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ON THE REGULARITY OF MATHER'S β-FUNCTION FOR STANDARD-LIKE TWIST MAPS

We consider the minimal average action (Mather's β function) for area preserving twist maps of the annulus. The regularity properties of this function share interesting relations with the dynamics of the system. We prove that the β-function associated to a standard-like twist map admits a unique C 1 -holomorphic complex extension, which coincides with this function on the set of real diophantine frequencies.

Introduction

In this note we would like to investigate some regularity properties of the so-called Mather's β-function (or minimal average action) for twist maps of the annulus. This object is related to the minimal average action of configurations with a prescribed rotation number (the so-called Aubry-Mather orbits) and plays a crucial role in the study of the dynamics of twist maps; see section 2 for a more detailed introduction. In particular, many intriguing questions and conjectures related to problems in dynamics, analysis and geometry have been translated into questions about this function and its regularity properties (see for example [START_REF] Massart | Differentiability of Mather's average action and integrability on closed surfaces[END_REF][START_REF] Siburg | The principle of least action in geometry and dynamics[END_REF][START_REF] Sorrentino | Computing Mather's β-function for Birkhoff billiards[END_REF][START_REF] Sorrentino | Markov numbers, Mathers beta function and stable norm[END_REF][START_REF] Sorrentino | Action minimizing properties and distances on the group of Hamiltonian diffeomorphisms[END_REF] and references therein), shedding a new light on these issues and, in some cases, paving the way for their solution.

Two of the main questions that underpin our current interest in the subject are the following: a) Do regularity properties of β-function ( i.e. differentiability, higher smoothness, etc.) allow one to infer any information on the dynamics of the system? b) To which extent does this function identify the system? Does it satisfy any sort of rigidity property?

Despite the huge amount of attention that these questions have attracted over the past years-in particular, understanding its regularity and its implications-they remain essentially open. In the twist map case, the best result known is that this map is strictly convex and differentiable at all irrationals. Moreover, differentiability at a rational number p/q is a very atypical phenomenon: it corresponds to the existence of an invariant circle consisting of periodic orbits whose rotation number is p/q (see [START_REF] Mather | Differentiability of the minimal average action as a function of the rotation number[END_REF]). An extension of these results to surfaces was provided in [START_REF] Massart | Differentiability of Mather's average action and integrability on closed surfaces[END_REF].

Goal of this article is to address this regularity issue and provide some new interesting answers in the special case of standard-like maps. More specifically, our starting point is the paper [START_REF] Carminati | There is one KAM curve[END_REF] which establishes some rigidity properties of the complex extension of analytic parametrizations of KAM curves. We use the main result of [START_REF] Carminati | There is one KAM curve[END_REF] to build up a C 1 -holomorphic complex function which coincides with Mather's β function on the set of real diophantine frequencies and we prove that this extension is unique. See Theorem 3 and Corollary 4 for precise statements.

The article is organized as follows. In section 2 we provide a brief introduction to Aubry-Mather theory and introduce the main object of investigation (Definition 2.2). In section 3 we state our main results (Theorem 3 and Corollary 4), whose proofs will be detailed in section 5. Some auxiliary results will be described in section 4 and appendix A.
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A Synopsis of Aubry-Mather theory for twist maps of the cylinder

At the beginning of 1980s Serge Aubry and John Mather developed, independently, a novel and fruitful approach to the study of monotone twist maps of the annulus, based on the socalled principle of least action, nowadays commonly called Aubry-Mather theory. They pointed out the existence of global action-minimizing orbits for any given rotation number; these orbits minimize the discrete Lagrangian action with fixed end-points on all time intervals (for a more detailed introduction, see for example [START_REF] Bangert | Mather sets for twist maps and geodesics on tori[END_REF][START_REF] Mather | Action minimizing orbits in Hamiltonian systems[END_REF][START_REF] Siburg | The principle of least action in geometry and dynamics[END_REF][START_REF] Sorrentino | Action-minimizing methods in Hamiltonian dynamics: an introduction to Aubry-Mather theory[END_REF]). In the case in which a, b are both finite, we will assume that f extends continuously to R×[a, b] and that it preserves the boundaries, with the corresponding dynamics being rotations by some fixed angles ω ± :

Let us consider the annulus

f (x, a) = (x + ω -, a) and f (x, b) = (x + ω + , b). (1) 
For simplicity, we set

ω ± = ±∞ if a = -∞ or b = +∞. Definition 2.1. A map f : R × (a, b) -→ R × (a, b) (x 0 , y 0 ) -→ (x 1 , y 1 )
is called a monotone twist map if: (iii) if a or b is finite, then f can be continuously extended to the boundary by a rotation, as in (1);

(i) f (x 0 + 1, y 0 ) = f (x 0 , y 0 ) + (1, 0); (ii) f preserves
(iv) f satisfies the monotone twist condition 1 ∂x 1 ∂y 0 (x 0 , y 0 ) > 0 for all (x 0 , y 0 ) ∈ R × (a, b);

(v) f is exact symplectic, i.e. there exists a function h : R × R → R such that h(x 0 + m, x 1 + m) = h(x 0 , x 1 ) for all m ∈ Z and

y 1 dx 1 -y 0 dx 0 = dh(x 0 , x 1 ).
The interval (ω -, ω + ) ⊂ R is then called the twist interval of f and any function h as above is called a generating function for f .

Remark. Observe that (iv) implies that one can use (x 0 , x 1 ) as independent variables instead of (x 0 , y 0 ), namely if (x 1 , y 1 ) = f (x 0 , y 0 ) then y 0 is uniquely determined. Moreover, the generating function h allows one to reconstruct completely the dynamics of f ; in fact, it follows from property (v) that:

   y 1 = ∂h ∂x1 (x 0 , x 1 )
y 0 = -∂h ∂x0 (x 0 , x 1 ).

(

) 2 
Observe that condition (iv) corresponds to asking that

∂ 2 h ∂x 0 ∂x 1 < 0.
Examples. 1. The easiest example is the following (which is an example of integrable twist map):

f (x 0 , y 0 ) = (x 0 + ρ(y 0 ), y 0 ), where ρ : (a, b) -→ R and, in order to satisfy the twist condition, it is strictly increasing, i.e. ρ ′ (y 0 ) > 0 for each y 0 ∈ (a, b). The dynamics is very easy: the space is foliated by a family of invariant straight lines {y = y 0 }, on which the dynamics is a translation by ρ(y 0 ). Observe that if we look at the projected map on the annulus S 1 × (a, b), we obtain a family of invariant circles {y = y 0 } on which the map acts as a rotation by ρ(y 0 ). It is easy to check that a generating function is given by h(x 0 , x 1 ) = σ(x 1 -x 0 ) with any σ such that σ ′ is the inverse bijection of ρ.

2. The standard maps. One of the simplest (yet, very challenging) non-integrable twist map is the so-called standard map (this name appeared for the first time in [START_REF] Chirikov | A universal instability of many-dimensional oscillator systems[END_REF]):

f ε (x 0 , y 0 ) = (x 1 , y 1 ) with x 1 = x 0 + y 0 + ε sin(2πx 0 ) y 1 = y 0 + ε sin(2πx 0 )
where ε > 0 is a parameter (ε = 0 would correspond to an integrable map). It is easy to check that a generating function is given by

h ε (x 0 , x 1 ) = 1 2 (x 1 -x 0 ) 2 - ε 2π cos(2πx 0 )
. 1 The twist condition can be geometrically described by saying that each vertical {x = x 0 } is mapped by f to a graph over the x-axis. In particular, for each x 0 and x 1 , there exists a unique y 1 such that (x 1 , y 1 ) belongs to the image of {x = x 0 }.

This map has been the subject of extensive investigation, both from an analytical and numerical points of view. An interesting question concerns what happens in the transition between integrability and chaos; in particular, can one determine at which value of ε an invariant curve of a given rotation number breaks down, or at which value there are no more invariant curves? See for example [START_REF] Chirikov | A universal instability of many-dimensional oscillator systems[END_REF][START_REF] Mackay | Transport in Hamiltonian systems[END_REF][START_REF] Mackay | Converse KAM -theory and practice[END_REF][START_REF] Mather | Nonexistence of invariant circles[END_REF][START_REF] Marmi | On the standard map critical function[END_REF] (although the literature on the topics is vast).

In section 3 we will focus on a generalized version of this map (see [START_REF] Chirikov | A universal instability of many-dimensional oscillator systems[END_REF]), namely:

T g (x, y) = (x ′ , y ′ ) with x ′ = x + y + g(x) y ′ = y + g(x)
with g a 1-periodic, real analytic function of zero mean. We will refer to this kind of map as standard-like twist map.

Another interesting example is provided by

Birkhoff billiards. This dynamical model describes the motion of a point inside a planar strictly convex domain Ω with smooth boundary. The billiard ball moves with unit velocity and without friction following a rectilinear path; when it hits the boundary it reflects according to the standard reflection law: the angle of reflection is equal to the angle of incidence. See [START_REF] Tabachnikov | Geometry and billiards[END_REF] for a more detailed introduction.

If one considers the arc-length parametrization of the boundary ∂Ω, then one can describe the billiard map as a map B(s 0 , -cos(ϕ 0 )) = (s 1 , -cos(ϕ 1 )), where s 0,1 refer to the starting and hitting point on the boundary, while ϕ 0,1 ∈ (0, π) are the starting and hitting directions of the trajectory, with respect to the positive tangent directions on the boundary. With respect to these coordinates (x = s, y = -cos ϕ) the billiard map is a monotone twist map. = +∞); then its time-1 map flow Φ 1 H : S 1 × R -→ S 1 × R can be lifted to a monotone twist map on R × R. Such Hamiltonians are often called Tonelli Hamiltonian; see [START_REF] Sorrentino | Action-minimizing methods in Hamiltonian dynamics: an introduction to Aubry-Mather theory[END_REF].

Let us consider

H : S 1 × R × S 1 -→ R (x, y, t) -→ H(x, y, t), a C 2
Moser in [START_REF] Moser | Monotone Twist Mappings and the Calculus of Variations[END_REF] proved that every twist diffeomorphism is the time one map associated to a suitable Tonelli Hamiltonian system.

As follows from (2), any orbit {(x i , y i )} i∈Z of the monotone twist diffeomorphism f is completely determined by the sequence (x i ) i∈Z . Moreover, this sequence corresponds to critical points of the discrete action functional:

R Z ∋ (x i ) i∈Z -→ i∈Z h(x i , x i+1 ),
where the series is to be interpreted as a formal object. This means that (x i ) i∈Z comes from an orbit of f if and only if

∂ 2 h(x i-1 , x i ) + ∂ 1 h(x i , x i+1 ) = 0 for all i ∈ Z
(hereafter we will denote by ∂ j the derivative with respect to the j-th component).

Observe that while orbits correspond to critical points of the action-functional, yet they are not in general minima 2 . Aubry-Mather theory is concerned with the study of orbits that minimize this action-functional amongst all configurations with a prescribed rotation number; we will call these orbits action-minimizing orbits or, simply, minimizers. We will call the corresponding sequences (x i ) i∈Z minimal configurations.

Recall that the rotation number of an orbit {(x i , y i )} i∈Z is given by ω = lim |i|→±∞ xi |i| , if this limit exists. For example, in example 1 above, orbits starting at (x 0 , y 0 ) have rotation number ρ(y 0 ). A natural question is then: does f admit orbits with any prescribed rotation number? In [START_REF] Birkhoff | Surface transformations and their dynamical applications[END_REF], Birkhoff proved that for every rational number p/q in the twist interval (ω -, ω + ), there exist at least two periodic orbits of f with rotation number p/q.

In the eighties, Aubry [START_REF] Sergey | The twist map, the extended Frenkel-Kontorova model and the devil's staircase[END_REF] and Mather [START_REF] Mather | Existence of quasi-periodic orbits for twist homeomorphisms of the annulus[END_REF] generalised independently this result to irrational rotation numbers. More precisely:

Theorem (Aubry, Mather). A monotone twist map possesses action-minimizing orbits for every rotation number in its twist interval (ω -, ω + ).

Remark. They also showed that every action-minimizing orbit lies on a Lipschitz graph over the x-axis and that if there exists an invariant circle, then every orbit on that circle is a minimizer. Hence, in the integrable case (see Example 1), each orbit is a minimizer. In a naive-yet meaningful-way, action-minimizing orbits "resemble" (and generalise) motions on invariant circles, even in the case in which invariant circles do not exist.

Two very important objects in the study of these action-minimizing orbits are represented by the so-called Mather's minimal average actions, also called α and β-functions: in some sense they can be seen as an integrable Hamiltonian and Lagrangian associated to the system.

Let us now introduce the minimal average action (or Mather's β-function) more precisely. Definition 2.2. Given ω ∈ (ω -, ω + ), let x ω = (x i ) i∈Z be any minimal configuration with rotation number ω. Then, the value of the minimal average action at ω is given by

β(ω) = lim N1→-∞ N2→+∞ 1 N 2 -N 1 N2-1 i=N1 h(x i , x i+1 ). ( 3 
)
This value is well-defined, since the limit exists and does not depend on the chosen orbit.

This function β : (ω -, ω + ) -→ R encodes a lot of interesting information on the dynamical and topological properties of these action-minimizing orbits and the system. In particular, understanding whether or not this function is differentiable, or even smoother, and what are the implications of its regularity to the dynamics of the system has revealed to be a central 2 The concept of minimum might seem quite ambiguous in this setting, since the action-functional is generally a divergent series. Here-as is generally done in similar contexts in classical and statistical mechanics-by minimum we mean that each subsequence of finite length minimizes the action functional among all configurations with the same end-points and the same length.

question in the study of twist maps and, more generally, of Tonelli Hamiltonian systems (see for example [START_REF] Mather | Differentiability of the minimal average action as a function of the rotation number[END_REF][START_REF] Massart | Differentiability of Mather's average action and integrability on closed surfaces[END_REF]). While for higher dimensional system this question represents a formidable problem (and is still quite far from being completely understood), in the twist-map case [START_REF] Mather | Differentiability of the minimal average action as a function of the rotation number[END_REF] (and for surfaces, see [START_REF] Massart | Differentiability of Mather's average action and integrability on closed surfaces[END_REF]) the situation is much more clear. In fact: i) β is strictly convex and, hence, continuous (see [START_REF] Mather | Action minimizing orbits in Hamiltonian systems[END_REF]); ii) β is differentiable at all irrationals (see [START_REF] Mather | Differentiability of the minimal average action as a function of the rotation number[END_REF]); iii) β is differentiable at a rational p/q if and only if there exists an invariant circle consisting of periodic aaction-minimizing orbits of rotation number p/q (see [START_REF] Mather | Differentiability of the minimal average action as a function of the rotation number[END_REF]).

In particular, being β a convex function, one can consider its convex conjugate:

α(c) = sup ω∈R [ω c -β(ω)] .
This function-which is generally called Mather's α-function-also plays an important rôle in the study of action-minimizing orbits and in Mather's theory (particularly in higher dimension, see for example [START_REF] Massart | Differentiability of Mather's average action and integrability on closed surfaces[END_REF][START_REF] Sorrentino | Action minimizing properties and distances on the group of Hamiltonian diffeomorphisms[END_REF]). We refer interested readers to surveys [START_REF] Mather | Action minimizing orbits in Hamiltonian systems[END_REF][START_REF] Siburg | The principle of least action in geometry and dynamics[END_REF][START_REF] Sorrentino | Action-minimizing methods in Hamiltonian dynamics: an introduction to Aubry-Mather theory[END_REF].

Observe that for each ω and c one has:

α(c) + β(ω) ≥ ωc,
where equality is achieved if and only if c ∈ ∂β(ω) or, equivalently, if and only if ω ∈ ∂α(c); the symbol ∂ denotes in this case the set of subderivatives of the function-meant as the slopes of supporting lines at a point-which is always non-empty, and is a singleton if and only if the function is differentiable at that point.

Remark. In the billiard case, since a generating function of the billiard map is minus the Euclidean distance, -ℓ, the action of an orbit coincides up to sign to the length of the trajectory that the ball traces on the table Ω; hence, minimizing the action corresponds to maximizing the total length. Therefore, for rational numbers -qβ(p/q) represents the maximal perimeter of polygons of type (p, q) ( i.e., roughly speaking, polygons with q vertices and winding number p). Moreover, it is possible to express many interesting invariants of billiards in terms of these functions (see also [START_REF] Sorrentino | Computing Mather's β-function for Birkhoff billiards[END_REF]):

• If Γ ω is a caustic with rotation number ω ∈ (0, 1/2], then β is differentiable at ω and

β ′ (ω) = -length(Γ ω ) =: -|Γ ω | (see [21, Theorem 3.2.10]).
In particular, β is always differentiable at 0 and β ′ (0) = -|∂Ω|. • If Γ ω is a caustic with rotation number ω ∈ (0, 1/2], then one can associate to it another invariant, the so-called Lazutkin invariant Q(Γ ω ). More precisely

Q(Γ ω ) = |A -P | + |B -P | -| ⌢ AB | ( 4 
)
where P is any point on ∂Ω, A and B are the corresponding points on Γ ω at which the half-lines exiting from P are tangent to Γ ω (see figure 1 

Q(Γ ω ) = α(β ′ (ω)) = α(-|Γ ω |).
Remark. Recently, in [START_REF] Sorrentino | Markov numbers, Mathers beta function and stable norm[END_REF], the authors drew a connection between Mather's β-function and Fock's function related to so-called Markov numbers; in particular, they used this relation to answer a question by Fock on the regularity of this function. 

Statement of the main result

Let us now consider the framework of a standard-like twist map (see Example 2 in Section 2):

T g (x, y) = (x ′ , y ′ ) with x ′ = x + y + g(x) y ′ = y + g(x) (5) 
with g a 1-periodic, real analytic function of zero mean. Let G be the primitive of g with zero mean, and observe that G is real analytic and 1-periodic as well. As a generating function for T g , we take

h(x, x ′ ) = 1 2 (x -x ′ ) 2 + G(x).
As was mentioned earlier, Mather's β-function at any ω ∈ R is defined as the average action of any minimal configuration (x j ) j∈Z of rotation number ω:

β(ω) = lim N1→-∞ N2→+∞ 1 N 2 -N 1 N1≤j<N2 h(x j , x j+1 ), (6) 
and the general theory assures that β : R → R is continuous everywhere, and is differentiable at any ω ∈ R \ Q. It is worth noting particular symmetry properties in the system at hand: Lemma 1. The function ω → β(ω) -1 2 ω 2 is 1-periodic and even on R. Proof. This is a consequence of the following symmetry properties of the generating function h:

h(x + m, x ′ + m + 1) = h(x, x ′ ) + x ′ -x + 1 2 , h(x ′ , x) = h(x, x ′ ) + G(x ′ ) -G(x) (7) 
for all x, x ′ ∈ R and m ∈ Z. Indeed, take an arbitrary sequence (x j ) j∈Z with a definite rotation number ω and consider its finite-segment actions A(N 1 , N 2 ) := N1≤j<N2 h(x j , x j+1 ). Setting

x * j := x j + j, x * * j := x -j for all j ∈ Z, we get sequences with rotation numbers ω + 1 and -ω, whose finite-segement actions can be computed from (7):

N1≤j<N2 h(x * j , x * j+1 ) = N1≤j<N2 [h(x j , x j+1 )+x j+1 -x j + 1 2 ] = A(N 1 , N 2 )+x N2 -x N1 + N 2 -N 1 2 Figure 2. The perfect subset A C M ⊂ C
and, changing the summation index in ℓ = -j -1,

N1≤j<N2 h(x * * j , x * * j+1 ) = -N2-1<ℓ≤-N1-1 h(x ℓ+1 , x ℓ ) = -N2≤ℓ<-N1 [h(x ℓ , x ℓ+1 ) + G(x ℓ+1 ) -G(x ℓ )] = A(-N 2 , -N 1 ) + G(x -N1 ) -G(x -N2 ).
Hence, (x j ) j∈Z is a minimizer ⇐⇒ (x * j ) j∈Z is a minimizer ⇐⇒ (x * * j ) j∈Z is a minimizer. Moreover, since G is bounded, our computation entails

β(ω + 1) = β(ω) + ω + 1 2 , β(-ω) = β(ω)
whence the result follows.

Our main goal is to show that: if g is not too large (with respect to the width of its analyticity strip), then the restriction of β to a suitable subset of Diophantine frequencies is even more regular, in the sense that this restriction admits a C 1 -holomorphic extension β C defined on a complex domain (see below for the definition of C 1 -holomorphic functions).

In order to be more precise we need to fix some notation. Let us fix once for all τ > 0 and consider for M > 2ζ(1 + τ ) (here ζ is Riemann's zeta function) the following Diophantine set

A R M = ω ∈ R | ∀(n, m) ∈ Z × N * , |ω - n m | ≥ 1 M m 2+τ . ( 8 
)
This is a closed subset of the real line, of positive measure, which has empty interior and is invariant by the integer translations. We also consider the following subset of the complex plane

A C M = ω ∈ C | ∃ω * ∈ A R M such that | ℑm ω| ≥ |ω * -ℜe ω| (9)
which has the property that 2). Many of the functions that will be important for us satisfy the periodicity condition ϕ(ω + 1) = ϕ(ω), in fact they can be even expressed as ϕ = ψ • E, where E(ω) := e 2πiω [START_REF] Marmi | On the standard map critical function[END_REF] and ψ is defined on the following compact subset of the Riemann sphere C (see Figure 3): 

A C M ∩ R = A R M (see Figure
K M := E(A C M ) ∪ {0, ∞}. (11) 
(q, q ′ ) :=    ψ ′ (q) if q = q ′ , ψ(q ′ ) -ψ(q) q ′ -q if q = q ′ , ( 12 
)
is continuous and bounded; the function ψ ′ is then unique3 and we set

ψ C 1 hol (C,B) := max sup q∈C ψ(q) B , sup (q,q ′ )∈C×C Ωψ(q, q ′ ) B . ( 13 
)
This is a Banach space norm equivalent to the one indicated in [START_REF] Michael | Simple proofs of local conjugacy theorems for diffeomorphisms of the circle with almost every rotation number[END_REF] or [START_REF] Marmi | Quasianalytic monogenic solutions of a cohomological equation[END_REF] (or to the one indicated in [START_REF] Carminati | There is one KAM curve[END_REF], which is designed to be a Banach algebra norm whenever B is a Banach algebra ). Now, if K is a compact set in C, we will denote by O(K, B) the uniform algebra of continuous functions ϕ : K → B which are holomorphic in the interior of K, endowed with the norm

ϕ O(K,B) := max q∈K ϕ(q) B . ( 14 
)
To define C 1 hol (K, B), we assume furhtermore that K is perfect so as to ensure the uniqueness of the derivative. Following [START_REF] Fauvet | Explicit linearization of one-dimensional germs through tree-expansions[END_REF], we cover C with two charts, using q as a complex coordinate in C and ξ = 1 q in C \ {0}; a function ϕ :

K → B belongs to C 1 hol (K, B) if its restriction ϕ |K∩C belongs to C 1 hol (K ∩ C, B
) and the function φ : ξ → ϕ(1/ξ) belongs to C 1 hol ( Ǩ, B), where Ǩ := { ξ ∈ C | 1/ξ ∈ K } (with the convention 1/0 = ∞), and we set

ϕ C 1 hol (K,B) := max ϕ |K∩C C 1 hol (K∩C,B) , φ C 1 hol ( Ǩ,B) , (15) 
As usual, we simply denote by O(K) and C 1 hol (K) the spaces obtained when B = C. The following lemma, whose proof is deferred to the appendix, will be used several times: Lemma 2. Let B be a Banach space, A ⊂ C be a closed set, and let K be the closure of E(A) in the Riemann sphere C with E as in [START_REF] Marmi | On the standard map critical function[END_REF].

If ψ ∈ C 1 hol (K, B) then the function ψ•E ∈ C 1 hol (A, B), and ψ • E C 1 hol (A,B) ≤ C ψ C 1 hol (K,B
) (C = 2πe 2π will do). We also define, for any positive real R,

S R = {z ∈ C/Z | | ℑm z| < R} (16) 
and ϕ R := sup z∈SR |ϕ(z)| for any function ϕ : S R → C. Our main result is:

Theorem 3. Let R 1 be positive real.
Then there is c = c(τ, R 1 ) > 0 such that, for any real analytic 1-periodic function g which has zero mean and extends holomorphically to S R1 with g R1 < c, and for any M such that 1

< M 2ζ(1+τ ) < c g R 1
1/8 , Mather's β-function for the system (5) satisfies the following: β| A R M admits a complex extension to A C M of the form

β C (ω) := ω 2 2 + Φ C β (ω),
where

Φ C β ∈ C 1 hol (A C M ). Moreover, (i) the derivative of β C is an extension of the derivative of β| A R M ; (ii) the function Φ C
β is even and 1-periodic, and

Φ C β (ω) = Φ C β (ω); (iii) Φ C β = Φ • E for a function Φ ∈ C 1 hol (K M
) and E(z) := e 2πiz . This implies that Φ C β is defined in an infinite strip {ℑm ω > ℓ} (resp. {ℑm ω < -ℓ}) and admits a limit as ℑm ω → +∞ (resp. ℑm ω → -∞).

We thus have

β C | A R M = β| A R M , β ′ C | A R M = β ′ | A R M . We may refer to β C as a C 1 hol -holomorphic function, but notice that β C is not bounded, it is β C (ω) -ω 2 2 that belongs to C 1 hol (A C M ).
The proof of Theorem 3 is given in Sections 4-5. It relies on a result of [START_REF] Carminati | There is one KAM curve[END_REF], which studies regularity properties of the parametrized KAM curves: the result on the beta function will be obtained by averaging on the these curves, as we explain below.

The extension β C of β| A R

M provided by Theorem 3 is unique and does not depend on M . This follows from the quasi-analyticity property established in [START_REF] Marmi | A quasianalyticity property for monogenic solutions of small divisor problems[END_REF], according to which the space of functions C 1 hol (A C M ) is H 1 -quasi-analytic, where H 1 denotes the 1-dimensional Hausdorff measure : any subset Ω ⊂ A C M of positive H 1 -measure is a uniqueness set4 for this space of functions.

This quasi-analyticity property has the following striking consequence on the real Mather's β-function: Corollary 4. Let R 1 > 0 and let g be real analytic 1-periodic, which has zero mean and extends holomorphically to S R1 so that g R1 < c/3, with c = c(τ, R 1 ) as in Theorem 3. Then there exists M > 2ζ(1 + τ ) such that, for every ω 0 ∈ R, the function β| A R M is determined by the restriction of β to any subset of [ω 0 , ω 0 + 1] of Lebesgue measure ≥

3 g R 1 c
1/8 . One can take

M := 2ζ(1 + τ ) c 2 g R 1 1/8 .
Proof of Corollary 4. Since g R1 < c/3, we get

1 < c 3 g R 1 1/8 < M 2ζ(1+τ ) < c g R 1 1/8
and we can apply Theorem 3. We get a function

β C (ω) = ω 2 2 + Φ C β (ω) with Φ C β ∈ C 1 hol (A C M ). Let us denote by the Lebesgue measure on R. Let Ω ⊂ [ω 0 , ω 0 + 1] have m(Ω) ≥ 3 g R 1 c
1/8 . We will prove that Ω ∩ A R M is a uniqueness set for

C 1 hol (A C M ). As is well known, m [ω 0 , ω 0 + 1] \ A R M < 2ζ(1 + τ )/M , hence m [ω 0 , ω 0 + 1] \ A R M < 2 g R 1 c 1/8 < m(Ω). Consequently, m(Ω ∩ A R M ) = m(Ω) -m Ω ∩ ([ω 0 , ω 0 + 1] \ A R M ) > 0 and Ω ∩ A R M is thus a uniqueness set for C 1 hol (A C M ). It follows that Φ C β is determined by Φ C β |Ω∩A R M
; hence β C , and also

β| A R M = β C | A R M , are determined by β| Ω∩A R M .

Intermediate results

In order to prove Theorem 3, let us first recall part of the results of [START_REF] Carminati | There is one KAM curve[END_REF].

A parametrized invariant curve of rotation number ω for T g is a pair of continuous functions (U, V ) :

T → T × R such that T g (U (θ), V (θ)) = (U (θ + ω), V (θ + ω)) for all θ ∈ T. (17) 
Note that, if (U, V ) is a parametrized invariant curve for T g of rotation number ω ∈ R \ Q, then (U (jω)) j∈Z is a minimal configuration of rotation number ω and the limit in equation ( 6) becomes

β(ω) = lim N1→-∞ N2→+∞ 1 N 2 -N 1 N1≤j<N2 1 2 V (j + 1)ω 2 + G(U (jω)) = 1 2 T |V (θ)| 2 dθ + T G(U (θ))dθ, ( 18 
)
where we have used Birkhoff's ergodic theorem for the (uniquely) ergodic rotation of angle ω ∈ R \ Q on T. Since we will be interested in a perturbative result (i.e. valid for g R0 small), it is natural to write U (θ) = θ + u(θ), V (θ) = ω + v(θ). Taking into account the fact that equation ( 5) implies x ′ -x = y ′ , we can reduce the quest of an invariant curve to the solution of the following system of equations:

u(θ + ω) -2u(θ) + u(θ -ω) = g θ + u(θ) v(θ) = u(θ) -u(θ -ω). (19) 
It is in fact sufficient to solve the first equation for u: any 1-periodic solution u to this secondorder difference equation is the first component of an invariant curve of frequency ω.

Let us denote by H ∞ (S R ) the Banach space of 1-periodic bounded holomorphic functions on S R endowed with the supremum norm . R . The approach of [START_REF] Carminati | There is one KAM curve[END_REF] considers the unknown u = u(θ, ω) in equation (19a) as a function of two complex variables, the angle θ ∈ S R and the frequency ω ∈ A C M , or more precisely as a function of ω ∈ A C M with values in H ∞ (S R ). We quote the result as follows:

Theorem 5 (Theorem 1, [START_REF] Carminati | There is one KAM curve[END_REF]). Suppose 0 < R < R 0 and K > 0. Then there is c 0 = c 0 (τ, K, R, R 0 ) such that for any f : R → R 1-periodic with zero mean which extends holomorphically to a neighbourhood of S R0 with max{ f R0 , f ′′ R0 } ≤ K, for all M > 2ζ(1 + τ ), and for all positive ε < c 0 M -8 , there exists ũ = ũε,M ∈ C 1 hol (K M , H ∞ (S R )) with zero mean such that u := ũ • E (where E(z) := e 2πiz ) satisfies

u(θ + ω, ω) -2u(θ, ω) + u(θ -ω, ω) = εf θ + u(θ, ω) (20) 
for all θ ∈ S R and ω

∈ A C M such that θ ± ω ∈ S R , and u(θ, ω) ∈ R if θ ∈ R/Z and ω ∈ A R M . Moreover ũ C 1 hol (KM ,H ∞ (SR)) ≤ R0-R 4 .
Remark. Actually the statement above differs from the one in [START_REF] Carminati | There is one KAM curve[END_REF] for a couple of minor aspects. Indeed, in [START_REF] Carminati | There is one KAM curve[END_REF] the function ũ is thought as an element of the space C 1 hol (A C M , H ∞ (S R × D ρ )), with ρ = c 0 M -8 , while here we are only using the result for fixed ε.

Moreover in the statement of Theorem 1 in [START_REF] Carminati | There is one KAM curve[END_REF] the constant c 0 depends on f . However, analysing the proof one realizes that, for the iterative scheme to work, the constant c 0 can be determined only in terms of f R0 and f ′′ R0 , and does not actually depend on the specific choice of f (see in particular the remark in [START_REF] Carminati | There is one KAM curve[END_REF] on p. 2053, a few lines before § 4.2). The last estimate in Theorem 5 does not appear in the statement in [START_REF] Carminati | There is one KAM curve[END_REF], but is a by-product 5 of the proof of Lemma 19 in [START_REF] Carminati | There is one KAM curve[END_REF], on p. 2057.

Let us rephrase the result getting rid of the parameter ε: Corollary 6. Suppose 0 < R < R 1 . Then there is c 1 = c 1 (τ, R, R 1 ) such that for any M > 2ζ(1 + τ ), and for any g : R → R 1-periodic with zero mean which extends holomorphically to a neighbourhood of S R1 with g R1 < c 1 M -8 , there exists ũ

= ũM ∈ C 1 hol (K M , H ∞ (S R )) with zero mean, such that u := ũ • E (where E(ω) := e 2πiω ) satisfies u(θ + ω, ω) -2u(θ, ω) + u(θ -ω, ω) = g θ + u(θ), ω (21) 
for all θ ∈ S R and ω

∈ A C M such that θ ± ω ∈ S R , and u(θ, ω) ∈ R if θ ∈ R/Z and ω ∈ A R M . Proof. Let R 0 := R1+R 2 and K := max{1, 2 π(R0-R) 2 }. Cauchy inequalities yield g ′′ R0 ≤ 2 π(R0-R) 2 g R1 , therefore max{ g R0 , g ′′ R0 } ≤ K g R1 .
5

In [START_REF] Carminati | There is one KAM curve[END_REF] the authors use the notation ũ R rather than ũ C 1 hol (K M ,H ∞ (S R ))

Let us set c 1 := c 0 /2 (for c 0 = c 0 (τ, K, R, R 0 ) as in Theorem 5), and note that f := M 8 c1 g is such that

max{ f R0 , f ′′ R0 } ≤ M 8 c 1 max{ g R0 , g ′′ R0 } ≤ M 8 c 1 K g R1 ≤ K.
Therefore, choosing ε = c 1 M -8 and g = εf , Corollary 6 immediately follows from Theorem 5.

Remark. From the definition of the function spaces in [START_REF] Carminati | There is one KAM curve[END_REF] we deduce that not only ũ ∈ C 1 hol (K M , H ∞ (S R )), but ũ admits a normally convergent Fourier expansion

ũ(q, •) = k ûk (q)e k with ûk ∈ C 1 hol (K M ) e k (θ) := e 2πikθ (22) 
Moreover ( cf. [START_REF] Carminati | There is one KAM curve[END_REF], Definition 3.2) also k q k ûk (q)e k and k q -k ûk (q)e k [START_REF] Sorrentino | Action-minimizing methods in Hamiltonian dynamics: an introduction to Aubry-Mather theory[END_REF] converge normally in C 1 hol (K M , H ∞ (S R )) and ( cf. [START_REF] Carminati | There is one KAM curve[END_REF], Definition 3.3) ûk (q) = û-k (1/q) (24)

Lemma 7. The function u = ũ • E of Corollary 6 is 1-periodic in ω, it belongs to the space C 1 hol (A C M , H ∞ (S R )), and it satisfies u(θ, -ω) = u(θ, ω), u(θ, ω) = u(θ, ω).

Proof. The periodicity of u follows from the periodicity of E(ω) = e 2πiω and its C 1 -holomorphy from Lemma 2. By construction, ω ∈ A C M ⇐⇒ -ω ∈ A C M , so setting u * (θ, ω) := u(θ, -ω), it is easy to check that u * ∈ C 1 hol (A C M , H ∞ (S R )). Now, u * is clearly a solution to [START_REF] Moser | Monotone Twist Mappings and the Calculus of Variations[END_REF]. Thus, by the uniqueness argument of [START_REF] Carminati | There is one KAM curve[END_REF] (see footnote 6 on p. 2038), we get

u |A R M = u * |A R M
, hence, by the quasi-analyticity argument of [START_REF] Marmi | A quasianalyticity property for monogenic solutions of small divisor problems[END_REF], u = u * . From [START_REF] Sorrentino | Markov numbers, Mathers beta function and stable norm[END_REF], it follows that u(θ, ω) = u(θ, ω).

Proof of Theorem 3

We now give ourselves R 1 > 0 and define c := 2ζ(1 + τ ) -8 c 1 , with R := R 1 /2 and c 1 = c 1 (τ, R, R 1 ) as in Corollary 6. We suppose that g and M satisfy the assumptions of Theorem 3 with this value of c. We must find a function β C satisfying all the claims of Theorem 3. Among our assumptions, we have 1 < M 2ζ(1+τ ) < c g R 1 1/8 , therefore M > 2ζ(1 + τ ) and g R 1 c

< 2ζ(1 + τ ) 8 M -8 , whence g R1 < c 1 M -8 . We can thus apply Corollary 6 and use the function u = ũ • E satisfying equation ( 21) as well as the properties described in Lemma 7.

From now on, if φ ∈ C 1 hol (K M , H ∞ (S r )) has Fourier expansion φ(θ, q) = k φk (q)e k (θ) we define φ± (θ, q) = k q ±k φk (q)e k (θ).

Note that, by [START_REF] Sorrentino | Action-minimizing methods in Hamiltonian dynamics: an introduction to Aubry-Mather theory[END_REF], ũ± both belong to C 1 hol (K M , H ∞ (S r )). Moreover, if ϕ := φ • E ∈ C 1 hol (A C M , H ∞ (S r )), by a slight abuse of notation we denote by ϕ ± = φ± • E, which boils down to ϕ ± (θ, ω) = ϕ(θ ± ω, ω). Moreover we set v := u -u -, U (θ, ω) := θ + u(θ, ω), V (θ, ω) := ω + v(θ, ω).

Since ũ± ∈ C 1 hol (K M , H ∞ (S r )) we get that u ± both belong to C 1 hol (A C M , H ∞ (S r )), and the same is true for v.

S 1 ×

 1 (a, b), where S 1 := R/Z and a, b ∈ [-∞, +∞]. Let us consider a diffeomorphism f : S 1 × (a, b) -→ S 1 × (a, b) and its lift to the universal cover R × (a, b), that we will continue to denote by f ; we assume that f (x + 1, y) = f (x, y) + (1, 0) for each (x, y) ∈ R × (a, b).

  orientation and the boundaries of R × (a, b), i.e. y 1 (x 0 , y 0 ) ---→ y0→a a and y 1 (x 0 , y 0 ) ---→ y0→b b uniformly in x 0 ;

  ), and | • | denotes the euclidean length and | ⌢ AB | the length of the arc on the caustic joining A to B. This quantity is connected to the value of the α-function (see [21, Theorem 3.2.10]):

  Figure 1.

Figure 3 .

 3 Figure 3. The perfect subset K M = K (i) M ∪ K (e) M ⊂ C

  Hamiltonian which is strictly convex and superlinear in the momentum variable (i.e. ∂ 2

y H > 0 and lim |y|→+∞ H(x,y) |y|

Moreover, for any interior point q 0 of C, the complex derivative of ψ at q 0 exists and coincides with ψ ′ (q 0 ).

Namely, a function of this space which vanishes identically on Ω must vanish identically on the whole of A C M .

Lemma 8. The formula

defines a function β C which can be written in the form

Proof. By periodicity of u we immediately get that 1 0 vdθ = 0, 1 0 V dθ = ω, so the two expressions for β C above are equivalent.

The fact that

)), its square also belongs to that space, and Lemma 11 of [START_REF] Carminati | There is one KAM curve[END_REF] ensures that

. On the other hand, Lemma 4 of [START_REF] Carminati | There is one KAM curve[END_REF] ensures that if

Now we can write

Moreover by [START_REF] Siburg | The principle of least action in geometry and dynamics[END_REF] we get that g

where the first equality follows from equation (31) while equation (32) allows us to pass from the first line to the second; and translation invariance has been used several times as well.

We have Φ

, the stability of this space under multiplication, and (28)-(29), we obtain Φ ∈ C 1 hol (K M ). Proposition 9. The function β C defined in Lemma 8 coincides with Mather's β-function on the real line. In fact,

Proof. For ω ∈ A R M the sequence x j := U (jω, ω) defines a minimal configuration (x j ) j∈Z with rotation number ω; in fact, setting y j := ω + V (jω, ω) yields T (x j , y j ) = (x j+1 , y j+1 ). The proof of (i) then follows from equation [START_REF] Mather | Action minimizing orbits in Hamiltonian systems[END_REF].

The proof of (ii) follows from a well known formula (see [START_REF] Siburg | The principle of least action in geometry and dynamics[END_REF], Theorem 1.3.7-( 4)) which expresses the derivative of Mather's β-function in terms of U and V : [START_REF] Tabachnikov | Geometry and billiards[END_REF]. At this stage, only point (ii) of Theorem 3 remains to be proved. According to Lemma 7, we have

and v(θ, ω + 1) = v(θ, ω) = v(θ, ω). In view of (27), this yields

We use the same notations for Ǩ and ψ as in the definition of the space C 1 hol (K, B) given in Section 3. Notice that

according as inf{Re ω | ω ∈ A} > -∞ or not for the former, and sup{Re ω | ω ∈ A} < +∞ or not for the latter. Let ϕ := ψ • E. Clearly, ϕ is bounded and sup

with q := E(ω), q ′ := E(ω ′ ), ξ := E(-ω), ξ ′ := E(-ω ′ ). Letting ω ′ tend to ω, we get

and we define both Ωϕ(ω, ω) and ϕ ′ (ω) as this common value. This way Ωϕ is continuous on A × A.

Let us write A = A + ∪ A -, where A ± are the overlapping regions

If both ω and ω ′ belong to A + (resp. A -), then the quantity

) is bounded by 2πe 2π , hence by the first (resp. second) expression in (36) we get Ωϕ(ω, ω ′ ) B ≤ 2πe 2π ψ C 1 hol (K,B) ,

and also ϕ ′ (ω) B ≤ 2πe 2π ψ C 1 hol (K,B) by continuity. If ω and ω ′ do not lie in the same region, then |ω -ω ′ | ≥ 2, hence Ωϕ(ω, ω ′ ) B = ψ(q ′ )-ψ(q) ω ′ -ω B ≤ ψ C 1 hol (K,B) . Therefore, (37) always holds true, which completes the proof of our claim.