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This paper deals with the optimal regularity for entropy solutions of conservation laws. For this purpose, we use two key ingredients: (a) fine structure of entropy solutions and (b) fractional BV spaces. We show that optimality of the regularizing effect for the initial value problem from L ∞ to fractional Sobolev space and fractional BV spaces is valid for all time. Previously, such optimality was proven only for a finite time, before the nonlinear interaction of waves. Here for some well-chosen examples, the sharp regularity is obtained after the interaction of waves. Moreover, we prove sharp smoothing in BV s for a convex scalar conservation law with a linear source term. Next, we provide an upper bound of the maximal smoothing effect for nonlinear scalar multi-dimensional conservation laws and some hyperbolic systems in one or multi-dimension.

Introduction

For nonlinear conservation laws, it is known since Lax-Oleȋnik [START_REF] Lax | Hyperbolic systems of conservation laws II[END_REF][START_REF] Oleȋnik | Discontinuous solutions of nonlinear differential equations[END_REF] that the entropy solution can have a better regularity than the initial data for Burgers type fluxes. Such smoothing effect has been obtained in fractional Sobolev spaces [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF] and recently in fractional BV space [START_REF] Bourdarias | Fractional BV spaces and first applications to conservation laws[END_REF] for more general fluxes. The optimality of such regularization is largely open in general. For scalar 1-D conservation laws, there are some optimal results proven up to finite time [START_REF] Castelli | Oscillating waves and the maximal smoothing effect for one dimensional nonlinear conservation laws[END_REF][START_REF] Lellis | On the optimality of velocity averaging lemmas[END_REF][START_REF] Marconi | Regularity estimates for scalar conservation laws in one space dimension[END_REF]. The aim of this article is to obtain the same optimality for all time.

We start with the one-dimensional scalar conservation laws which reads as follow:

∂u ∂t + ∂f (u) ∂x = 0 for x ∈ R, t > 0, (1) 
u(x, 0) = u 0 (x) for x ∈ R.

(

) 2 
The classical well-posedness theory for the Cauchy problem (1)-( 2) is available for L ∞ and BV initial data [START_REF] Kružkov | First-order quasilinear equations with several space variables[END_REF][START_REF] Lax | Hyperbolic systems of conservation laws II[END_REF][START_REF] Oleȋnik | Discontinuous solutions of nonlinear differential equations[END_REF]. BV -regularizing effect on entropy solutions has been established in [START_REF] Lax | Hyperbolic systems of conservation laws II[END_REF][START_REF] Oleȋnik | Discontinuous solutions of nonlinear differential equations[END_REF] for uniformly convex fluxes. It is well know that if the flux function is not uniformly convex then in general, the entropy solution of (1) may not have a finite total variation, [START_REF] Adimurthi | Finer regularity of an entropy solution for 1-d scalar conservation laws with non uniform convex flux[END_REF][START_REF] Cheng | The space BV is not enough for hyperbolic conservation laws[END_REF]. It can be shown that in one dimension if f vanishes at some point then there exists a class of initial data such that f can not regularize the corresponding entropy solution up to BV for all time [START_REF] Ghoshal | Non existence of the BV regularizing effect for scalar conservation laws in several space dimension[END_REF]. Hence, to understand the optimal regularity of the entropy solution of (1), one works with more general space like fractional Sobolev space W s,p and fractional BV spaces BV s , 0 < s < 1, 1 ≤ p.

The advantage of BV s spaces is to recover the fractional Sobolev regularity W σ,p for all σ < s, 1 ≤ p < s -1 and to get the BV like trace properties of entropy solutions [START_REF] Crippa | Regularizing effect of nonlinearity in multidimensional scalar conservation laws, Transport equations and multi-D hyperbolic conservation laws[END_REF][START_REF] Panov | Existence of strong traces for generalized solutions of multidimensional scalar conservation laws[END_REF][START_REF] Panov | Existence of strong traces for quasi-solutions of multidimensional conservation laws[END_REF]. In one dimension, existence of the entropy solutions of (1) in BV s , with BV s data has been done in [START_REF] Bourdarias | Fractional BV spaces and first applications to conservation laws[END_REF] and with L ∞ data in the same spaces in [START_REF] Bourdarias | Fractional BV spaces and first applications to conservation laws[END_REF][START_REF] Marconi | Regularity estimates for scalar conservation laws in one space dimension[END_REF][START_REF] Marconi | Structure and regularity of solutions to 1D scalar conservation laws[END_REF]. For non-convex fluxes a Lagrangian framework is used [START_REF] Bianchini | On the concentration of entropy for scalar conservation laws[END_REF][START_REF] Bianchini | On the structure of L ∞ entropy solutions to scalar conservation laws in one-space dimension[END_REF]. For the scalar 1-D case, the BV s smoothing effect corresponds to the optimal smoothing effect conjectured by Lions, Perthame and Tadmor in Sobolev spaces with the same fractional derivative s [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF]. In multi-dimension, for a C 2,γ flux, it has been shown [START_REF] Ghoshal | Non existence of the BV regularizing effect for scalar conservation laws in several space dimension[END_REF] that entropy solutions do not need to have fractional derivative s + ε for ε > 0. For multi-dimensional scalar conservation laws, regularizing effect in fractional Sobolev space was first studied in [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF]. We refer [START_REF] Tadmor | Velocity averaging, kinetic formulations and regularizing effects in quasi-linear PDEs[END_REF] for the best known result in this direction and [START_REF] Jabin | Some regularizing methods for transport equations and the regularity of solutions to scalar conservation laws[END_REF] for further improvement with some extra assumptions, see also [START_REF] Gess | Regularity of solutions to scalar conservation laws with a force[END_REF] for such results with a source term. The proof of optimality of the exponent s > 0 is limited to some one-dimensional scalar examples [START_REF] Castelli | Oscillating waves and the maximal smoothing effect for one dimensional nonlinear conservation laws[END_REF][START_REF] Lellis | On the optimality of velocity averaging lemmas[END_REF] and before the nonlinear interaction of waves. It has been extended for the scalar multi-dimensional case in [START_REF] Castelli | On the maximal smoothing effect for multidmensional scalar conservation laws[END_REF][START_REF] Junca | High frequency waves and the maximal smoothing effect for nonlinear scalar conservation laws[END_REF] but not for all time. Recently, in [START_REF] Ghoshal | Non existence of the BV regularizing effect for scalar conservation laws in several space dimension[END_REF] it has been shown that in multi-dimension for any C 2 flux f there exists initial data u 0 such that the corresponding entropy solution is not in BV for all time t > 0.

The present article resolves the following:

• In one dimension, the optimal smoothing effect in fractional BV spaces is known for the equation [START_REF] Adimurthi | Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux[END_REF] in bounded strip of time (0, T ) for T > 0, before the interactions of waves [START_REF] Castelli | Oscillating waves and the maximal smoothing effect for one dimensional nonlinear conservation laws[END_REF]. So it is natural to ask the following question:

Does there exists an entropy solution to [START_REF] Adimurthi | Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux[END_REF] with compact support such that it does not belong to BV s+ε for all t > 0, ε > 0? (Q)

where s depends on the non-linearity of flux function. We first obtain an entropy solution to [START_REF] Adimurthi | Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux[END_REF] for flux f (u) = (1 + p) -1 |u| 1+p such that T V s+ε (u(•, t)) = ∞, for all ε > 0, for all t > 0, whereas T V s (u(•, t)) < ∞ with s = p -1 . Later we generalize this result for a larger class of fluxes.

• We extend the above result to higher dimension under some smooth regularity assumption on the flux in section 4.

• We are also able to answer the question (Q) for entropy solutions to balance laws which read as follow where α ∈ L ∞ ((0, +∞, R):

∂u ∂t + ∂f (u) ∂x = α(t)u for x ∈ R, t > 0, (3) 
u(x, 0) = u 0 (x) for x ∈ R.

• Smoothing effect for balance laws of type (3) in fractional BV space is not known. Based on a recent Lax-Oleȋnik type formula [START_REF] Adimurthi | Lax-Oleȋnik explicit formula and structure theory for balance laws[END_REF] we prove the BV s regularizing effect for entropy solutions to (3) with a convex flux satisfying the p-degeneracy power law condition [START_REF] Bourdarias | Fractional BV spaces and first applications to conservation laws[END_REF],

|f (u) -f (v)| |u -v| p ≥ c 0 > 0 for u = v ∈ [-M, M ]. (5) 
We recall that if f ∈ C 2 ([-M, M ]) then p ≥ 1 [START_REF] Bourdarias | Fractional BV spaces and first applications to conservation laws[END_REF]. The exact power-law degneracy is given by the infinimum of p satisfying [START_REF] Adimurthi | Lax-Oleȋnik explicit formula and structure theory for balance laws[END_REF]. When f is smooth, the infinimum is a minimum [START_REF] Bourdarias | Fractional BV spaces and first applications to conservation laws[END_REF].

To provide an answer to the question (Q) we recall some of the previously constructed examples [START_REF] Adimurthi | Structure of entropy solutions to scalar conservation laws with strictly convex flux[END_REF][START_REF] Adimurthi | Exact controllability of scalar conservation law with strict convex flux[END_REF][START_REF] Adimurthi | Finer regularity of an entropy solution for 1-d scalar conservation laws with non uniform convex flux[END_REF]. In Section 3, Theorem 3.1 provides the direct answer to (Q) for a power-law type flux function f (u) = (1 + p) -1 |u| 1+p . We have discussed before that convex flux function with pdegeneracy (i.e., satisfying [START_REF] Adimurthi | Lax-Oleȋnik explicit formula and structure theory for balance laws[END_REF]) gives a regularizing effect in BV s with s = 1/p [START_REF] Bourdarias | Fractional BV spaces and first applications to conservation laws[END_REF]. We construct an entropy solution u to (1) such that T V s+ε (u(•, t)) = ∞ for all t > 0 and ε > 0 with s = 1/p. Following the constructions in [START_REF] Adimurthi | Exact controllability of scalar conservation law with strict convex flux[END_REF][START_REF] Adimurthi | Finer regularity of an entropy solution for 1-d scalar conservation laws with non uniform convex flux[END_REF] we build the entropy solution u, consisting infinitely many shock profiles in a compact interval. These shock profiles are named Asymptotically Single Shock Packet (ASSP) in [START_REF] Adimurthi | Structure of entropy solutions to scalar conservation laws with strictly convex flux[END_REF]. Loosely speaking an ASSP is a solution with a special structure between two parallel lines in the half plane R x × R + t such that in large time only one shock curve appears between them. ASSP plays a role to describe structure and large time behaviour of the entropy solution to strictly convex flux [START_REF] Adimurthi | Structure of entropy solutions to scalar conservation laws with strictly convex flux[END_REF]. For the more complex structures of solutions for non-convex fluxes we refer interested reader to [START_REF] Bianchini | On the concentration of entropy for scalar conservation laws[END_REF][START_REF] Bianchini | On the structure of L ∞ entropy solutions to scalar conservation laws in one-space dimension[END_REF]. The construction is done in Section 3. The building block of such solutions has a support in half strip [a, b] × R + for some a < b and having an oscillation of amount δ n up to time t n . Then we club all of these building-blocks to get a solution with the same regularity for all time. Similar type of constructions for a slightly different aspect have been used in [START_REF] Adimurthi | Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux[END_REF][START_REF]Optimal results on TV bounds for scalar conservation laws with discontinuous flux[END_REF] to build non BV solutions of scalar conservation laws with discontinuous fluxes. A larger class of non-uniformly convex fluxes has been considered in [START_REF] Adimurthi | Finer regularity of an entropy solution for 1-d scalar conservation laws with non uniform convex flux[END_REF] to build non-BV solutions for all time. Such a flux f satisfies,

0 < f (a) -f (b) ≤ C(a -b) q for all b < θ f < a (6) 
where q > 1 and C > 0, which implies that f (θ f ) = 0. Condition ( 6) is about a minimal degeneracy condition of f near the point where f vanishes. We answer the question (Q) for this general class of convex functions satisfying [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF].

The notion of ASSP has been generalized recently in [START_REF] Adimurthi | Lax-Oleȋnik explicit formula and structure theory for balance laws[END_REF] for balance laws of type [START_REF] Adimurthi | Exact controllability of scalar conservation law with strict convex flux[END_REF]. Based on a Lax-Oleȋnik type formula [START_REF] Adimurthi | Lax-Oleȋnik explicit formula and structure theory for balance laws[END_REF] for entropy solutions to [START_REF] Adimurthi | Exact controllability of scalar conservation law with strict convex flux[END_REF], we are able to answer analogous version of (Q) for such a balance law with linear source term. In Section 3 we provide a construction to show the optimality of the regularizing effect in balance law set up for power-law type flux functions. Like the case for α ≡ 0, the constructed solution for balance law is a juxtaposition of infinitely many ASSP. Naturally, for such balance laws, the boundaries of ASSP are curves instead straight lines. Moreover, when α ≡ 0, the case of conservation laws is recovered. We choose to answer to the question (Q) in this slightly more general setting.

In the remainder of the paper, Sections 4, 5 and 6, the results obtained for the one dimensional scalar case are used to bound the maximal smoothing effect for solutions of three different problems, namely, scalar multidimensional equations, a class of triangular systems and a multidimensional system. For the multidimensional case, planar waves are used as in [START_REF] Castelli | On the maximal smoothing effect for multidmensional scalar conservation laws[END_REF][START_REF] Ghoshal | Non existence of the BV regularizing effect for scalar conservation laws in several space dimension[END_REF][START_REF] Junca | High frequency waves and the maximal smoothing effect for nonlinear scalar conservation laws[END_REF]. For a class of triangular systems involving a transport equation, the main problem is to keep the linear component bounded and not being a δ-shock while the nonlinear component belongs to the critical BV space. For multi-dimensional Keyfitz-Kranzer system [START_REF] Keyfitz | A system of nonstrictly hyperbolic conservation laws arising in elasticity theory[END_REF], it has been shown, [START_REF] Lellis | Blowup of the BV norm in the multidimensional Keyfitz and Kranzer system[END_REF] that small T V bound of initial data is not enough to get immediately a BV renormalized solution of the Keyfitz-Kranzer system. In this article we implement his construction to get a similar blow up in all BV s spaces, s > 0.

2 Fractional BV spaces, BV s , 0 < s ≤ 1

In this section, the definition of generalized BV (R) spaces are recalled [START_REF] Musielak | On generalized variations[END_REF]. Then the multi-D case is stated. Definition 2.1 (BV s (R, R)). Let p = 1/s, the T V s variation also called the total p-variation of any real function v is:

TV s v = sup {x i }∈P n i=2 |v(x i ) -v(x i-1 )| p (7) 
where

P = {{x 1 , • • • , x n }, x 1 < • • • < x n , 2 ≤ n ∈ N} is the set of subdivisions of R.
The space BV s (R, R) is the subset of real functions such that,

BV s (R) = {v, TV s (v) < ∞}. (8) 
Notice that BV 1 = BV and BV s ⊂ L ∞ for all 0 < s ≤ 1. By convention, we set BV 0 = L ∞ . A similar definition can be used to defined BV s (I, R) where I ⊂ R, only considering the subdivisions of I. The factional Sobolev space W s,p can be defined as follows:

Definition 2.2. Let Ω ⊂ R N be open. Let s ∈ (0, 1) and p ∈ [1, ∞). By W s,p (Ω) we denote the set of all u ∈ L p (Ω) such that |u(x) -u(y)| |x -y| s+ N p ∈ L p (Ω × Ω). (9) 
It is worth mentioning that BV s does not coincide with fractional Sobolev space, W s,p but it is closely related to W s,p with the critical exponent p for the traces theory, that is, s p = 1. More precisely, for all ε > 0, BV s loc ⊂ W s-ε,1/s loc ⊂ W s-ε,1 loc [START_REF] Bourdarias | Fractional BV spaces and first applications to conservation laws[END_REF]. All the examples valid for all times in this article present shocks, so are discontinuous and therefore never belong to W s+ε,1/s , ∀ε > 0.

Thus, a non BV s regularity corresponds to a non Sobolev regularity with the same exponent up to any positive ε. The optimality can also be studied in BV s and corresponds to the similar Sobolev optimaty. Notice also that the estimates in fractional BV spaces can be simpler than in fractional Sobolev spaces as in [START_REF] Castelli | Fractional spaces and conservation laws[END_REF]. It is the reason why only result in BV s are given in this paper. Furthermore, BV s regularity guarantees left and right traces like BV functions. That is why BV s spaces seem more well fitted to study the regularity of the solutions of conservation laws than the corresponding Sobolev spaces.

To extend the definition of BV s for the multi-D case, a theorem characterizing BV s in 1-D is used. This theorem characterizes the space BV s with the Holder space Lip s and the BV space. It is due to Michel Bruneau [START_REF] Bruneau | La variation totale d'une fonction[END_REF].

Theorem 2.1 [START_REF] Bruneau | La variation totale d'une fonction[END_REF]. For any u ∈ BV s there exists the following factorization by a s-Holder function and a BV function,

u ∈ BV s ⇔ ∃ L ∈ Lip s (R, R), ∃ v ∈ BV (R) s.t. u = L • v. That means that BV s (R, R) = Lip s (R, R) • BV (R, R).
In order to define BV s (R m ), we recall the definition of BV (R m ) for m ≥ 1

Definition 2.3 ( BV (R m )). A function u belongs to BV (R m ) if there exists a Radon measure µ such that R u(x) div φ(x) dx = -< µ, φ > ∀φ ∈ C 1 c (R m ).
Now, the following natural definition of BV s (R m ) is proposed for m ≥ 1.

Definition 2.4 ( BV s (R m )). A function u belongs to BV s (R m ) if there exists the following factorization by an s-Holder function

L ∈ Lip s (R, R) and a BV (R m , R) function v such that u = L • v. That means that BV s (R m , R) = Lip s (R, R) • BV (R m , R). (10) 
This definition can be extended to BV s loc (R m ) by:

BV s loc (R m , R) = Lip s (R, R) • BV loc (R m , R). (11) 
Notice that the Holder function has to be globally on R an Holder function since

BV (R m ) is not a subset of L ∞ for m > 1.
This definition is valid for m = 1 thanks to Bruneau's Theorem 2.1. Moreover, a BV s loc (R) 1-D function can be also considered as a BV s loc (R m ) multi-D function by the following lemma.

Lemma 2.1. Let ξ ∈ S m-1 and U (X) = u(ξ • X), U ∈ BV s loc (R m ) if and only if u ∈ BV s loc (R)
Proof. From the Bruneau's Theorem 2.1, slightly extended on bounded set,

u(x) = L(v(x)) where v ∈ BV loc (R). Let V (X) be v(ξ • X). V belongs to BV loc (R m ) [6, 29]. Thus U (X) = L(V (X)) belongs to BV s loc (R m , R).
The converse is also clear.

3 Sharp regularity for scalar 1D entropy solutions

In this section, we will build some examples to show the optimality of smoothing effect in BV s for all time. This regularity has been obtained in [START_REF] Bourdarias | Fractional BV spaces and first applications to conservation laws[END_REF][START_REF] Guelmame | Regularizing effect for conservation laws with a Lipschitz convex flux[END_REF][START_REF] Castelli | Fractional spaces and conservation laws[END_REF][START_REF] Marconi | Regularity estimates for scalar conservation laws in one space dimension[END_REF][START_REF] Marconi | Structure and regularity of solutions to 1D scalar conservation laws[END_REF]. The optimality for all time is new. For that purpose, we consider the flux f (u) = |u| p+1 /(p + 1) so f (u) = u|u| p-1 . It is shown that for u 0 ∈ L ∞ , the solution becomes instantly in BV s loc , with s = p -1 . Theorem 3.1 stated below shows that the regularizing in BV s space is optimal for all time since there exist entropy solutions u such that u(•, t) / ∈ BV s+ε for all ε > 0 and for all t > 0. The construction of this example is similar to the one done in [START_REF] Adimurthi | Structure of entropy solutions to scalar conservation laws with strictly convex flux[END_REF] to show infinitely many shock profile occurrence in compact interval. Similar construction has been also used in [START_REF] Adimurthi | Finer regularity of an entropy solution for 1-d scalar conservation laws with non uniform convex flux[END_REF] to show the existence of an entropy solution which does not belong to BV for all time. Here we use it to show the existence of an entropy solution which is exactly in BV s with s = p -1 for all time t > 0 with no more regularity.

Theorem 3.1. There exists compactly supported initial data

u 0 ∈ L ∞ (R) such that the corre- sponding entropy solution u(•, t) ∈ L ∞ (R × [0, ∞)) of the scalar conservation law (1) with the flux f (u) = |u| p+1 /(p + 1), p ≥ 1 satisfies for all t > 0, for all ε > 0 with s = p -1 , T V s u(•, t) < +∞ = T V s+ε u(•, t).
Theorem 3.1 can be seen as a particular case (that is, α ≡ 0) of the following result stated in context of balance laws.

Theorem 3.2.

There exists an initial data u 0 ∈ L ∞ (R) such that the corresponding entropy solution to balance law [START_REF] Adimurthi | Exact controllability of scalar conservation law with strict convex flux[END_REF] 

with flux f (u) = (1 + p) -1 |u| 1+p for p > 1 and α ∈ L ∞ (0, ∞) satisfies the following with s = p -1 T V s (u(•, t)) < ∞ = T V s+ε (u(•, t)) for all t > 0 and ε > 0. ( 12 
)
Theorem 3.2 also states about the regularizing of entropy solution corresponding to a particular initial data u 0 and flux f (u) = (p + 1) -1 |u| p+1 . Next we will show that it is not restricted to a special choice of data and flux. If a flux satisfies a p-degeneracy condition like (5) then regularizing is valid for any L ∞ initial data. More precisely, we have the following Theorem 3.3. Let f ∈ C 1 (R) be a convex flux satisfying a power-law condition (5) and super linear growth condition [START_REF] Bressan | Hyperbolic systems of conservation laws: the one-dimensional Cauchy problem[END_REF]. Let α ∈ L ∞ (0, ∞). Let u 0 ∈ L ∞ (R). Let u be the entropy solution of the initial value problem for the balance law (3), with the initial data u 0 (4), then

u(•, t) ∈ BV s loc (R) for s = 1 p and ∀ t > 0. ( 13 
)
As we have discussed before for α ≡ 0 case, that for entropy solutions to (1), uniformly convex flux regularizes the solution in BV space [START_REF] Lax | Hyperbolic systems of conservation laws II[END_REF][START_REF] Oleȋnik | Discontinuous solutions of nonlinear differential equations[END_REF] and it fails once we drop the uniform convexity assumption on flux function [START_REF] Adimurthi | Finer regularity of an entropy solution for 1-d scalar conservation laws with non uniform convex flux[END_REF][START_REF] Cheng | The space BV is not enough for hyperbolic conservation laws[END_REF]. As a natural extension, one can ask for the regularizing effect for strictly convex fluxes and it has been shown in [START_REF] Bourdarias | Fractional BV spaces and first applications to conservation laws[END_REF] that regularizing is valid in fractional BV space once the flux satisfying a p-degeneracy condition [START_REF] Adimurthi | Lax-Oleȋnik explicit formula and structure theory for balance laws[END_REF]. For strictly convex Lipschitz flux, regularizing effect can be obtained in more general spaces like BV Φ with a special choice of Φ, [START_REF] Guelmame | Regularizing effect for conservation laws with a Lipschitz convex flux[END_REF]. To prove T V s+ε (u(•, t)) = ∞ for all t > 0 we construct an entropy solution consisting ASSP 's (see [START_REF] Adimurthi | Structure of entropy solutions to scalar conservation laws with strictly convex flux[END_REF] for more detail on ASSP ). The other part, that is, u ∈ BV s follows from [START_REF] Bourdarias | Fractional BV spaces and first applications to conservation laws[END_REF] in the case of Theorem 3.1 that is, when u solves (1). But for balance law of type (3) no such result exists.

It can be proved in a similar fashion as it was done in [START_REF] Bourdarias | Fractional BV spaces and first applications to conservation laws[END_REF] for conservation laws. We first give a brief sketch of the proof for u ∈ BV s where u is the entropy solution to balance law [START_REF] Adimurthi | Exact controllability of scalar conservation law with strict convex flux[END_REF]. In order to do that let us first recall some of the definitions and results from [START_REF] Adimurthi | Lax-Oleȋnik explicit formula and structure theory for balance laws[END_REF].

Definition 3.1. Let α ∈ L ∞ (0, ∞). Let β be primitive of α, that is, β(t) = t 0 α(θ) dθ. ( 14 
)
Suppose that the flux f is having super-linear growth, that is,

lim |v|→∞ f (v) |v| = ∞. ( 15 
)
We define Ψ : R × R + → R-function as follows:

x = t 0 f Ψ(x, t)e β(θ) dθ for each x ∈ R. ( 16 
)
Note that Ψ in ( 16) is well-defined on R × R + due to super-linear growth (15) of f (see [START_REF] Adimurthi | Lax-Oleȋnik explicit formula and structure theory for balance laws[END_REF]). For α ≡ 0 and strictly convex C 1 flux f , the Ψ-function is nothing but (f ) -1 (x/t). As it is observed in [START_REF] Adimurthi | Lax-Oleȋnik explicit formula and structure theory for balance laws[END_REF], the map x → Ψ(x, t) is increasing for strictly convex flux f . [START_REF] Bressan | Hyperbolic systems of conservation laws: the one-dimensional Cauchy problem[END_REF]. Let u be the entropy solution to [START_REF] Adimurthi | Exact controllability of scalar conservation law with strict convex flux[END_REF] 

Proposition 3.1. ([5]) Let α ∈ L ∞ (R + ) and the flux f ∈ C 1 (R) satisfying
with initial data u 0 ∈ L ∞ (R). Then u satisfies u(x, t) = e β(t) Ψ(x -y(x, t), t) for all x ∈ R, t > 0 ( 17 
)
for some function y such that x → y(x, t) is non-decreasing and β is defined as in [START_REF] Bourdarias | Eulerian and Lagrangian formulations in BV s for gas-solid chromatography[END_REF]. Moreover, for each T > 0 there exists a constant C(T ) such that

|x -y(x, t)| ≤ C(T )t for all t ∈ [0, T ]. ( 18 
)
Since Ψ is increasing in its first variable we have the following lemma.

Lemma 3.1. Let f ∈ C 1 be a convex flux satisfying the super linear growth condition (15) and power-law condition (5) with p ≥ 1. Then for any z 1 , z 2 ∈ R we have with s = p -1 ,

|Ψ(z 1 , t) -Ψ(z 2 , t)| ≤ |z 1 -z 2 | c 0 γ(t) s , (19) 
with γ(t) := t 0 e pβ(θ) dθ where β is defined as in [START_REF] Bourdarias | Eulerian and Lagrangian formulations in BV s for gas-solid chromatography[END_REF]. ( 20)

Proof. Fix two points z 1 , z 2 ∈ R. Without loss of generality, we can assume z 1 > z 2 . Since Ψ is increasing in its first variable, we have

Ψ(z 1 , t)e -β(θ) ≥ Ψ(z 2 , t)e -β(θ) . (21) 
Since f satisfies p-degeneracy condition (5) and f is continuous, that means that f is monotone. Assume that f is increasing, so the absolute values are skipped in [START_REF] Adimurthi | Lax-Oleȋnik explicit formula and structure theory for balance laws[END_REF] and,

f (a) -f (b) ≥ c 0 (a -b) p for a ≥ b. (22) 
Therefore, by the definition ( 16) of Ψ we also have for

z 1 > z 2 , |z 1 -z 2 | = z 1 -z 2 = t 0 f Ψ(z 1 , t)e β(θ) dθ - t 0 f Ψ(z 2 , t)e β(θ) dθ (23) 
≥ t 0 c 0 (Ψ(z 1 , t) -Ψ(z 2 , t)) p e pβ(θ) dθ (24) = c 0 |Ψ(z 1 , t) -Ψ(z 2 , t)| p t 0 e pβ(θ) dθ. ( 25 
)
This proves the inequality [START_REF] Castelli | Smoothing effect in BV -Φ for entropy solutions of scalar conservation laws[END_REF]. Now we are ready to prove the regularity result for entropy solution to balance laws [START_REF] Adimurthi | Exact controllability of scalar conservation law with strict convex flux[END_REF].

Proof of Theorem 3.3. Fix a partition between a = x 0 < x 1 < • • • < x m = b. By Proposition 3.1, we have m k=1 |u(x k , t) -u(x k-1 , t)| p = e pβ(t) m k=1 |Ψ(x k -y(x k , t), t) -Ψ(x k-1 -y(x k-1 , t), t)| p . (26) 
By virtue of Lemma 3.1 we have

m k=1 |u(x k , t) -u(x k-1 , t)| p ≤ e pβ(t) (c 0 γ(t)) -1 m k=1 |x k -y(x k , t) -x k-1 -y(x k-1 , t)|. (27) 
Since x → y(x, t) is increasing for each fixed t, we have

m k=1 |u(x k , t) -u(x k-1 , t)| p ≤ e pβ(t) (c 0 γ(t)) -1 [b -a + y(b, t) -y(a, t)] ≤ e pβ(t) (c 0 γ(t)) -1 [2(b -a) + 2C(T )t] (28) 
for all t ∈ (0, T ). The last line follows from the inequality [START_REF] Castelli | Oscillating waves and the maximal smoothing effect for one dimensional nonlinear conservation laws[END_REF]. This completes the proof of Theorem 3.3.

Our next aim is to establish the optimality of Theorem 3.3 for all time t > 0 and for that we restrict our discussion for power-law type fluxes, more precisely, f (u) = (p + 1) -1 |u| p+1 for p > 1.

Proof of Theorem 3.2. To set the path for constructing an entropy solution to (3) which does not belong to BV s loc (R) for s > 1/p, we first observe the structure of entropy solution to the following initial data.

u n 0 (x) =        0 for x < x n -∆x n , δ n for x n -∆x n < x < x n , -δ n for x n < x < x n + ∆x n , 0 for x n + ∆x n < x (29) 
for δ n , ∆x n > 0 and x n ∈ R. For f (u) = (p + 1) -1 |u| p+1 , Ψ has the following form

Ψ(x, t) = x|x| -p-1 p γ(t) -1 p ( 30 
)
where γ(t) is defined as in [START_REF] Castelli | On the maximal smoothing effect for multidmensional scalar conservation laws[END_REF]. With the help of results from [START_REF] Adimurthi | Structure of entropy solutions to scalar conservation laws with strictly convex flux[END_REF][START_REF] Adimurthi | Lax-Oleȋnik explicit formula and structure theory for balance laws[END_REF] we have the following observations 1. Consider a Riemann problem w 0 C defined as follows

w 0 C = w -for x < x 0 , w + for x > x 0 , where w -> w + . (31) 
The entropy solution, w C to (3) corresponding to Riemann data w 0 C has the following form

w C = w -e β(t) for x < x 0 + λ(t), w + e β(t) for x > x 0 + λ(t), (32) 
for t > 0 where λ(t) is defined as follows:

λ(t) := 1 w + -w - t 0 f (w + e β(θ) ) -f (w -e β(θ) ) e -β(θ) dθ. (33) 
2. Next we consider a special data w 0 L defined as follows:

w 0 L (x) = 0 for x < x L , δ n for x > x L , (34) 
where δ n > 0. Then entropy solution to (3) with initial data w 0 L will look like

w L (x, t) =    0 for x < x L , Ψ(x -x L , t)e β(t) for x L ≤ x ≤ ζ L (t), δ n e β(t) for x > ζ L (t), (35) 
for t > 0 where ζ L (t) are determined by

Ψ(ζ L (t) -x L , t) = δ n . (36) 
3. Now consider the following data

w 0 R (x) = -δ n for x < x R , 0 for x > x R , (37) 
where δ n > 0. Then entropy solution to (3) will look like

w R (x, t) =    -δ n e β(t) for x < ζ R (t), Ψ(x -x R , t)e β(t) for ζ R (t) ≤ x ≤ x R , 0 for x > x R , for t > 0, ( 38 
)
where ζ R is determined by Ψ(ζ R (t) -x R , t) = -δ n . (39) 
Let us set x0 := x n , x L := x n -∆x n and x R := x n + ∆x n . Suppose the corresponding ζ L (t) and ζ R (t) intersect each other at (x n , t n ) for the first time. From [START_REF] Kružkov | First-order quasilinear equations with several space variables[END_REF] and [START_REF] Marconi | Regularity estimates for scalar conservation laws in one space dimension[END_REF] we observe that x n -∆x n = x L ≤ xn ≤ x R = x n + ∆x n . By using [START_REF] Guelmame | Regularizing effect for conservation laws with a Lipschitz convex flux[END_REF], [START_REF] Lax | Hyperbolic systems of conservation laws II[END_REF] and [START_REF] Marconi | Structure and regularity of solutions to 1D scalar conservation laws[END_REF] we have

(x n -x n + ∆x n ) 1 p γ(t n ) -1 p = δ n = (x n + ∆x n -xn ) 1 p γ(t n ) -1 p . (40) 
Hence, we get xn = x n . Subsequently, we obtain (∆x n )

1 p γ(t n ) -1 p = δ n .
Recall definition of γ(t) as in [START_REF] Castelli | On the maximal smoothing effect for multidmensional scalar conservation laws[END_REF]. Therefore, t n is determined as follows,

tn 0 e pβ(θ) dθ = ∆x n δ p n . ( 41 
)
Suppose B * is the integration of e β over R + , that is, 

B * := ∞ 0 e pβ(θ) dθ = γ(+∞). (42) 
In this case, we have the following feature which does not arise for solutions of (1):

ζ L (t) < x n < ζ R (t) for all t ∈ (0, ∞). (44) 
Summarizing these observations we have [START_REF] Oleȋnik | Discontinuous solutions of nonlinear differential equations[END_REF] has no solution in (0, ∞). In this case, we set t n = ∞, that is to say that ζ L and ζ R never meet with each other.

O1. If ∆x n δ p n < B * then (41) has a unique solution in (0, ∞). O2. If ∆x n δ p n ≥ B * then
If t n < ∞ then note that for t > t n we have

Ψ(x n -x L , t) = -Ψ(x n -x R , t). ( 45 
)
Therefore we have the following structure of entropy solution u, to (3) with initial data u 0 as in (29):

1. For 0 < t < t n we have

u n (x, t) =                  0 for x < x n -∆x n , Ψ(x -(x n -∆x n ), t)e β(t) for x n -∆x n < x < ζ L (t), δ n e β(t) for ζ L (t) < x < x n , -δ n e β(t) for x n < x < ζ R (t), Ψ(x -(x n + ∆x n ), t)e β(t) for ζ R (t) < x < x n + ∆x n , 0 for x n + ∆x n < x. (46) 
2. For t > t n we have

u n (x, t) =        0 for x < x n -∆x n , Ψ(x -(x n -∆x n ), t)e β(t) for x n -∆x n < x < x n , Ψ(x -(x n + ∆x n ), t)e β(t) for x n < x < x n + ∆x n , 0 for x n + ∆x n < x. ( 47 
) Note that T V s+ε (u n (•, t)) ≥ (2δ n ) 1 s+ε e β(t) s+ε for t ∈ [0, t n ).
From the above discussion we know that support of the entropy solution u n (•, t) lies in [x n -∆x n , x n + ∆x n ] for all time t > 0. We choose ∆x n = (n log 2 (n + 1)) -1 and δ n = (n log 3 (n + 1))

-1 p . Subsequently, we have ∆x n δ p n = log(n + 1) → ∞ as n → ∞. ( 48 
) Since ∞ n=1 ∆x n < ∞ we can choose a sequence x n such that x n + ∆x n < x n+1 -∆x n+1 < x * < ∞
for all n ≥ 1. Now we define an initial data u 0 as follows

u 0 = ∞ n=1 u n 0 . (49) 
Note that by previous observation and choice of x n , entropy solutions u n has mutually disjoint support for all t > 0. Therefore, the entropy solution u of (3) corresponding to initial data u 0 can be written as

u(x, t) = ∞ n=1 u n (x, t) for all x ∈ R, t > 0. ( 50 
)
Recall observations (O1.) and (O2.). Hence, for each fixed t ∈ (0, ∞) there exists an n 0 such that t < t n for all n ≥ n 0 due to (48). From definition (14) of β(t) we have β(t) ≥ -t α L ∞ (R + ) for all t ≥ 0. Therefore, we have

T V s+ε (u(•, t)) ≥ 2 1 s+ε e β(t) s+ε ∞ n=n 0 δ p 1+pε n = 2 1 s+ε e -t s+ε α L ∞ (R + ) ∞ n=n 0 1 (n log 3 (n + 1)) 1 1+pε = ∞. (51)
Note that the T V s (u(•, t)) < ∞ for s = 1/p and t > 0 due to Theorem 3.3.

Our next result upgrades Theorem 3.1 for more general class of functions satisfying the following hypothesis:

x t t 1 t 2 t n ... δ 1 -δ 1 ∆x 1 ∆x 2 ∆x n
Figure 1: This picture illustrates the entropy solution constructed in Theorem 3.1 for α ≡ 0 case. This construction and structure of entropy solution have been previously studied in [START_REF] Adimurthi | Structure of entropy solutions to scalar conservation laws with strictly convex flux[END_REF][START_REF] Adimurthi | Exact controllability of scalar conservation law with strict convex flux[END_REF][START_REF] Adimurthi | Finer regularity of an entropy solution for 1-d scalar conservation laws with non uniform convex flux[END_REF].

(H-1) f ∈ C 1 (R) is a strictly convex function such that f (0) = f (0) = 0.
(H-2) There exist q > 1, r > 0 and C > 0 such that

0 ≤ f (a) -f (b) ≤ C(a -b) q for all b ∈ (-r, 0) and a ∈ (0, r). (52) 
Remark 3.1. We do not lose generality by assuming that f (0) = f (0) = 0, due to the change of variables x → x -f (0)t and f (u

) def = f (u) -f (0) -f (0)u.
The class of function satisfying (H-1) and (H-2) was previously considered in [START_REF] Adimurthi | Finer regularity of an entropy solution for 1-d scalar conservation laws with non uniform convex flux[END_REF] to show non-BV propagation for all time t > 0. In this article, we will show the non-BV s propagation for same class of function in the context of balance laws (3).

Theorem 3.4. Let f ∈ C 1 (R) satisfying (H-1) and (H-2) along with super linear growth condition [START_REF] Bressan | Hyperbolic systems of conservation laws: the one-dimensional Cauchy problem[END_REF]. Let α ∈ L ∞ (0, ∞). Then there exists a compact support initial data u 0 ∈ L ∞ (R) such that the corresponding entropy solution u of (3) satisfies the following:

u(•, t) / ∈ BV s loc (R) for all s > 1/q, t > 0. ( 53 
)
Remark 3.2. Note that Theorem 3.4 is optimal for the class of fluxes satisfying (52). It is easy to verify that f (u) = (q+1) -1 |u| q+1 satisfies (52) and as we have seen in Theorem 3.3, u(•, t) ∈ BV 1/q for t > 0.

Observation: We want to make a remark that for convex f satisfying (H-1), we have Ψ(0, t) = 0.

From the definition of Ψ we have

0 = t 0 f Ψ(0, t)e β(θ) dθ. ( 54 
)
Since f is a C 1 strictly convex function, f is increasing. Hence af (a) > 0 for any a = 0 because f (0) = 0. Suppose Ψ(0, t) > 0 then t 0 f Ψ(0, t)e β(θ) dθ > 0.

(55)

Similarly, if Ψ(0, t) < 0, then we have

t 0 f Ψ(0, t)e β(θ) dθ < 0. ( 56 
)
Note that both (55) and (56) contradict with (54). Therefore we have Ψ(0, t) = 0. Note that Ψ is increasing in its first variable due to strict convexity assumption on f . Subsequently, we get xΨ(x, t) > 0 for any x = 0. Before we give the main construction to prove Theorem 3.4 we first recall some results from [START_REF] Adimurthi | Finer regularity of an entropy solution for 1-d scalar conservation laws with non uniform convex flux[END_REF] and find structure of the entropy solution to the following data

u 0 A,B (x) =    0 if x / ∈ [A, B], a A,B if x ∈ [A, τ ], b A,B if x ∈ (τ, B]. (57) 
Next we make a choice for the pair (a A,B , b A,B ) depending on A, B. For that purpose we define G : R → R as

G(a) = t 0 0 af (ae β(θ) ) -f (ae β(θ) )e -β(θ) dθ, (58) 
where t 0 > 0 is fixed. Now we claim that z → G(z) is increasing for z > 0 and decreasing for z < 0. To see this consider a > a 1 > 0, then by Mean Value Theorem we have ae β(θ) f (ae β(θ) ) -a 1 e β(θ) f (a 1 e β(θ) ) -f (ae β(θ) ) + f (a 1 e β(θ) ) =ae β(θ) f (ae β(θ) ) -a 1 e β(θ) f (a 1 e β(θ) ) -f (c * )(a -a 1 )e β(θ) , for some c * ∈ (a 1 e β(θ) , ae β(θ) ). Since f is increasing, we get

ae β(θ) f (ae β(θ) ) -a 1 e β(θ) f (a 1 e β(θ) ) -f (ae β(θ) ) + f (a 1 e β(θ) ) ≥ ae β(θ) f (ae β(θ) ) -a 1 e β(θ) f (a 1 e β(θ) ) -f (ae β(θ) )(a -a 1 )e β(θ) = a 1 e β(θ) f (ae β(θ) ) -f (a 1 e β(θ) ) ≥ 0.
Hence, from (58) we obtain a → G(a) is increasing for a > 0. By a similar argument, we get b → G(b) is decreasing for b < 0. Therefore, we have that there exists r 0 > 0 such that for a given a ∈ (0, r 0 ) there is a b ∈ (-r, 0) satisfying

G(a) = G(b). Let us fix a 0 ∈ (0, r 0 ) and b 0 ∈ (-r, 0) such that G(a 0 ) = G(b 0 ). Define F -: [b 0 , 0] → R and F + : [0, a 0 ] → R as follows F + (a) = t 0 0 f (ae β(θ) ) dθ and F -(b) = - t 0 0 f (be β(θ) ) dθ. ( 59 
)
Since f is increasing and f (0) = 0, F + is increasing and F -is decreasing. We also have F + (0) = F -(0) = 0. Now we fix A, B such that

B -A ≤ min{F + (a 0 ), F -(b 0 )}. ( 60 
)
We wish to find a 

A,B ∈ [0, a 0 ], b A,B ∈ [b 0 , 0] such that G(a A,B ) = G(b A,B ) and B -A = F + (a A,B ) + F -(b A,B ). ( 61 
-A = F + (a 1 ) + F -(b 1 ). Now we choose b 2 ∈ [b 0 , 0] such that G(b 2 ) = G(a 1 ) ∈ [0, λ]. Note that b 2 ≥ b since G(x) is decreasing for x < 0 and G(b 2 ) ≤ λ ≤ G( b). Since F -is decreasing, we get 0 ≤ F -(b 2 ) ≤ F -( b) = B -A. Now by Intermediate Value Theorem, we choose a 2 ∈ [0, ā] such that B -A = F -(b 2 ) + F + (a 2 ). Having defined {a k } 1≤k≤n ⊂ [0, ā] and {b k } 1≤k≤n ⊂ [ b, 0] such that B -A = F -(b n ) + F + (a n ) we choose b n+1 ∈ [ b, 0] such that G(b n+1 ) = G(a n ). Note that the choice of b n+1 is guaranteed as 0 ≤ G(a n ) ≤ λ ≤ G( b). Subsequently, we get 0 ≤ F -(b n+1 ) ≤ B -A = F + (ā). Now we choose a n+1 ∈ [0, ā] such that B -A = F -(b n+1 ) + F + (a n+1
τ + t 0 0 f (a A,B e β(θ) ) -f (b A,B e β(θ) ) a A,B -b A,B e -β(θ) dθ = A + t 0 0 f (a A,B e β(θ) ) dθ. ( 62 
) Since G(a A,B ) = G(b A,B ) and B -A = F -(b A,B ) + F + (a A,B ) we get a A,B (τ -A) + b A,B (B -τ ) = 0. ( 63 
)
Suppose u A,B (x, t) is the entropy solution to (3) for initial data (57). Then as it has been discussed in [4, section 3], u A,B enjoys the following structure up to time t 0 :

u A,B (x, t) =              0 if x / ∈ [ξ -(t), ξ + (t)], Ψ(x -A, t)e β(t) if ξ -(t) ≤ x ≤ ζ -(t), a A,B e β(t) if ζ -(t) < x < ζ 0 (t), b A,B e β(t) if ζ 0 (t) < x < ζ + (t), Ψ(x -B, t)e β(t) if ζ + (t) ≤ x ≤ ξ + (t), ( 64 
)
where the curves ξ ± , ζ ± , ζ 0 are determined as follows

Ψ(ξ -(t) -A, t) = 0 = Ψ(ξ + (t) -B, t), (65) 
Ψ(ζ -(t) -A, t) = a and Ψ(ζ + (t) -B, t) = b, ( 66 
)
ζ 0 (t) = 1 a A,B -b A,B t 0 f (a A,B e β(θ) ) -f (b A,B e β(θ) ) e -β(θ) dθ. ( 67 
)
Note that by hypothesis (H-1) ξ -(t) = A and ξ + (t) = B. By (62) we have that two curves ζ ± meet with each other at point t 0 . For t ∈ (t 0 , t 0 + ∆t) for small ∆t > 0, the entropy solution u A,B satisfies the following structure

u A,B (x, t) =    0 if x / ∈ [A, B], Ψ(x -A)e β(t) if A ≤ x < ζ M (t), Ψ(x -B)e β(t) if ζ M (t) < x ≤ B, (68) 
where ζ M (t) is the characteristic curve starting at the point (τ, 0). Next we claim that ζ M (t) ∈ (A, B) and the structure (68) continues to hold for all t > t 0 . We can prove this in the same way as it was done for [START_REF] Adimurthi | Finer regularity of an entropy solution for 1-d scalar conservation laws with non uniform convex flux[END_REF]Lemma 3.12]. Suppose the curve t → ζ M (t) intersects either x = A line or x = B line. Without loss of generality we assume that ζ M (t) first meets x = B line. Therefore there exists a time t 1 > 0 such that at t = t 1 we have ζ M (t 1 ) = B and A < ζ M (t) < B for 0 ≤ t < t 1 . Therefore, (68) is valid up to time t 1 . Consider γ ± defined as follows

Ψ(γ -(t) -A, t) = Ψ(ζ M (t 1 ) -A, t 1 ) and γ + = ξ + . ( 69 
)
Since ( 68) is valid up to time t 1 , γ ± (t) are minimizing curve of the following value function

U (x, t) = min    γ(0) 0 u 0 A,B (y) dy + t 0 e -β(θ) f * ( γ(θ)) dθ; γ : [0, t] → R, γ(t) = x    ( 70 
)
where f * is the Legendre transform of f . By (62) we have

B A u 0 A,B = 0. ( 71 
)
Therefore we have

t 1 0 e -β(θ) f * ( γ+ (θ)) dθ = t 1 0 e -β(θ) f * ( γ-(θ)) dθ. ( 72 
)
By using the definition of Ψ we have

γ -(t) -A = t 0 f Ψ(γ -(t) -A, t)e β(θ) dθ = t 0 f Ψ(ζ M (t 1 ) -A, t 1 )e β(θ) dθ. (73) 
Differentiating (73) with respect to t, we obtain

γ-(θ) = f Ψ(ζ M (t 1 ) -A, t 1 )e β(θ) for θ ∈ (0, t 1 ). ( 74 
)
Similarly, we have γ+ (θ) = 0 for θ ∈ (0, t 1 ). ( 75 Proof of Theorem 3.4: Define A n , B n as follows:

A n = x n - 1 n(log(n + 1)) 2 and B n = x n + 1 n(log(n + 1)) 2 , where x n = 4 n-1 k=1 1 k(log(k + 1)) 2 + 2 n(log(n + 1)) 2 .
(76)

From the choice of A n , B n and x n it is clear that

B n-1 < A n < B n < A n+1 and lim n→∞ x n = x 0 < ∞. (77) 
Note that B n -A n = 2n -1 (log(n + 1)) -2 → 0 as n → ∞. Therefore, there exists n 0 ∈ N such that A n , B n satisfy (60) for all n ≥ n 0 . By the previous observation, we find a An,Bn , b An,Bn satisfying (61) for B n -A n . Next we define initial data u 0 as follows:

u 0 (x) = u 0 An,Bn if x ∈ [A n , B n ] for n ≥ n 0 , 0 otherwise (78) 
where u 0 An,Bn is defined in (57). To simplify the notation we denote a n = a An,Bn and b n = b An,Bn . By using (H-2) in (61) we get

B n -A n ≤ C(a n -b n ) q t 0 0 e qβ(θ) dθ. (79) 
Therefore, we get

a n -b n ≥ c -1 q 0 (B n -A n ) 1 q where c 0 = C t 0 0 e qβ(θ) dθ. (80) 
From (77) it is clear that u 0 has compact support in R. By structure (64) and (68) we know that if u An,Bn is the entropy solution to (3) for initial data u 0 An,Bn then the support of u An,Bn lies in the strip [A n , B n ] × [0, ∞). Therefore, if u(x, t) is the solution to (3) then u has the following structure

u(x, t) = u An,Bn (x, t) if x ∈ [A n , B n ] for n ≥ n 0 , 0 otherwise. (81) 
By ζ n we denote the curve ζ M appeared in the structure (68) of u A,B corresponding to A = A n , B = B n . From (64) and (68) we obtain the following estimate for any t > 0,

T V s (u An,Bn (•, t))[A n , B n ] ≥ min (b n -a n ) 1 s e β(t) s , |Ψ(ζ n (t) -A n , t) -Ψ(ζ n (t) -B n , t)| 1 s e β(t) s . (82)
From the definition of Ψ we have

ζ n (t) -A n -ζ n (t) + B n = t 0 f Ψ(ζ n (t) -A n , t)e β(θ) -f Ψ(ζ n (t) -B n , t)e β(θ) dθ. (83) Note that ζ n (t) -A n > 0 > ζ n (t) -B n .
Since Ψ is increasing in its first variable and Ψ(0, t) = 0, we have

Ψ(ζ n (t) -A n , t) > 0 > Ψ(ζ n (t) -B n , t). (84) 
From the decay condition (52) we have

B n -A n ≤ C t 0 (Ψ(ζ n (t) -A n , t) -Ψ(ζ n (t) -B n , t)) q e qβ(θ) dθ. (85) 
Therefore we have

|Ψ(ζ n (t) -A n , t) -Ψ(ζ n (t) -B n , t)| ≥ (B n -A n ) 1 q (t) -1 q where (t) := C t 0 e qβ(θ) dθ. (86) 
Combining ( 80), ( 82) and ( 86) we have

T V s (u An,Bn (•, t))[A n , B n ] ≥ min c -1 qs 0 e 1 s β(t) (B n -A n ) 1 qs , (B n -A n ) 1 qs (t) -1 qs e 1 s β(t) . (87) 
Fix an s > q -1 . Then there exists δ > 0 such that s = q -1 + δ. By our choice of A n and B n we have

B n -A n = 2 n(log(n + 1)) 2 . ( 88 
)
Since s = (1/q) + δ we have sq = 1 + qδ. We observe that

β(t) ≥ -t α L ∞ (R + ) and (t) ≤ tCe q α L ∞ (R + ) . From definition of c 0 we have c 0 ≤ t 0 Ce q α L ∞ (R + )
. Hence, we obtain

T V s (u An,Bn (•, t))[A n , B n ] ≥ 2 1 1+qδ e 1 s β(t) min c -1 qs 0 , (t) -1 qs n -1 1+qδ (log(n + 1)) -2 1+qδ ≥ 2 1 1+qδ e -(t+1) s α 
L ∞ (R + ) min (Ct 0 ) -1 qs , (Ct) -1 qs n -1 1+qδ 
(log(n + 1))

2 1+qδ . (89) Since [A n , B n ], n ≥ n 0 are disjoint intervals we have T V s (u(•, t)) ≥ n≥n 0 T V s (u An,Bn (•, t))[A n , B n ] ≥ 2 1 1+qδ e -(t+1) s α L ∞ (R + ) min (Ct 0 ) -1 qs , (Ct) -1 qs n≥n 0 n -1 1+qδ (log(n + 1)) 2 1+qδ = ∞.

The scalar multi-D case

In this section we deal with C ∞ -flux function for multi-D scalar conservation laws which reads as follows

∂ t U + div X F (U ) = 0, U (X, 0) = U 0 (X). (90) 
Non-linearity of a multi-D smooth flux is defined as Definition 4.1 (Nonlinear flux, [START_REF] Junca | High frequency waves and the maximal smoothing effect for nonlinear scalar conservation laws[END_REF]).

Let F belong to C ∞ ([a, b], R m ) [a, b] and for each U ∈ [a, b], d F := sup U ∈[a,b] inf{k ∈ N; k ≥ 1, span(F (U ), • • • , F k+1 (U )) = R m } ∈ N ∪ {+∞}, (91) 
If d F < +∞ then F is called a nonlinear flux. If d F = m it is called a genuinely nonlinear flux.
It can be checked [START_REF] Junca | High frequency waves and the maximal smoothing effect for nonlinear scalar conservation laws[END_REF] that since [a, b] is compact d F [•] attains its maximum at some point Ū ∈ [a, b], so, d F is well defined in N ∪ {+∞}. By definition of d F , at least m derivatives of F are needed to span the m-dimensional space R m so d F ≥ m. If F is a linear flux, d F = +∞. Notice that for some exponentially flat fluxes, it is possible to have d F = +∞ already in dimension one [START_REF] Castelli | Smoothing effect in BV -Φ for entropy solutions of scalar conservation laws[END_REF][START_REF] Castelli | On the maximal smoothing effect for multidmensional scalar conservation laws[END_REF]. In this case no BV s smoothing effect is expected. Indeed, there is a low smoothing effect in a generalized BV space BV Φ [START_REF] Castelli | Smoothing effect in BV -Φ for entropy solutions of scalar conservation laws[END_REF][START_REF] Marconi | Regularity estimates for scalar conservation laws in one space dimension[END_REF][START_REF] Marconi | Structure and regularity of solutions to 1D scalar conservation laws[END_REF].

For a C ∞ nonlinear flux F , the Lions, Perthame and Tadmor conjecture [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF] can be reformulated as follows [START_REF] Junca | High frequency waves and the maximal smoothing effect for nonlinear scalar conservation laws[END_REF], any entropy solution of (90

) such that U 0 (R m ) ⊂ [a, b] are regularized in W s,1 for all s < d -1
F where d F is the non-linearity index as in (91). The Lions, Perthame and Tadmor conjecture is still an open problem.

We prove the limitation of the regularizing effect for the class of C ∞ nonlinear fluxes F such that d F is odd. The restriction of d F for odd numbers is due to our previous explicit construction in one dimensional case of solution with the exact maximal regularity for all time only for convex fluxes. The existence of an entropy solution with the conjectured maximal regularity and not more is provided by a construction of a planar wave. This regularity is not improved for large time.

For a bounded strip of time the limitation of the smoothing effect for entropy solutions of multidimensional scalar conservation laws in Sobolev spaces has been already proven in [START_REF] Castelli | On the maximal smoothing effect for multidmensional scalar conservation laws[END_REF][START_REF] Junca | High frequency waves and the maximal smoothing effect for nonlinear scalar conservation laws[END_REF]. On one hand, the limitation for bounded time was due to the difficulty to study in general behaviour of the solutions after interactions of waves as in [START_REF] Cheng | The space BV is not enough for hyperbolic conservation laws[END_REF][START_REF] Cheverry | Regularizing effects for multidimensional scalar conservation laws[END_REF][START_REF] Lellis | On the optimality of velocity averaging lemmas[END_REF]. On the other hand, multidimensional fractional BV spaces were not known at that time. Recently, in [START_REF] Ghoshal | Non existence of the BV regularizing effect for scalar conservation laws in several space dimension[END_REF] it has been shown that given a C 2 flux there exists an entropy solution in multi-D such that it is not in BV loc for all time. Authors also prove that there exists an entropy solution which is not in W s+ε,1 loc , ∀ε > 0 for all time with C 2,γ with d F = 1/s.

The point in this section is to obtain the optimality for all time and in the multi-D BV s framework. To get the optimality for the multi-D case, a planar wave is used as in [START_REF] Castelli | On the maximal smoothing effect for multidmensional scalar conservation laws[END_REF][START_REF] Ghoshal | Non existence of the BV regularizing effect for scalar conservation laws in several space dimension[END_REF].

The flux being nonlinear [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF] there exist a constant state U and a direction ξ such that the flux reachs its degeneracy d F near U and following the direction ξ [START_REF] Junca | High frequency waves and the maximal smoothing effect for nonlinear scalar conservation laws[END_REF]. That simply means that the scalar flux f (u) = ξ • F (U + u) has an exact p-degeneracy (5) with the optimal p = d F . Moreover, for smooth flux, p is an integer [START_REF] Junca | High frequency waves and the maximal smoothing effect for nonlinear scalar conservation laws[END_REF] bigger than the space dimension: m ≤ p ∈ N. That means that for small u the derivative of the flux f has exactly a power-law behaviour like u p . For p odd, f is locally convex (or concave) and the Theorem 3.4 can be used. The result reads as follow.

Corollary 4.1. Let F be a C ∞ (R, R m ) flux with an odd exact degeneracy d F = p on [-M, M ] for some M > 0 then there exists an entropy solution U of (90) such that ∀ε > 0, ∀t > 0, U (•, t) ∈ BV s loc (R m , R) and U (•, t) / ∈ BV s+ε loc (R m , R) where s = 1/p. Remark 4.1. The parity restriction of p should be neglected with an implicit and more complicated construction used in [START_REF] Ghoshal | Non existence of the BV regularizing effect for scalar conservation laws in several space dimension[END_REF]. Such a solution does not have the same compact support forever.

We just recall the main features of the proof in [START_REF] Castelli | On the maximal smoothing effect for multidmensional scalar conservation laws[END_REF] for the optimality of the BV s regularity for a bounded time and then using example of the section 3 and Lemma 2.1 the optimality for all time follows. First, take an example given in the proof of the Theorem 3.1 with u 0 (x) and u the corresponding entropy solution for the flux f and U 0 (X) = U + u 0 (ξ • X) then for all time [START_REF] Castelli | On the maximal smoothing effect for multidmensional scalar conservation laws[END_REF],

U (X, t) = U + u(ξ • X, t).
The BV s multi-D regularity of the entropy solution U is the consequence of 1-D optimality of u and Lemma 2.1.

A class of 2 × 2 triangular systems

Getting optimal BV s solutions for general systems for all time is an open problem. Also, the existence of BV s solutions for systems is in general open. There are some exceptions, BV s solutions exist for a gas-chromatography system [START_REF] Bourdarias | Eulerian and Lagrangian formulations in BV s for gas-solid chromatography[END_REF], a nonlinear acoustics model and also for diagonal systems [START_REF] Junca | Analysis of a Sugimoto's model of nonlinear acoustics in an array of Helmholtz resonators[END_REF]. However, the optimality of the regularity is not yet proven. In this section, we consider the first example. The gas-chromatography system is not a Temple system as the well-known chromatography system presented in Bressan's book [START_REF] Bressan | Hyperbolic systems of conservation laws: the one-dimensional Cauchy problem[END_REF] for instance. Otherwise, this gas-chromatography system enjoys a nice property in Lagrangian variables [START_REF] Bourdarias | Eulerian and Lagrangian formulations in BV s for gas-solid chromatography[END_REF], it has the triangular structure:

∂ t u + ∂ x f (u) = 0 for x ∈ R, t > 0, (92) 
∂ t v + ∂ x (g(u)v) = 0 for x ∈ R, t > 0, ( 93 
) (u, v)(x, 0) = (u 0 , v 0 )(x) for x ∈ R. (94) 
At first sight, the system (92)-( 93) seems easy to solve. First, one takes the entropy solution of the equation (92). Second, solve the linear transport equation with (93). But, the velocity of the transport equation is g(u) which can be discontinuous. For such equations, a Dirac mass can appear [START_REF] Bouchut | One-dimensional transport equations with discontinuous coefficients[END_REF]. Thus, due to the transport equation, such systems are not easy to solve in general.

The pressureless-gas dynamics system is an example of such problematic systems [START_REF] Bouchut | Duality solutions for pressureless gases, monotone scalar conservations laws ans uniqueness[END_REF].

In this section we propose optimal BV s solutions for two cases. First, a self contained construction for a finite time [0, T 0 ], T 0 > 0 where the component v stays continuous. Second, using a recent result of global existence of bounded entropy solutions, we get, as a corollary, the optimality in BV s for all time.

In the next theorem we construct a solution of the system (92)-(93) such that (u, v) / ∈ BV s+ε (R× [0, T 0 ]) for all ε > 0 and for power-law type functions f and g satisfying the following relation,

g = h • f , (95) 
where h is a Lipschitz function. We first build a continuous solution u to (92) and then solve (93) by using u. Similar line of thought has been previously instrumentalized in [START_REF] Andreianov | On the attainability set for triangular type system of conservation laws with initial data control[END_REF] to characterize the attainable set for triangular systems. . We define

u, v ∈ L ∞ ([0, T ] × R), T V s+ε u(•, t) = ∞ for all ε > 0 and T V s v(•, t) = ∞ for all s ∈ (0, 1]. Proof. If f (u(x, t)) is Lipschitz in x-
x 1 = 0 and x n = 2 n m=1
∆x m for n ≥ 2. Next we consider the following initial data

w n 0 (x) =            ∆x n -x t n s if 0 < x ∆x n , - x -∆x n t n s if ∆x n x < 2 ∆x n , 0 otherwise. 
Therefore ∀x ∈ R, ∀ t > 0, the entropy solution w n of (92) with the flux f (u) = |u| p+1 /(p + 1), is given by

w n (x, t) =                          x t s if 0 < x < min{δ p n t, ∆x n }, ∆x n -x t n -t s if δ p n t < x < ∆x n , - x -∆x n t n -t s if ∆x n < x < 2 ∆x n -δ p n t, - 2 ∆x n -x t s if max{2 ∆x n -δ p n t, ∆x n } < x < 2 δ n , 0 otherwise. 
Let u 0 (x) = n w n 0 (x -x n ) and let u be the entropy solution of (92) with the same flux f . Then one can show that u(x, t) is continuous function on R × (0, T ] and f (u(x, t)) is Lipschitz in the x variable. We also have

T V s+ε u(•, t){[0, 2 ∆x n ]} 4 (∆x n /t n ) 1 1+pε for t n > t, ε > 0.
Step 2: We devote this step to find the component v as in (93). In order to do that, it is enough to find a solution of

∂ t v + ∂ x (c(x, t)v) = 0 for (x, t) ∈ R × (0, T ), v(x, 0) = v 0 (x) for x ∈ R (96) 
where c(x, t) = g(u(x, t)) and u is the entropy solution of (92). We observed that f (u)(x, t) is Lipschitz in x-variable and so is c(x, t) thanks to (95). We can solve (96) by the method of characteristics and for that, we need to find the solution of the following Cauchy problem

d dt X(t, x 0 ) = c(X(t, x 0 ), t), X(0, x 0 ) = x 0 , (97) 
for each x 0 ∈ R. By using the classical Cauchy-Lipschitz theorem we obtain a unique solution of (97). In this way, we construct a solution of (96) for L ∞ initial data v 0 . Let v 0 be defined as follows

v 0 (x) =    -1 if 2 -2k < x < 2 -2k+1 for k ≥ 1, 1 if 2 -2k-1 < x < 2 -2k for k ≥ 1, 1 if x > 1/2 or x < 0. ( 98 
)
Consider the sequence {y n } defined as y n = (2 -n + 2 -n+1 )/2 for n ≥ 1. Now fix a t ∈ [0, T ]. We define z n = X(t, y n ). Note that v(z n , t) = v 0 (y n ). Let s ∈ (0, 1]. By the choice of y n we get

T V s v(•, t) ≥ ∞ n=1 |v(z n , t) -v(z n+1 , t)| 1/s = ∞ n=1 |v 0 (y n ) -v 0 (y n+1 )| 1/s = ∞.
Hence we obtain a solution (u, v) of ( 92) and ( 93) such that u / ∈ BV s+ε for any ε > 0 and v / ∈ BV s for all s ∈ (0, 1]. Now, the optimality in BV s for all time is presented. In a recent paper the existence of weak entropy solutions for such triangular system are obtained in [START_REF] Bourdarias | Entropy solutions in BV s for a class of triangular systems involving a transport equation[END_REF] under the following assumptions for a convex flux. Notice, that, in the Theorem 5.1, the system is not assumed to be strictly hyperbolic, which h = id for instance. Here, the strict hyperbolicity is assumed. Moreover, a minimal regularity of the initial data u 0 is needed to ensure the global existence in L ∞ of a solution (u, v). where q is the power of the degeneracy condition [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]. There exists an initial data u 0 such that, for all v 0 ∈ L ∞ , the triangular system admits a global solution u staying in BV s for all time, v ∈ L ∞ ([0, +∞), R), and, ∀ > 0, ∀t > 0, T V s+ u(•, t) = +∞.

6 The multi-D Keyfitz-Kranzer system

In this section, we show that even for data with small total variation, renormalized solution to the Keyfitz-Kranzer system may not be in BV s . We use the example in [START_REF] Lellis | Blowup of the BV norm in the multidimensional Keyfitz and Kranzer system[END_REF]. We modified the renormalized solution considered in [START_REF] Lellis | Blowup of the BV norm in the multidimensional Keyfitz and Kranzer system[END_REF] to show that even if the data has arbitrary small TV the T V s norm of the solution blows up. Here we mention the key points and the necessary changes. The rest follows from the analysis done in [START_REF] Lellis | Blowup of the BV norm in the multidimensional Keyfitz and Kranzer system[END_REF]. We call u = ηω as renormalized entropy solution. Note that the notion of renormalized entropy solution is different from the notion of standard entropy solution. Now we consider a special case of the system (99) with h = (g, 0, • • • , 0). Then we have the following proposition Proposition 6.1. Let h = (g, 0, • • • , 0) for g ∈ C 1 (R). Let k ≥ 2, m ≥ 2, and b ∈ R k \ {0} such that g (|b|) = 0. Then there exists a sequence of initial data u n 0 : R m → R k such that 1. u n 0 -b BV (R m ) + u n 0 -b ∞ → 0 as n → ∞, 2. u n 0 = b on R m \ B λ (0) for some λ > 0 independent of n, 3. if u n is the renormalized entropy solution of (99) with initial data u n 0 then u n (•, t) / ∈ BV s loc for each n ∈ N, t ∈ (0, 1) and s ∈ (0, 1).

Proof. For the sake of simplicity, we prove Proposition 6.1 for m = 2 and k = 2. Suppose g (|b|) = 1, g(|b|) = 0. Let δ > 0 be fixed and p = s -1 > 1. Let m i = i p+pδ for all i ∈ N. Then we have

i m i 2 -i < +∞. ( 101 
)
Let ε > 0 be very small such that

• g is injective on [|b| -2ε, |b| + 2ε],

• [-ε, ε] ⊂ g ([|b| -2ε, |b| + 2ε]).

Then for sufficiently large i we can choose r i ∈ [-2ε, 2ε] such that g(|b| + r i ) = 2 -i . Note that for sufficiently large i we have r i ≤ 2 -i+1 . We write β := b/|b|, and for each i we choose a β i ∈ S k-1 such that |β -β i | = i -1-δ . Consider

I i = [2 -i , 2 -i+1 ), (102) 
I j i = 2 -i + (j -1)2 -i m i , 2 -i + j2 -i m i for 1 ≤ j ≤ m i . (103) 
Define φ i : R 2 → S k-1 as follows φ i (x, y) := β i when y ∈ I i and [x2 i ] is odd, β otherwise.

(104)

  Note that B * ∈ (0, ∞]. For α ≡ 0 case, we have B * = ∞. Next consider the case when B * < ∞ and ∆x n δ p n ≥ B * .

  ) Since B -A ≤ min{F + (a 0 ), F -(b 0 )}, by Intermediate Value Theorem there exist ā ∈ [0, a 0 ], b ∈ [b 0 , 0] such that B -A = F + (ā) = F -( b). Define λ := min{G(ā), G( b)}. Without loss of generality, suppose λ = G(ā). Then we set a 1 = ā and b 1 = 0. Hence B

)

  Since f * ≥ 0 we have f * ( γ-(θ)) = 0 for a.e. θ ∈ [0, t 1 ]. Since 0 is unique minima of f * , we have γ-(θ) = 0 a.e. θ ∈ [0, t 1 ]. This gives a contradiction. Hence our claim is proved i.e. ζ M (t) ∈ (A, B) for all t ≥ 0. Now we are ready to prove Theorem 3.4.

Theorem 5 . 1 .

 51 Let T > 0. Let f (u) = |u| p+1 /(p + 1), p ≥ 1, s = 1/p and g = h • f where h is a Lipschitz function. Then there exist compactly supported initial data u 0 , v 0 ∈ L ∞ (R) such that the corresponding entropy solution (u, v) of the triangular system (92)-(93) satisfies ∀t ∈ [0, T ],

(T- 1 )

 1 The flux f ∈ C 4 is convex and g ∈ C 3 . (T-2) Initial data u 0 belongs to BV 1/3 and v 0 to L ∞ . (T-3) The system is uniformly strictly hyperbolic, inf |u|≤M f > sup |u|≤M g where M := u 0 ∞ .

Corollary 5 . 1 .

 51 Assume (T-1)-(T-3), and

  Consider the following system∂ t u + div z (h(|u|)u) = 0 for z ∈ R m , t > 0, (99) u(z, 0) = u 0 (z) for z ∈ R m .where u : R m × R + → R k and h ∈ C 1 (R, R m ). Suppose η := |u| solves the following in the sense of Kružkov∂ t η + div z (h(η)η) = 0 for z ∈ R m , t > 0, (100) η(•, 0) = |u 0 | for z ∈ R m .Let ω := u/|u| solves the following transport equation∂ t (ηω) + div z (h(η)ηω) = 0 for z ∈ R m , t > 0, ω(•, 0) = u 0 /|u 0 | for z ∈ R m .

  ). Hence, by this inductive process we get {a n } n∈N ⊂ [0, ā] and {b n } n∈N ⊂ [ b, 0]. Since both sequences are bounded, there is a subsequence n k such that b n k → b A,B and a n

k → a A,B as k → ∞ for some a A,B ∈ [0, ā] and b A,B ∈ [ b, 0]. Since F ± , G are continuous functions, by passing to the limit we show that a A,B ∈ [0, ā] and b A,B ∈ [ b, 0] satisfy (61). Suppose a A,B , b A,B are satisfying (61). Now we can choose τ as follows:

  variable then we have g(u(x, t)) is Lipschitz in x-variable by the choice of g. The construction is done in two stepsStep 1: Construction of a continuous solution of (1) such that f (u(x, t)) is Lipschitz in the x variable:

	Let ∆x n := 1/ n log 2 (n + 1) , t n :=	log(n + 1) log 2	(T +1) > T and let δ n :=	t n ∆x n	1 p

Also we define Λ i : R 2 → R as Λ i (x, y) :=    r i when y ∈ I i for even j and x ∈ [-M, M ], r i+1 when y ∈ I i for odd j and x ∈ [-M, M ], 0 otherwise,

where M is some positive real number bigger than 1 and it will be chosen later. Next we define

ω n 0 (x, y) := φ i (x, y) when y ∈ I i for some ≥ n and x ∈ [-M, M ], β otherwise, (107)

Next we show the following two properties of

→ 0 as n → ∞. These have been shown in [START_REF] Lellis | Blowup of the BV norm in the multidimensional Keyfitz and Kranzer system[END_REF]. For the sake of completion, we briefly mention key steps. From (106)-(108) note that

We observe that supp(

Similar to [START_REF] Lellis | Blowup of the BV norm in the multidimensional Keyfitz and Kranzer system[END_REF], we can show

Hence, we obtain (110). Suppose u n is the unique renormalized solution of (99). We have seen η n is the unique solution to (100) with initial data η n 0 . Notice that η n 0 (•, y) is constant on [-M, M ] and by finite speed of conservation laws we get

). Note that for each R > 0 we can choose M > 0 large enough such that

We will choose R later. To analyze the angular part ω n := u n /|u n | we use the fact that η n is a constant on the curve Ψ n (•, x, •) where Ψ n (•, x, •) satisfies

Ψ n (0, x, y) = (x, y).

We can choose R large enough so that for any (τ,

, the curve t → Ψ n (t, x 0 , y 0 ) lies on the plane y = y 1 for t ∈ (0, τ ) and remains a straight line for t ∈ (0, τ ) (see [START_REF] Lellis | Blowup of the BV norm in the multidimensional Keyfitz and Kranzer system[END_REF] for more detailed discussion on this). As it has been observed in [START_REF] Lellis | Blowup of the BV norm in the multidimensional Keyfitz and Kranzer system[END_REF], choice of R can depend only on g and ρ n 0 L ∞ (R 2 ) . Since there exists a constant C > 0 such that ρ n 0 L ∞ (R 2 ) ≤ C for all n ≥ 1, we conclude that choice of R does not depend on n. Once we fix the choice of R, we make the choice of M . By a similar discussion as in [START_REF] Lellis | Blowup of the BV norm in the multidimensional Keyfitz and Kranzer system[END_REF] we have the following,

For a fixed t > 0, suppose ω n (•, •, t) ∈ BV s loc (R 2 ). Then, by [START_REF] Bouchut | Duality solutions for pressureless gases, monotone scalar conservations laws ans uniqueness[END_REF] there exists a

where H 1 denotes the one dimensional Hausdorff measure. Therefore, we have
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