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Abstract 

The Wi-Fi links performance depends in a highly complex way on the actual 

topology, channel qualities, spectral configurations, etc. Existing Wi-Fi radio link 

performance models usually adopt explicit and bottom-up approaches in order to predict 

throughput figures based on Markov chains and SINR levels. In this work we have 

validated a new approach for predicting the performance of Wi-Fi networks. Based on 

data measurements from the outdoor Wi-Fi CityLab testbed in Antwerp we have tested 

four different supervised learning algorithms. We observed that abstract “black box” 

models built using supervised machine learning techniques – without any deep 

knowledge of the complex interference dynamics of IEEE 802.11 networks – can 

estimate the link throughput with very good accuracy, reaching a value of R2-score of 

90% for the case of the Gradient Boosting Regressor. 

1 Introduction 

Accurate prediction of wireless performance links can be very useful to optimize the Wi-Fi radio 

planning and resources allocation. However, the vast variety of possible wireless configurations and 

propagation scenarios make it hard to de-sign explicit\theoretical models to forecast the performance 

of a specific link. Wi-Fi networks are notoriously hard to model in multi node scenarios. They exhibit 

several performance intricacies due to complex interactions between the PHY and MAC layers, which 

manifest themselves in frequency, spatial and time domains. 

Existing radio link performance models for Wi-Fi networks, such as the model proposed in [1], 

usually adopt explicit and bottom-up approaches; they model the actual mechanics of the protocol (for 

example, the CSMA/CA procedure of the MAC layer) in order to predict throughput figures based on 

Markov chains. 

Due to the difficulty of predicting performance in the presence of complex interference patterns, 

most works proposing models or optimizations for the PHY layer (e.g.,[2],[3]) are reduced to using 

SINR-based models and ideal AWGN channels. Although SINR models can provide a characterization 
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of the Shannon capacity at the PHY layer, they are not meant to capture IEEE 802.11 performance and 

they can fail to capture important CSMA/CA performance patterns. 

In this experiment we did an experimental validation of a different approach for predicting the 

performance of Wi-Fi radio links. Rather than manually fitting analytical models to capture complex 

dependencies, we have directly learned the models themselves, using Machine Learning techniques 

with a limited set of observed measurements. In fact, we do not attempt to seed a pre-existing model 

(such as SINR based or Markov-based) with measurements. Rather, we learn and build the model itself 

from a limited set of measurements (state parameters) as illustrated in Fig.1. 

We treat Wi-Fi links as black boxes with potentially unknown internal mechanics. Such a black box 

takes some input parameters and it outputs the estimated throughput value.  

The main objective of this work is the experimental validation of machine learning algorithms for 

predicting the performance of Wi-Fi radio links in multi node scenarios. 

This paper is organized as follows: Section II describes the setup of this experiment, Section III 

describes the collected measurements and do a correlation analysis, Section IV proposes four Machine 

Learning algorithms to forecast the Wi-Fi link throughput, Section V shows the performance analysis 

and finally section VI concludes the paper and hints at future work. 

 

 
Fig. 1. Prediction of a link throughput based on a “black-box” model. 

2  Setup of the Experiment 

In this experiment we have used the CityLab (part of City of Things) testbed which is a smart cities 

FIRE testbed federated through the Fed4FIRE federation, operated by imec [4]. It is intended for large-

scale wireless networking experimentation at a city neighbourhood level in the unlicensed spectrum. 

CityLab is in the city center of Antwerp, Belgium. The testbed can be found in the streets in and around 

the city campus of the University of Antwerp, in an area of about 0.5km by 0.5km. This testbed is a 

realistic environment where experiments typically face a lot of external radio interference from nearby 

equipment (e.g. Wi-Fi networks, IoT devices, …). Hardware is installed at 50 locations, each with its 

own gateway attached to houses in the street or installed on a pole on a roof. Each gateway houses 

multiple radios with full low-level access for experimenters, including Wi-Fi at 2.4GHz and 5GHz. 

Fig. 2 illustrates two outdoor nodes from the CityLab testbed and Fig. 4 shows the area of the 

CityLab testbed where this experiment was remotely carried through the jFed toolkit (Fig. 3). In order 

to test different deployment scenarios and configurations, a gateway acts as experiment’s controller 

which can change the configuration of all the nodes on the fly. 



 
Fig. 2. Example of gateway deployment in the city of Antwerp available for remotely wireless 

experimentation. 

 

 
Fig. 3. jFed toolkit used to remotely setup the experiment. 



 
Fig. 4. Layout of the CityLab wireless testbed used in this experiment. 

3 Measurements and Correlation Analysis 

In this work we have performed N short-duration controlled experiments in the CityLab Wi-Fi 

outdoor testbed. Considering the “black box” representation of Fig. 1, each experiment consists in 

measuring the throughput (t) of a given link (l), for each combination of features. Those features are: 

number of clients, SNR, RSSI, noise level, channel, txPower, and the link quality in percentage. The 

goal is to expose the learning procedure to a wide variety of possible configurations. In total we did 

3851 different tests.  

In this experiment the throughput prediction is a multivariable regression problem with seven input 

features and one output to be estimated. Priory to build the Machine Learning models is important to 

understand the variables interdependencies and therefore the correlation level between them was 

computed according to the equation 1. 
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Fig. 5 shows the measured correlation matrix where ρ=1 means a perfect positive correlation 

between the variables; ρ= -1 means a perfect negative correlation between the variables and ρ=0 

indicates that the variables don’t have linear dependencies between then. Based on these results we can 

see that there is a strong positive correlation between the txPower and the throughput and a strong 

negative correlation between the number of clients and the throughput. These dependence between 

variables indicate that linear regression models can be used in the throughput estimation process. 



 
Fig. 5. Correlation matrix between all the measured features of the Wi-Fi links. 

4 Machine Learning Models 

Let us consider  (𝑋, 𝑡)𝑖=1
𝑁

 
the set of N measurements. X is a matrix of multiple independent input 

variables (𝑥1, 𝑥2, … , 𝑥7)𝑖=1
𝑁 , i.e., number of clients, SNR, RSSI, noise, channel, txPower and link 

Quality Percentage. The goal is to find a function 𝑓: 𝑋
 

→ 𝑡 that maps xi to a value close to ti for each 

measurement i. This is an instance of a regression problem where we the function f is learned directly 

from the observed data. 

The estimate 𝑓(𝑋), minimizes the loss function Ψ(t,f) given by equation (2): 

 

𝑓(𝑋) = 𝑡
 

⇔ 𝑓(𝑋) = 𝑎𝑟𝑔 min
𝑓(𝑋)

𝛹(𝑡, 𝑓(𝑋)) (2) 

There are several supervised learning methods in the literature to solve multiple regression problems 

(e.g. [5]). In this experiment we are going to test the following four Machine Learning algorithms: 

Gradient Boosting Regressor, Linear Regression, kNN (k-Nearest Neighbors) and Decision Tree. We 

have used the Python machine learning package scikit-learn [6] to implement the various models. 

 

5 Performance Analysis 

The objective of this experiment is to test the performance of the predictive algorithms of Wi-Fi 

throughput with unknown combinations of features. As such, we only predict throughputs for data 

points that do not appear in the N measurements used for learning (or training). To this end, we split 

our total set of measurements into a training set and a test set. The training set consists in the actual N 

measurements used for learning the models and their parameters, whereas the test set is used only once, 

for measuring the final accuracy. We compute the root mean squared error (RMSE) for each algorithm: 

 



𝑅𝑀𝑆𝐸 = √
1

𝑛
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𝑖=1  (3) 

where 𝑡𝑖 is the actual measured throughput and 𝑡̂𝑖 is the estimated value. We also compute the 𝑅2-score 

given by: 

𝑅2 = 1 −
∑ (𝑡𝑖−𝑡̂𝑖)2

𝑖

∑ (𝑡𝑖−𝑡̅)2
𝑖

 (4) 

 

where 𝑡̅ is the average throughput. Concretely, the R2-score quantifies how well a predictor does, 

compared to the simplest baseline strategy, which always predicts the mean throughput. It is equal to 1 

if there is a perfect match between predicted and measured throughputs. 

For each algorithm we have computed the RMSE and the R2-score (Table 1), moreover, in order to 

visualize the actual predictions in detail, we also show a scatter plot of the predicted throughputs, against 

the actual measured throughputs as illustrated in Fig. 6. On these plots, the closer the points are to the 

diagonal, the better the prediction accuracy. The Gradient Boosting Regressor outperforms the other 

methods and produce fewer outlying predictions. 

 

Method RMSE (Mbps) R2-score [%] 

Gradient Boosting 

Regressor 

1.48 90% 

Linear Regression 2.39 73% 

kNN 1.53 89% 

Decision Tree 1.73 86% 

Table 1. Performance analysis of the machine learning algorithms 

 

 

 



 

 

 
Fig. 6.  Predicted versus measured throughput for 4 Machine Learning algorithms. 

6 Conclusions and future work 

The Wi-Fi links performance depends in a highly complex way on the actual topology, channel 

qualities, spectral configurations, etc. It is especially hard to predict in quantitative terms how a given 

configuration will perform.  

In this experiment we advocate an approach of “learning by observation” that can remove the need 

for designing explicit and complex performance models. We use machine learning techniques to learn 

implicit performance models, from a limited number of real-world measurements. These models do not 



require to know the internal mechanics of interfering Wi-Fi links. 

In this work we investigated and validated a different approach for predicting the performance of 

Wi-Fi links. Rather than manually fitting complex models to capture complex dependencies, we have 

shown that it is possible to directly learn the models themselves, from a limited set of observed 

measurements. This approach bypasses the usual analytical modelling process, which requires deep 

knowledge, and yet often yields models that are either too restricted or too inaccurate [7]. 

Based on data measurements from the outdoor Wi-Fi CityLab testbed in Antwerp (imec) we have 

tested four different supervised learning algorithms. Using supervised machine learning techniques, it 

is possible to generalize the observations made on this limited subset of measurements, while still 

capturing the com-plex relationships between the inputs. We build such implicit models using real-

world measurements and we test them systematically, by asking them to predict the throughput for links 

and configurations that have never been observed during the initial measurement phase 

We observed that abstract “black box” models built using supervised machine learning techniques 

– without any deep knowledge of the complex interference dynamics of IEEE 802.11 networks – can 

estimate the link throughput with very good accuracy, reaching a value of R2-score of 90% for the case 

of the Gradient Boosting Regressor. 

A scientific level, the results obtained on the modelling of multi-node Wi-Fi networks have potential 

to help on the developing of better resource management algorithms and help provide guidance to radio 

network planners. 

A possible follow-up of this work is the extension of the “black box” approach to forecast the QoE 

(Quality of Experience) delivered by the Wi-Fi link for specific applications such as video or web 

browsing, taking as inputs QoS parameters. Another interesting follow-up is the extension of the 

Machine Learning models to the forecast the capacity of LTE radio links without using active 

transmission over the mobile network.  
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