ‖, with µ(·, ·) the function evaluating the unique minimal length path

existing between two vertices.

To facilitate further notations, we consider that the minimum level 0 does not cor-

responds to ρ but rather to its furthest leave(s). So level N stands for the difference

between the maximum distance to the root vertex that is found in tρ and the min-

imum distance between the current vertex and the root vertex. Hence, the level

takes values in the interval [ 0, NG ], NG designating the level of the root ρ, and

thus the maximum level observed in G.

lvl : V → N,

lvl(ν) = max
ν′∈VG

‖ µ(ν′, ρ) ‖ − ‖ µ(ν, ρ) ‖ = NG − ‖ µ(ν, ρ) ‖

Let VN be the set of vertices associated to level N , i.e. such that ν ∈ VN ⇔ lvl(ν) =

N . It is a remarkable property of trees that each vertex ν ∈ VN is the only parent of

a set of vertices of level N − 1, which we call descendants. If we exclude all vertices

of level higher than N , each vertex ν ∈ VN of a tree is thus itself the root of a

sub-tree, noted tν . Let us note TN the set of these rooted trees associated with a

root located at level N and let Λν ⊆ V be the set of descendants of a vertex ν ∈ V ,

λ ∈ Λν ⇔

lvl(λ) = lvl(ν)− 1

eG(ν, λ) 6= 0
.

Theorem 1 (Neveu) Given an order relation defined on the set of trees, any

rooted tree is canonically encodable.

It has been proved that a planar embedding of a rooted tree admits a non-

ambiguous (canonical) (Neveu) notation in the form of a sequence of words, so

that two trees with the same notation are equal [21].

This notation, of which we give an example in Fig. 2, is however canonical only if

the planar embedding (the two-dimensional representation) is itself canonical, and

if there is in fact an order relation well defined for vertices belonging to a same level

N (sibling vertices). We then detail a method for systematically defining this order

relation in the case of trees with labelled (heterogeneous) vertices and edges. We

also propose an alternative to the Neveu’s notation, thanks to a trace function σT

defined for any tree, that limits the redundancy into the trace.

Lemma 1 Any vertex is encodable as a string of symbols.

Proof The vertices of a graph G can be coloured, that is to say associated to a

sequence of symbols whose different modalities are designated as labels. This col-

oration is characterized as an association between each element of VG and a value
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Figure 2: Encoding of a rooted tree tr by a sequence of symbols, according to the
Neveu’s notation (extended to labelled edges), and by the proposed trace function σT

(cf. Eq.14) An order relation is supposed to be set on vertices.

modality in this set of colors/labels, LVGG : VG → Σ∗. In this case, we reinforce the

definition of isomorphism previously introduced, since, in addition to preserving the

edges, it is necessary to preserve also the labels. This definition also applies to any

non-colored graph, which can be considered as a particular case (for which only one

single label is attached to all the edges).

∀ G = (VG, EG), H = (VH , EH) ∈ G

G ' H ⇔ ∃ f : VG → VH ,

∀ ν1 , ν2 ∈ VG , eG(ν1 , ν2) = eH(f(ν1), f(ν2))

∀ ν ∈ VG , LVGG (ν) = LVHH (f(ν))

We note that the first condition is always satisfied when f is a permutation in-

volving two vertices (special case of automorphism).

f : VG → VH , ∀ ν1 , ν2 ∈ VG ,

f(ν1) = ν2

f(ν2) = ν1

⇒ eG(ν1 , ν2) = eH(f(ν1), f(ν2))

In other words, to permute two vertices ν1 and ν2 two-by-two without changing

the class of isomorphism, it is necessary and sufficient that LVGG (ν1) = LVGG (ν2).

Two vertices fulfilling this condition can thus be ambiguous without impacting the

isomorphism class of their graph.

In the framework of a canonical notation up to an isomorphism, a vertex of any

graph G is thus sufficiently defined by its label (possibly null), that one can choose

to represent without loss of generality as a sequence of symbols in Σ∗, a set endowed

with a lexicographical order relation.

This encoding is given by a trace function σVG : VG → Σ∗, and allows by tran-

sitivity to endow VG with an order relation, because (Σ∗,≤) is lexicographically

ordered.
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Corollary 1 Any edge can be encoded as a string of symbols.

Proof In a similar way, any edge in a graph G can be labeled, by exploiting the

relation LEGG : EG → Σ∗. An isomorphism defined for this kind of graph implies a

supplementary condition on edge permutations, in the sense that, on the one hand

their start and end vertices must be invariant, and on the other hand, the label

relative to the edge must be unchanged. Here again, if we permute edges two-by-

two, it is enough to have two vertices with the same label for them to be permuted

in a way that does not affect the class of isomorphism of the graph.

Within the context of a canonical notation, an edge is thus sufficiently defined by

its source target vertices, themselves represented by their respective symbol strings,

as well as its own label (possibly null), which can be chosen to be represented with

the same alphabet Σ without loss of generality. This encoding is given by a trace

function σEG : EG → Σ∗, and allows to endow EG with an order relation.

3.2 The trace function σ

In the same way that we have defined trace functions allowing to canonically encode

the vertices and edges of a graph, we introduce a trace function defined for any tree,

without presupposing an order relation on them.

Proposition 1 Every tree can be encoded uniquely, up to an isomorphism, as a

sequence of symbols produced by a σT : T→ Σ∗ function.

∃ σT : T→ Σ∗, ∀ t1 , t2 ∈ T, σT (t1) = σT (t2)⇔ t1 ' t2 (1)

We also define the left inverse σ̃T of this trace function (also called a section in the

theory of categories), associating to the trace produced by σT of a tree t the unique

representative of its equivalence class [t]. The output space of this application is

therefore T quotiented by the isomorphism relation ', hence the impossibility to

describe it as a fully inverse function.

∃ σ̃T : Σ∗ → T/ ', σ̃T ◦ σT : T→ T/ ', σT (t) 7→ [t] (2)

Proposition 2 (Corollary) A tree t ∈ T, which can be a subgraph of a graph

g ∈ G, can be reversibly assimilated to a single vertex associated to label σT (t).

As an immediate consequence of Proposition 1, if a trace function can encode

a tree as a sequence of symbols without loss of information, and as these kind of

sequences can be used to label vertices, it is possible to compress any (sub)tree into

a single vertex labelled with its trace, even if this tree is itself a sub-graph of any

graph. We can formalize this compression process by a function κ projecting any

tree on the set V containing the structures homogeneous to the vertices of VG.
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(1), (2) ⇒ ∃ κ : T→ V, ∃ κ̃ : V → T/ ', κ̃ ◦ κ ' idG (3)

We now seek to

• prove Prop. 1 et 2

• determine an expression for the function σT

Lemma 2 The tν subtrees of a N level are lexicographically ordered.

Proof We formulate for any level N ∈ [ 0, NG ] the following PN proposition, in

which we assume true the Propositions 1 and 2. PN Let TN be the set of trees

rooted on the vertices of a N level,

TN =
⋃

ν ∈ VG | lvl(ν) = N

tν

We restrict the respective definition domains of σT and κ to the N level only,

corresponding to PN .

∃ σTN : TN → Σ∗, σ̃TN ◦ σTN ' idG (4)

∃ κN : TN → V, ∃ κ̃N : V → TN/ ', κ̃N ◦ κN ' idG (5)

This proposed trace function endows sibling trees of the same N level with a lex-

icographical order relation, so that the set noted KN of vertices bearing as labels

their respective traces is itself ordered.

KN =
⋃

t ∈ TN

κN (t), (KN , ≤) (6)

For any level N , we then suppose that we are able to order all the sibling trees of

this level, by using a trace function σTN that provides for each of them a canonical

encoding. This proposition is illustrated in Fig.3.

PN+1 Inductive Hypothesis (IH) : we suppose that PN is true. Can we deduce

that (KN+1 , ≤) is ordered? Can we also deduce a σT expression from it?

Any element of KN is thus connected to a single element of VN+1 exclusively by

an edge e ∈ EN . One thus describes formally and unambiguously all the trees TN+1

by an enumeration of all existing triplets in KN × EN × VN+1.

PN ⇒ (KN , ≤)

(EN , ≤)

(VN+1 ,≤)

⇒ (KN × EN × VN+1 ,≤) (7)
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Figure 3: Proposition PN : (KN ,≤)

∀ tν ∈ TN+1 ,

( ⋃
λ ∈ Λν

σV (λ) × σE(e(ν , λ)) × σV (ν) , ≤

)
(8)

PN+1 is true (9)

Thus, if we are able to give a canonical encoding of a (sub)tree for a certain level

N , then we can do the same for the next level N + 1.

P0 Initialization: This proposition is trivial at the leaf level, because trees

without descendants are directly assimilated to vertices (vertex E in Fig. 3), and

can therefore be encoded as such by σV .

Λν = ∅⇔ σT (tν) ≡ σV (ν) (10)

P0 est vraie (11)

(9), (11)⇒ PN est vraie (12)

We have just proved that if the sets VG and EG are ordered by an order relation,

then it is possible to order any set of trees, which, together with Neveu’s theorem,

is sufficient to validate Prop. 1. Beyond the existence of this order relation, we

finally try to characterize this trace function, according to the sets involved in the

recurrence, namely KN , EN and VN+1. This trace function σT would be recursive,

and based on the vertex and edge encoding functions.
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Lemma 3 The trace function σT provides a canonical representation of any tree

t ∈ T.

Proof Let Γ be the concatenation operator taking two arguments: a subset ε of a

set E ordered by a total order relation ≤, and an arbitrary concatenation symbol

· ∈ Σ, as defined in Eq. 13.

Γ : E × Σ→ Σ∗

∀ε ⊆ E , ∀ · ∈ Σ, Γ(ε, ·) =

 ·⊕
ei ∈ ε | ei−1 ≤ ei

ei

 = e1 · e2 · . . . · e|ε|

(13)

σT : T→ Σ∗

σT (tν) = Γ

( ⋃
λ ∈ Λν

{
σT (λ) : σE(λ, ν)

}
, ·

)
· σV (ν) (14)

This trace function allows us to canonically encode all T trees. Indeed, two of these

traces are unique if and only if all their constituent elements are rigorously equal,

which means that a permutation of these sets of elements would have no impact on

the isomorphism class of the considered tree, which validates σT as being a solution

of Prop. 1 and 2. Thus, (T,≤).

We illustrate in Fig. 2 the encoding associated with the example graph by the

trace function σT . For convenience and to stay close to the Neveu’s notation, we

use the comma ”,” as the tree concatenation symbol, instead of the dot used in the

above definition in Eq. 14.

4 Transforming any general graph into a rooted tree (steps 1 and
2 of the Scott algorithm)

In this section, we seek to associate to any graph G ∈ G a representative of its

class of isomorphism in the form of rooted tree t ∈ T, in order to be able to apply

subsequently for any graph G the notation we have introduced in section 3.

Formally, we are looking for an application f : G→ T such that f is injective on

G/ '. We propose a solution to this problem, which is the essence of the Scott

(Structure Canonisation using Ordered Tree Translation) algorithm.

4.1 vertices ordering according to a root vertex (step 1 of the Scott algorithm)

The first step is to order all vertices g according to their minimum distance (called

level) with a ρ vertex designated as root. It is assumed for the moment that this

root is unambiguously known.

The objective is to to define an ordering according to which the cycles will be

sequentially rewritten in a deterministic way. Indeed, by ordering the vertices by
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level, the last ”stage” of the graph will necessarily be connected to the vertices of

the lower stage exclusively, otherwise by definition, this path would not be minimal.

The function lvl : V → N introduced in the previous section, can be reused

here as is, since even though the minimum path mu(ν, ρ) is not unique, its length

V ertµ(ν, ρ) is unique. Recall that this function is defined as:

∀ν ∈ V, lvl(ν) = max
ν′∈V

‖ µ(ν′, ρ) ‖ − ‖ µ(ν, ρ) ‖

We illustrate the application of this ordering function on a simple graph example

in Fig. 4.

4.2 Transforming a graph into a tree (step 2 of the Scott algorithm)

Given the previous ordering, let us consider the context of level N . We make the

hypothesis that the lower level N − 1 has been previously processed, i.e. each of

these vertices ν ∈ VN−1 is the root of a tree. Hence, without loss of information,

each ν ∈ VN−1 can be compressed into a simple vertex labeled by σν , thus could be

considered as a leaf in the N level context. (Prop. 2)

All the descendants of a vertex ν can therefore be summarized using a single

σT (ν) labelled vertex.

The objective is then to treat each level N recursively, with the idea of editing the

corresponding subgraphs in each context (level), in order to successively eliminate

any occurrence of cycle and any multiple path between two vertices on the entire

graph.

4.2.1 Definition of production rules

These editions of graphs can be formalized using the notion of productions [22].

Among the different existing formalisms, we will use the one based on the double

push-out (DPO), in which we define a production p : L
l←− K r−→ R as a pair of graph

morphisms l : K → L and r : K → R, both being injective. These three graphs

L, R and K represent respectively the left part (LHS), the right part (RHS) and

the interface of this production. The K interface represents the elements that are

not affected by the production, while the L −K represents the elements (vertices

and edges) that will be removed and the R −K represents the elements that will

2 2

1 1

0

lvl(ν)

ρ 3 NG = 3

Figure 4: Ordering the vertex by the level function according to a root vertex.
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be added. The implementation of one of these productions on a graph G is done

by means of a bijective function called matching m : VG → VLHS associated with

a system of assertions and logical predicates Sm. This matching affects to any

vertex ν ∈ VG the ”role” (its corresponding vertex in VLHS) that it will take in the

application of this production as explain in the following sunbsections.

4.2.2 Matrix notation

We can reformulate this definition using a boolean logical form, more precisely by

representing each of the graphs by :

• an adjacency matrix |VG| × |VG|, GEi,j =

 1 if (i, j) are connected

0 otherwise

• a matrix of vertices |VG| × 1, GVi =

 1 if i exists

0 otherwise

The vertices matrix may seem redundant and optional at this point, but it is

important to remember that vertices can be deleted, hence the need to keep track

of the set of vertices.

These two matrices could be grouped together in a same tensor, but we prefer to

keep them separated for clarity. It also allows to define all the following matrices

for both edges and vertices. Logical algebra is used to describe the matrices l and

r, that correspond respectively to deletion and addition matrices[2].

l = L ∧R = R ∧ L (15)

r = R ∧ L = L ∧R (16)

These matrices describe dynamically a production, and furthermore, they allow

to express it as a deterministic and reversible matrix operations:

R = r ∨
(
l ∧ L

)
(17)

L = l ∨ (r ∧R) (18)

K = L ∧R (19)

4.2.3 Extension to labelled graphs

In the previous definition, there is no mention yet of labeled edges. As we are

dealing with the general case that involves non-homogeneous (i.e. colored) edges

and vertices, thus carrying labels, we have to extend this formalism.

Instead of boolean matrices only carrying an (in)existence information, we can

augment into symbols-valued matrices through the use of encoding functions σVG

and σEG respectively associated with the labelling functions LVGG and LEGG (cf.

Lemma 1), to describe a fully-labelled graph :

• an adjacency matrix |VG| × |VG|, GEi,j = σEG(eG(i, j))

• a matrix of vertices |VG| × 1, GVi = σVG(i)

[2]each of these matrices is defined for both edges and vertices
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The vertices matrix becomes here of primary importance, as it can express the

vertices labelling.

Given L = {a, b, . . . } the set of labels applicable to any vertex or edge of a graph,

and L = {a, b, . . . } the set of these conjugated labels, let us define the following sys-

tem of axioms, derived from propositional logic, where ”?” designates a voluntarily

indeterminate form because it will not be used afterwards:

∧ : (L ∪L ∪ {0, 1})× (L ∪L ∪ {0, 1})→ (L ∪L ∪ {0, 1}), ∀ a, b ∈ L ,

a ∧ 0 = 0 0 ∧ 0 = 0

a ∧ 1 = a 0 ∧ 1 = 0

a ∧ a = 0 1 ∧ 0 = 0

a ∧ b = ? 1 ∧ 1 = 1

∨ : (L ∪L ∪ {0, 1})× (L ∪L ∪ {0, 1})→ (L ∪L ∪ {0, 1}), ∀ a, b ∈ L ,

a ∨ 0 = a 0 ∨ 0 = 0

a ∨ 1 = ? 0 ∨ 1 = 1

a ∨ a = ? 1 ∨ 0 = 1

a ∨ b = ? 1 ∨ 1 = 1

4.2.4 Cycle invariants in a rooted tree

We seek to rewrite our initial graph, now organized in levels, into an acyclic graph,

more precisely a rooted tree. We are looking here for invariants characterizing cycles

on such a graph, in order to define a set of productions to rewrite them.

A cycle c of size n in a graph G = (VG, EG) is a path containing n distinct edges

ec =< e1, e2, ... , en >, ∀ e ∈ ec, e ∈ EG for generating a sequence of vertices whose

start vertex and end vertex are identical νc =< ν1, ν2, ... , ν1 > ∀ ν ∈ νc, ν ∈ VG.

If G is organized in levels, then this sequence of vertices in turn generates a

sequence of levels Nc =< N1, N2 , ..., N1 >, with ∀ i ∈ [ 1, n − 1 ] , Nc, i+1 ∈
{Nc, i + 1, Nc, i, Nc, i − 1}

We illustrate in Fig. 5 the generation of such sequences on elementary cycles

organized in levels, according to a single root (a single vertex on the upper level).

N

N − 1

N + 1

...

<N + 1, N, N,N + 1> <N + 1, N, N − 1, N − 1, N, N + 1><N + 1, N, N − 1, N, N + 1>Nc

ρ ρ ρ

Figure 5: Organization of elementary cycles in graphs organized in levels
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We observe a regularity in the sequences generated from the roots. These are all

in the form < Nρ, Nρ − 1, [ N ′ < Nρ − 1 ]∗ , Nρ − 1, Nρ >. If we continue these

examples to more important cycles, we highlight that the edges making these graphs

cyclic are characterized by the sequences < N, N > and < N, N−1, ..., N−1, N >,

in other words the edges allowing an alternative path to the one passing through

the root between two vertices of the same level.

We thus rediscover graphically a property specific to rooted trees, namely the

existence and uniqueness of a minimal path between any two vertices: as a conse-

quence, if tρ is a rooted tree, then there is no path connecting two vertices of level N

passing through vertices of level lower or equal to N . We deduce the characteristic

constraints of a rooted tree. On such a tree tρ, any vertex νN belonging to the N

level is connected exclusively to :

• a single parent at level N + 1

• any number of descendants at level N − 1

We can express these constraints by prohibiting the existence of the following

sequences at lower levels:

• < N, N >

• < N, N − 1, ..., N − 1, N >

This ensures the uniqueness of a minimal path connecting any two vertices, a

consequence of the absence of a cycle.

Notice that if level N−1 and subsequent lower levels have been process to remove

the edges at the origin of cycle, then at level N , only the three left cases shown in

Fig. 5 may occur.

4.2.5 Triplet of production solution

Following the discussion on cycle invariants in graphs organized in levels, we deduce

that on a graph whose vertices have been ordered in levels, only three edge configu-

rations (schematized in Fig. 6 by their minimal examples) result in the presence of

cycles, which can be solved respectively by as many associated productions applied

iteratively from the lower levels to the upper levels:

pc co-bound, an edge from a vertex to a separate vertex belonging to the same

N level (e.g. the c and g edges in Fig.6)

pi in-bound, two vertices of the same N level connected to a common descendant

at the N − 1 level (e.g. the f and e edges in Fig. 6)

ps self-bound, an edge of a vertex towards itself (e.g. the h edge in Fig. 6)

A B

σA σB

c

a b
A

a
A B

σC

a
b

c
C

Self − boundCo− bound In− bound

N

N − 1

Figure 6: The different configurations resulting in cycles in a graph organized in levels.
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These three productions pc, pi and ps are detailed below. We give for each of

them their representative matrices LHS (LN , LE) and RHS (RN , RE), and as an

indication, we calculate in the first case the deletion matrices lN and lE , as well as

the addition matrices rN and rE .

Notice that while the edge modalities (i.e. LE and RE values) are the same in LHS

and RHS, some specific vertices modalities (called magnets) are created during the

process to mark new inserted vertices as solving a cycle present in the original graph

(such new vertices do not exist in the original graph). This mechanism prohibits

any collision with other original graphs that may initially present a same structure,

and furthermore ensures reversibility.

Those modalities can be fully expressed by including additional vertices labels.

This way, the output graph has two independent labelling on its vertices, which can

however be merged following an arbitrary pattern (cf. Grammar 1) and reserved

symbols:

∗ (virtual) vertex created by a co-bound

# (mirror) vertex created by an in-bound

& (self ) vertex created by a self-bound

Co-bound (pc):

In the context of a rooted tree, vertices A and B have a common ancestor, which

may be ρ itself. Suppose that the paths µ(A, ρ) and µ(B, ρ) are direct (neglecting

the intermediate vertices), i.e. we consider that the upper level is only the root

vertex ρ.

Double Push-Out (DPO) Diagram associated with the ”cobound” production :

A B

σA σB

A B

∗α ∗ασA σB

lc
rc

c

a b ca b

mc : G→ LHSc ,
Sc : lvl(A) = lvl(B)

G

A B

σA σB

a b
c

H

m
′
c : H → RHSc

LHSc Kc RHSc

Vertices and adjacency matrices of LHSc and RHSc :

LV =


A
B
σA
σB
0
0

 , LE =


0 c a 0 0 0
c 0 0 b 0 0
a 0 0 0 0 0
0 b 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, RV =


A
B
σA
σB
∗α
∗α

 , RE =


0 0 a 0 c 0
0 0 0 b 0 c
a 0 0 0 0 0
0 b 0 0 0 0
c 0 0 0 0 0
0 c 0 0 0 0



Deletion matrices lV and lE :

l V

RV ∧ LV
=


0
0
0
0
0
0


lE

RE ∧ LE
=


0 c 0 0 0 0
c 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





Bloyet et al. Page 16 of 31

Addition matrices rV and rE :

rV

LV ∧ RV
=


0
0
0
0
∗α
∗α


rE

LE ∧ RE
=


0 0 0 0 c 0
0 0 0 0 0 c
0 0 0 0 0 0
0 0 0 0 0 0
c 0 0 0 0 0
0 c 0 0 0 0


with ∗α = virtual : σT (tA) ·σT (tB), a vertex label made of a prefix ”virtual”

(here the symbol ” ∗ ”) stating its special status of not being in the input graph,

and a magnet computed from an invariant of the re-wrote edge, σT (tA) ·σT (tB).

This magnet can be compressed into symbolic shortcuts, here α.

In LHSc, there is therefore a chain (sequence of connected vertices) such as

< ρ, . . . , A, B, . . . , ρ >, forming a cycle. Hence, LHSc is not a tree, just like

any graph g ∈ G, satisfying at least once the matching relationship mc.

On the other hand, RHSc is a tree. More specifically, the application of this pc

production removes the elementary cycles present at the lvl(A) level.

In-bound (pi):

Here again, we are in the same cyclic graph configuration as in the previous

example, because there is a string < ρ, . . . , A, C, B, . . . , r >. Furthermore,

if a = b, there is not a single minimal path µ(C, ρ).

As in the previous production, LHSi is not a tree, like any g ∈ G graph that

satisfies the mi matching relationship at least once.

On the other hand, RHSi is a tree. More specifically, the application of this pi

production removes the non-elementary cycles present at the lvl(A) level, and re-

moves the non-unicity of the paths leading to ρ (and thus any other vertex).

Double Push-Out (DPO) Diagram associated with the ”inbound” production :

A B

σC

A B

li ria b

c

a b

c

C

σC

C

#β

c

#β′

A B

σC

c

C

mi : G→ LHSi ,

Si :

{
lvl(A) = lvl(B)

lvl(C) = lvl(A)− 1

G

m
′
i : H → RHSi

H

LHSi Ki RHSi

c

σC

C

c
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Vertices and adjacency matrices of LHSi :

LN =



A
B
C
σC
0
0
0
0


, LE =



0 0 a 0 0 0 0 0
0 0 b 0 0 0 0 0
a b 0 c 0 0 0 0
0 0 c 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



Vertices and adjacency matrices of RHSi :

RN =



A
B
C
σC
#β

#β′
C
σC


, RE =



0 0 0 0 a 0 0 0
0 0 0 0 0 b 0 0
0 0 0 c a 0 0 0
0 0 c 0 0 0 0 0
a 0 a 0 0 0 0 0
0 b 0 0 0 0 b 0
0 0 0 0 0 b 0 c
0 0 0 0 0 0 c 0


with #β = mirror : σT (tC) ·σT (tB), a vertex label made of a prefix ”mirror”

(here the symbol ”#”) stating its special status of not being in the input graph,

and having to be distinct from nodes created by cobound productions, and again a

magnet computed from an invariant of the re-wrote edges, σT (tC), suffixed by the

”′” symbol on the lexicographic inferior branches. This magnet can be compressed

into symbolic shortcuts, here β.

Self-bound (ps) :

This configuration is trivial, and allows any graph to be rewritten as a graph

without self-bound links.

Double Push-Out (DPO) Diagram associated with the ”selfbound” production :

A

&

ls rs
a

A A

a

LHSs Ks RHSs

G

m
′

s : H → RHSs

H

ms : G→ RHSs

Vertices and adjacency matrices of LHSs and RHSs :

LN =

[
A
0

]
, LE =

[
a 0
0 0

]
, RN =

[
A
&

]
, RE =

[
0 a
a 0

]

The described productions satisfy all (17) (18) and (19), so they can be described

dynamically with the addition r and deletion l matrices, and applied in the context

of a graph, when a matching m : G→ LHSm is available.
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4.2.6 Ordering the productions

The productions we have just described allow to rewrite any kind of cycle in a

graph. Their application is however carried out according to a precise ordering, by

level and by category, forming a general morphism fG such as:

fG = fNG ◦ . . . ◦ f0 (20)

∀ N ∈ [ 0, NG ], fN = pNi, ◦ pNc ◦ pNs (21)

∀ x ∈ {i, c, s}, k = Ω
({
pNx
})
, fNx = pNxk ◦ . . . ◦ p

N
x1

(22)

with Ω(·) the cardinal of a set, and
{
pNk
}

the set of individual productions com-

posing the pnx morphism associated with level N and a production category x.

These {pNx } sets are constructed by determining all possible antecedents to the

matching functions associated with k productions, for a given level N .

We use in further steps the following notations :

• Let Gρ = (VG, EG), be a graph in which a vertex ρ ∈ V is identified as a root.

• We note VN ⊆ VG, ν ∈ VN ⇔ lvl(ν) = N , the set of vertices inGρ associated

to level N .

• Let WN ⊇ VN , WN =
⋃N
k=0 Vk , ν ∈ WN ⇔ lvl(ν) ≤ N , be the set of the

vertices in a graph G associated to a level lower or equal to N .

• Let Gρ, N = (WN , EN ∈ (WN ×WN )) ⊆ Gρ be the sub-graph of Gρ com-

posed only with the vertices WN associated to level N and the edges EN

linking exclusively pairs of vertices in WN .

• Finally, we note GNρ = fN (Gρ) the graph that results from the processing at

level N of graph Gρ using fN ◦ . . . ◦ f0 function. We lighten the syntax of

a fully processed subgraph at level N , GNρ,N = G∗ρ, N .

We then construct the set of productions pNx by applying as many times as possible

the matching function mx associated with this category of production x in the

context of Gρ,N .

{
pNk
}

= arg (Gρ,N → mk : LHSk) (23)

These productions can be characterized by the trace of the trees associated with

the vertices to which they apply ({σA} for the self-bounds, {σA, σB} for the co-

bounds and the in-bounds) as well as the edge modalities that are involved, which

induces an ordering on these productions.

(T, ≤) ⇒
({
pNk
}
, ≤
)

(24)

We illustrate in Fig.7 an example of production ordering on a simple example.

The application of these productions according to this ordering ensures that the

algorithm results in a tree that depends only on the class of isomorphism of the

input graph, which we prove below.
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Figure 7: Production ordering on a simple example

4.2.7 Image set of fG

Lemma 4 The general morphism f leads to a tree. ∀ g ∈ G, f(g) ∈ T

Proof We make the following proposal:

r′N

VN

VN−1

ν1
N ν2

N
νmN

. . .

TN ∈ T

PN
In the context of G∗ρ,N , sub-graph up to level level N , where it is no longer possible

to apply any pNs , pNi or pNc output, if a ρ′N vertex exists that connects to all vertices

νN ∈ VN , then the resulting graph TN is a tree whose root is ρ′N .

TN =

(
WN ∪ ρ′N , EN ∪

⋃
νi∈VN

(ρ′N , νi)

)
, TN ∈ T

In other words, we claim that for a rank N ∈ [ 0, NG ], applying all possible

productions on Gρ,N results in the fact that all νN ∈ VN becomes trees. We prove

this claim by induction on the level N .

P0

vertices belonging to V0 are leaves.

If a ρ′0 vertex connects these leaves, the resulting graph is by definition a tree

whose root is ρ′0.

P0 is true (25)

PN+1

Suppose that PN is true. (induction hypothesis)

PN ⇔ ∀νN ∈ VN , νN is the root of a tree (potentially null) composed of all its

descendants from the lower levels. Any νN can therefore be replaced without loss
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of information by σT (tνN ) according to the previous section (section 3), and thus

become leaves.

Once this transformation is done, we can go back to the context of the vertices

VN+1 and apply each of the productions as many times as we observe matches, to

obtain G∗ρ, N+1.

@ mc : G∗ρ, N+1 → LHSc ⇔ @ < ρ′N+1 , A, B, ρ
′
N+1 >

@ mi : G∗ρ, N+1 → LHSi ⇔ @ < ρ′N+1 , A, C, B, ρ
′
N+1 >

@ ms : G∗ρ, N+1 → LHSs ⇔ @ < ρ′N+1 , A, A, ρ
′
N+1 >

There is thus no cycle in G∗ρ, N+1 , which can be seen by construction, because

in all the described productions, if a vertex ρ′ is the direct parent of vertices A and

B (or simply A in the case of self-bound), then this vertex ρ′ is the root of a tree,

hence:

PN+1 is true (26)

(25), (26) ⇒ PN is true for all N (27)

Finally, for N = lvl(ρ), ρ′N = ρ, and thus TN = Gρ.

4.2.8 Preservation of isomorphic properties by fG

Lemma 5 The tree produced by f is unique for any class of isomorphism.

Notations and recall.

Recall that the productions are organized:

• by levels : fG = fNG ◦ . . . ◦ f0

• by type inside a level : fN = pNi, ◦ pNc ◦ pNs
• according to an order relation by level and given type: pNx = pNxk ◦ . . . ◦ p

N
x1

With ∀ pxi ∈ pNx , pxi : L
l←− K

r−→ R designating a (bijective) production to

be applied on the G graph, provided with an associated matching function mxi :

VG → LHSm satisfying a system of conditions Sx. The respective sets of all these

elements on a graph G are noted as {pG} and {mG}.
We recall that G ' H if and only if there is at least one bijection from VG into

VH preserving the structure and the labels :

G ' H ⇔ ∃ π : VG → VH , ∀ ν1, ν2 ∈ VG ,
LEG(ν1, ν2) = LEH(π(ν1), π(ν2))

∧ LVG(ν1) = LVH(π(ν1))

∧ LVG(ν2) = LVH(π(ν2))

One notes such a bijection π : VG ↔ VH , but could use the syntaxic shortcut

π(VG) = VH .
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G ' H ⇔ ∃ π : VG ↔ VH

We will deduce the contraposition of the previous proposition.

G 6' H = G ' H

G 6' H ⇔ ∀ π : VG → VH , ∃ ν1, ν2 ∈ VG ,

LEG(ν1, ν2) 6= LEH(π(ν1), π(ν2))

∨ LVG(ν1) 6= LVH(π(ν1))

∨ LVG(ν2) 6= LVH(π(ν2))

Similarly we note π : VG = VH , π(VG) 6= VH .

G 6' H ⇔ ∀ π : VG = VH

Proof
G ' H ⇔ fG(G) ' fH(H)

G 6' H ⇔ fG(G) 6' fH(H)

G ' H = G 6' H

⇔

G ' H ⇒ fG(G) ' fH(H) (PA)

G 6' H ⇒ fG(G) 6' fH(H) (PB)

The problem is refomulated into the form of two proposals

(1) : G ' H ⇔ ∀ g = (Vg, Eg) ⊆ G, ∃ h = (Vh, Eh) ⊆ H , ∃ π : Vg ↔ Vh

(1) : G 6' H ⇔ ∃ g = (Vg, Eg) ⊆ G, ∀ h = (Vh, Eh) ⊆ H , ∀ π : Vg = Vh

We recall that {mG} designates the set of matching functions associated with

productions that can be applied on G, in other words generated by G, such as :

{mG} =
⋃ mc : VG → VLHSc , Sc

mi : VG → VLHSi , Si

ms : VG → VLHSs , Ss

For each of these matching functions mj ∈ {mG}, a single sub-graph gj ⊆ G is

selected. Formally, mj(Vgj ) = VLHSj , p
j(LHSj) = RHSj .

(2) : ∃ π : VG ↔ VH
(1)

=⇒
g ⊆ G, h ⊆ H

∀ mj ∈ {mG}, ∃ mj′ ∈ {mH} , hj
′

= π
(
gj
)

(2) : ∃ mj ∈ {mG}, ∀ mj′ ∈ {mH} , hj
′
6= π

(
gj
) (1)

=⇒
g ⊆ G, h ⊆ H

∀ π : VG = VH
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(3) : {mG} = {mH} ⇔ ∀ m (m ∈ {mG} ⇔ m ∈ {mH})
(3) : {mG} 6= {mH} ⇔ ∃ m ∈ {mG}, m /∈ {mH} ∨ ∃ m ∈ {mH}, m /∈ {mG}

(4) : G ' H (2), (3)
=⇒ {mG} = {mH}

(4) : {mG} 6= {mH}
(2), (3)
=⇒ G 6' H

The sets of matching functions are therefore equal if G ' H. However, it is not

possible to conclude that these sets are equal only if G ' H. It is also not possible

to say that if G 6' H, then {mG} 6= {mH} although the converse is true.

Furthermore, this is not sufficient to prove (PA) either, because with f1 and f2

two applications, in general f1 ◦ f2 6= f2 ◦ f1. Beyond the equality of these sets, we

are now going to prove that they can be applied accordingly to an ordering leading

to a result that is invariant to the class of isomorphism of the graph.

The productions forming a f function are ordered in a non-strict order:

(5) :


([ 0, NG ], <) =⇒ ({fG}, <)

({s, c, i}, <) =⇒ ∀ fN ∈ fG ({fN}, <)

∀ pj ∈ pNx ,
(⋃

ν ∈ gj σ
T (tν), ≤

)
=⇒

({
pNx
}
,≤
) =⇒

 ⋃
mj ∈ {mG}

mj ,≤



A set {mG} is thus generating an ordered sequence of K matching functions,

{mG} ≡ < m1
G , . . . , mK

G > , ∀ k ∈ [ 1, K − 1 ], mk
G, ≤ mk+1

G

However, since this order is not strict, there may be equalities, noted ma ≡ mb:

(6) : ma, mb ∈ {mG}, ma ≡ mb ⇔ ma ≤ mb ∧ mb ≤ ma

ma ≡ mb ⇔
⋃

ν ∈ ga

σT (tν) =
⋃

ν ∈ gb

σT (tν)⇔ ga ' gb

This set of productions is stable, as no production application can add or remove

any other production than the one being processed (as it is not possible to apply

any matching function in an RHS, each of which is acyclic).

(7) : G ' H (4), (5), (6)
=⇒ ∀ k ∈ [ 1, K ] , mk

G ≡ mk
H

G ' H =⇒ ∀ k ∈ [ 1, K ] , gk ' hk

We note
k

G the graph G to which we applied the first k productions.

We study the conditions of an isomorphism between
k

G and
k

H:

∀ k ∈ [ 1, K ] ,
k

G '
k

H ⇔ pk−1
G

(
k−1

G

)
' pk−1

H

(
k−1

H

)
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We recall that the productions are deterministic bijections. We underline here

their injection properties:

∀ pG ∈ {pG}, ∀ G1, G2 ∈ G, pG(G1) ' pG(G2) =⇒ G1 ' G2

∀ pH ∈ {pH}, ∀ H1, H2 ∈ G, pH(H1) ' pH(H2) =⇒ H1 ' H2

Because of these properties, if two production applications lead to the same result,

then the operands (the intermediate graphs) and the operators (the productions)

are respectively isomorphic and identical:

pk−1
G

(
k−1

G

)
' pk−1

H

(
k−1

H

)
⇔
(
pk−1
G = pk−1

H

)
∧
(
k−1

G '
k−1

H

)

We rewrite with the proposalPk ⇔
k

G '
k

H :

(8) : Pk ⇔
(
mk−1
G ≡ mk−1

H

)
∧ Pk−1

In particular we identify,

PK ⇔ fG(G) ' fH(H)

Supposing that G ' H, one can prove (PA) by induction.

It is obvious that G ' H =⇒
0

G '
0

H since G ' H ≡
0

G '
0

H.

G ' H
(7)
=⇒ ∀ k ∈ [ 1, K ] , mk

G ≡ mk
H

G ' H ≡
0

G '
0

H
=⇒ P1 is true

(9) :

G ' H
(7)
=⇒ ∀ k ∈ [ 1, K ] , mk

G ≡ mk
H

P1

(8)
=⇒ ∀ k ∈ [ 2, K ]Pk is true

G ' H (9)
=⇒ PK is true

(PA) : G ' H =⇒ fG(G) ' fH(H)

Let us assume that G 6' H, we can prove (PB) by directly invalidating the ini-

tialization P1. By hypothesis, G 6' H ≡
0

G 6'
0

H.

G 6' H ≡
0

G 6'
0

H =⇒ P1 is false
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(10) : P̄1
(8)

=⇒ ∀ k ∈ [ 2, K ], Pk is false

G 6' H (10)
=⇒ PK is false

(PB) : G 6' H =⇒ fG(G) 6' fH(H)

Furthermore,
K

G ∈ T,
K

H ∈ T according to the lemma 4, and the traces for these

two trees by σT will be identical according to the lemma 3.

σT
(
K

G

)
= σT

(
K

H

)
4.3 Root designation and encoding (step 3 of Scott algorithm)

We address this section by defining a trace function applicable to any graph with

an identified root.

σGρ : Gρ → Σ∗,

σGρ : Gρ 7→ σT (f(Gρ))

Until now, it was assumed that the ρ root was known. To designate among all

the vertices which one is the root vertex, we can simply take the one generating

a minimum trace, because any set with a total order admits a minimum element.

Any graph is thus encoded by its minimum encoding. However several vertices may

lead to the minimum trace due for instance to some symmetry in the graph. Hence

the choice for the root vertex is not unique in general. If this is the case, we just

select arbitrarily one of the potential root vertices leading to the minimal trace,

since Scott will provide exactly the same trace for all of these vertices.

ρG = arg min
ν∈VG

(
σGρ(Gν)

)
Since the identification of the ρG root for any ρG graph is now an invariant up to

an isomorphism, the f morphism is bijective (up to an isomorphism), which until

now was based on the assumption that ρ was identified. We derive an injective trace

function applicable to any graph, usable as a hash function.

σG : G→ Σ∗,

σG : G 7→ σT (f(GρG))
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4.4 Grammar

The grammar that described the syntax of the trace σT proposed by Scott is given

below.

〈tree〉 ::= [ 〈descendant list〉 ] 〈vertex〉 : 〈edge modality〉

〈descendant list〉 ::= ( 〈tree〉 { , 〈tree〉 } )

〈vertex〉 ::= 〈vertex label〉 | 〈mirror vertex label〉 | 〈virtual vertex label〉 | 〈self vertex label〉

〈vertex label〉 ::= 〈label〉

〈mirror vertex label〉 ::= # 〈magnet〉

〈virtual vertex label〉 ::= * 〈magnet〉

〈self vertex label〉 ::= §

〈magnet〉 ::= {〈label〉}

〈edge modality〉 ::= 〈label〉

〈label〉 ::= Σ∗

Grammar 1: Scott Grammar supporting σT , derived from [23]

5 Algorithmic complexity
In this section, we evaluate the temporal complexity of the Scott canonical en-

coding algorithm. We assimilate this complexity to the computational complexity

required to evaluate the trace function σG, and its asymptotic behavior according

to n = || VG ||.
We approximate this complexity through an upper bound O

(
σG
)

corresponding

to the worst possible case, and a lower bound Ω
(
σG
)

corresponding to the best

possible case.

The overall complexity consists of the composition of the complexities of the three

steps of the Scott algorithm :

• identification of the root ρ, noted ϕρ

• morphism of G to T using f given the identification of ρ, noted ϕf

• encoding of the rooted tree, noted ϕt

σG ∈ O(ϕρ) · [O(ϕf ) +O(ϕt)]

with O(ϕρ), O(ϕf ) and O(ϕt) three complexity classes.

5.1 Complexity for identifying the root ρ, ϕρ

Naively, one iterates on every vertex ν in G, which can be elected as the ρ root.

However, it is possible to restrict the set of vertices that can be candidates in this

election. Thanks to a well-chosen function, we associate a computable score in O(1)

to each vertex, thus restricting the search domain to a number kρ of vertices, with

1 ≤ kρ ≤ n. Hence:

ϕρ ∈ Ω(1) and ϕρ ∈ O(n)
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ρ

ρ

. . .

Figure 8: Best (left) and worst (right) cases for tree encoding

5.2 Complexity for encoding a rooted tree, ϕt

We can consider at this step of the algorithm that we have retained all the required

information at any vertex level from the previous step. Thus, the encoding of a

vertex and an edge is done in O(1). Let t be the number of vertices of a tree, its

encoding in a non canonical way is thus done in O(t), to which we must add the

complexity of the sorting operated for each set of descendants of a vertex. The best

and worst case for this encoding (illustrated in Fig. 8) is thus directly linked to the

sorting algorithm.

The complexity of a sort algorithm is typically in O(t · log(t)) complexity, hence:

ϕt ∈ Ω(t) and ϕt ∈ O(t+ t · log(t))

5.3 Morphism from G to T through f , ϕf

The application of morphisms leading to a tree representing a class of isomorphism

affects the overall complexity of the algorithm in two ways. First, this morphism

generates operations that have their own computing cost, but, in addition, it in-

creases the size of the generated tree which will impact on the computing cost

involved when producing the final trace.

In a deterministic way, Scott orders all the vertices by levels according to ρ.

This ϕ0 operation is carried out in exactly n iterations (using a breadth first search

algorithm).

The number of applications of productions is not constant, and depends on the

number of edges e = ||EG||| compared to n, with (n − 1) ≤ en(n−1)
2 for a simple

graph, without self-bound which we omit for the moment.

5.3.1 Morphism algorithmic cost

The complexity of each of the productions necessary for implementing the morphism

is relative to their location relatively to ρ. Indeed, the computation of magnet used

to match two virtual vertices is performed from the trace of a sub-tree. In all cases,

this magnet comes from the trace of two vertices, taken in the context of their

exclusive descendants. Although one can keep the result once it is evaluated for a

vertex, one can consider that such a trace is computed for all vertices in the worst

case. Thus, each v vertex generates beforehand an operation in O(wv+wv · log(wv))
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ρ
0

depth

1

2

d

vertices generated

(2 + 2) ∗ 21

(2 + 2) ∗ 22

(2 + 2) ∗ 2d

Figure 9: Graph maximising the size of the generated tree.

with wv the number of descendants of this vertex. The following calculations will

be performed in O(1).

ϕf1 ∈ Ω(1) and ϕf1 ∈ O
(
n ∗ dmax

2 + dmax
2 · log

(
dmax

2

))
We can express the number of edges separating a simple complete graph (without

self-bound) from a tree, corresponding to the maximum number of productions to

be applied, by n(n−1)
2 − (n − 1) = n2−3n+2

2 , to which we add a self-bound to be

solved per vertex in the worst case, operation that is performed in O(n). In the best

case, if G is already a tree, there is no morphism to apply. Hence, we get:

ϕf2 ∈ Ω(1) and ϕf2 ∈ O
(
n+ n2−3n+2

2

)
= O

(
n2+n+2

2

)
We obtain for sequence ϕf = ϕf2 ◦ ϕf1 ◦ ϕf0 :

ϕf ∈ Ω(n) and ϕf ∈ O
(
n+ n+ n2−3n+2

2

)
= O

(
n2+n+2

2

)
5.3.2 Size of the generated tree

Co-bound and in-bound productions do not generate the same number of additional

vertices and edges. Indeed, while a production solving a co-bound will invariably

generate two virtual vertices, an in-bound production will double the number of

vertices succeeding the vertex concerned by the in-bound. Again, the worst possible

case in terms of the size of the generated tree is not, as one might think, the graph

with the most in-bounds, which would be a graph with two completely connected

layers, but the graph having as many levels of two vertices as possible.

If each step will invariably generate two vertices for each co-bound, the vertices

that are duplicated due to the in-bound will also be duplicated in the previous

stages, hence the application of additional power for each step.

The number of d levels that can be obtained on this type of graph is (n − 1)/2

(integer division). We can thus estimate the number of vertices generated in the
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worst case at
∑(n−1)/2
d=1 8d = 2

7

(
2

3n
2 + 1

2 − 4
)
∼ k2·n, with k ' 2. The size n′ of the

trees generated in this step is thus framed as follows:

n ≤ n′ ≤ n+ k2·n , k ' 2

5.4 Overall complexity

We recall the overall complexity of the σG algorithm as the following composition:

σG ∈ O(ϕρ) · [O(ϕf ) ◦ O(ϕt)].

While some complexities are difficult to determine precisely, which leads to large

upper bounds, there is however a very large difference in complexity between the

simplest case corresponding to a graph that is directly in the form of a tree, and

the most complex case corresponding to a graph too regular to reduce the number

of candidate roots, and presenting a large number of in-bounds. This leads to our

(crude) lower and upper bounds:

σG ∈ Ω(n)

σG ∈ O
(
n ·
((
n+ k2n

)
+
(
n+ k2n

)
· log

((
n+ k2n

))
+
n2 + n+ 2

2

))
∼ O

(
k · n2n

)
, k ' 2

5.5 Parallelisation

In spite of a significant temporal complexity, which is exponential in the worst

case, our algorithm has parallelization possibilities allowing to gain up to an order

of magnitude on multi-core architectures, or even two on multi-server cluster-type

architectures.

The first parallelizing possibility is related to the root vertex identification. Once

all the candidates have been identified (and if possible minimized), the evaluations

of the traces associated with them are independent, and thus can be executed

simultaneously on several processors. Indeed, the output of the algorithm is entirely

dependent on the identification of the best root candidate, which is naturally well

adapted to a distribution of the computations using functional programming.

The second avenue of parallelization consists in distributing the scheduling of the

productions carried out for a given category and level. Indeed, the computation of

these productions involves numerous evaluations of tree sub-graphs, whose impact

is not negligible on the execution time of the algorithm. However, here again, the

score (ordering) associated to a production is only a function of the elements directly

involved in this production, i.e. the current level, which is not yet being processed,

and the lower levels that have been already processed. Each production evaluation

can therefore work on a local, fixed copy of these elements without any risk of side

effects (since the processing has not started yet). Here again, an implementation

using the functional paradigm allows to implement a parallelization at this stage of

the algorithm. However, the application of the productions alters at each step the

structure of the graph, hence, this sequence of transformations remains essentially

sequential.

An implementation of this parallelization can for example be done in the context

of a Map Reduce framework. Work in this direction has been started on the Spark

technology, allowing to divide the total computation time by the number of available

processing cores.
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Figure 10: Benchmark on ”shrunken multipedes” canonization (y-log scale)

5.6 Empirical evaluation

We empirically verify the effectiveness of the Scott algorithm, namely the correct

detection of isomorphism in complex graphs collected from a synthetic data set,

and estimate comparatively its empirical complexity while measuring the processing

elapsed-time on a common hardware.

To that end, we evaluate Scott on complex combinatorial graphs produced in the

scope of a benchmark [11] dedicate to isomorphism detection. Among the families

of graphs used and made available in this benchmark, we are interested in the

”shrunken multipedes” graphs, a class of graphs that is built from the ”Cai, Fürer

and Immerman” graphs.

This family of graphs is specially designed to present cases of non-trivial isomor-

phisms (or non-isomorphisms), and therefore with characteristics quite distant from

the ideal cases mentioned above. In particular, the number of edges is large com-

pared to the number of vertexs (by a factor of 7.8 on average). These graphs are,

in practice, very far from trees.

We calculate the canonical form of 157 graphs having up to 500 vertexs, grouped

correctly into 79 isomorphism classes. On this example, the sanity check performed

on Scott gives 100% of accurracy: basically Scott produces no error (either false

positive or false negative errors).

We then compare the performance of our algorithm with the state of the art

algorithms that also propose a canonical form, namely Traces, Nauty and Bliss.

We present in Fig. 10 the time necessary to calculate the canonical trace of a

graph as a function of its number of vertexs. Since several orders of magnitude are

represented on the first axis, a log scale is used.

We observe that while the best algorithms on this benchmark show a significantly

better efficiency, Scott remains quite comparable with some of these algorithms

when the the size of the processed graphs is above 380 vertexs. Scott is therefore
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reasonably usable in practice, even for graphs resulting from combinatorial pro-

cesses, which are far from optimal conditions. We also note that for a given number

of vertexs, the variability of the processing time is much less important for Scott

than for the other algorithms, for which a deviation of several orders of magnitude

can be observed for several graphs having the same number of vertexs.

6 Conclusion
In this article we have presented the proofs of correctness for the Scott algorithm.

We have shown in section 4 that the conversion of any general labelled graph into

a rooted-tree (that corresponds two the two first steps of the Scott algorithm) is

reversible up to an isomorhism. This means that inside an isomorhism class, each

graph can be associated to a unique graph representative. This representative may

take the form of a canonical adjacency matrix. Furthermore, we have shown in

section 3 that the encoding of any rooted-tree into a string class is unique up to an

isomorphism.

These results ensure that the three canonical forms provided by Scott for a

general labelled graph (namely an adjacency matrix, a DAG or rooted-tree, and a

string) are valid.

We have also presented some complexity bounds for the best and worse case

situations. If the temporal complexity remains problematic for theoretical graphs

resulting from combinatorial methods, with an exponential execution time with

respect to the number of vertices (which is also the case for the reference baseline

algorithms), it is much more tractable on simpler graphs with a number of edges

close to the number of vertices. For this category of graphs, we rather observe in

practice a linear trend, quite usable in common applications.

A important amount of work remains to be done on the implementation and opti-

mization of this algorithm. However, as it stands, Scott remains the only algorithm

to deal natively with colored vertices and edges, and offers good parallelization pos-

sibilities.

As a perspective, a generalization of Scott to handle oriented graphs, typically

used in the representation of social relations or dependencies, could be quite easily

considered by adapting the set of productions used to transform a graph into an

equivalent tree. Since a rooted tree with non-oriented edges is equivalent to the

same rooted tree with oriented edges, the trace function once the tree is obtained

would be usable without any modification. However, the validity of this extension

remains to be asserted.
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