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ABSTRACT
This paper deals with radar detection in impulsive noise. Its
aim is twofold. Firstly, assuming a Spherically Invariant
Random Vectors (SIRV) modelling for the noise, the cor-
responding unknown covariance matrix is estimated by a
recently introduced algorithm [1, 2]. A statistical analysis
(bias, consistency, asymptotic distribution) of this estimate
will be summarized allowing us to give the GLRT proper-
ties: the SIRV-CFAR (Constant False Alarm Rate) property,
i.e. texture-CFAR and Covariance Matrix-CFAR, and the re-
lationship between the Probability of False Alarm (PFA) and
the detection threshold.
Secondly, one of the main contributions of this paper is
to give some results obtained with real non-Gaussian data.
These results demonstrate the interest of the proposed detec-
tion scheme, and show an excellent correspondence between
experimental and theoretical false alarm rates.

1. PROBLEM STATEMENT AND BACKGROUND

Non-Gaussian noise characterization has gained many
interests since experimental radar clutter measurements,
made by organizations like MIT [3], showed that these data
are correctly described by non-Gaussian statistical models.
One of the most tractable and elegant non-Gaussian model
comes from the so-calledSpherically Invariant Random
Vector(SIRV) theory. A SIRV is the product of a Gaussian
random process - calledspeckle- with the square root of a
non-negative random variable - calledtexture. This model
leads to many results [4, 5].

The basic problem of detecting a complex signal cor-
rupted by an additive SIRV noisec in a m-dimensional com-
plex vectory can be stated as the following binary hypothesis
test:

{
H0 : y = c yi = ci i = 1, . . . ,N
H1 : y = s+c yi = ci i = 1, . . . ,N (1)

where theci ’s areN signal-free independent measurements,
traditionally called the secondary data, used to estimate the
clutter covariance matrix.

Under hypothesisH1, it is assumed that the observed
data consists in the sum of a signals = α p and clutterc,
wherep is a perfectly known complex steering vector andα

is the signal complex amplitude.

Let us now recap some SIRV theory results. A noise
modelled as a SIRV is a non-homogeneous Gaussian process
with random power. More precisely, a SIRV [6] is the prod-
uct of the square root of a positive random variableτ (texture)
and am-dimensional independent complex Gaussian vector
x (speckle) with zero mean covariance matrixM = E(xxH)
with normalization Tr(M ) = m, whereH denotes the conju-
gate transpose operator

c =
√

τ x . (2)

The SIRV PDF expression is

pm(c) =
∫ +∞

0
gm(c,τ ) p(τ )dτ , (3)

where

gm(c,τ ) =
1

(π τ)m|M | exp

(
−cH M−1c

τ

)
. (4)

This model allowed to build several Generalized Like-
lihood Ratio Tests like the GLRT-Linear Quadratic (GLRT-
LQ) in [4, 5] defined by

Λ(M ) =
|pHM−1y|2

(pHM−1p)(yHM−1y)

H1
≷
H0

λ , (5)

wherep is the steering vector,y the observed vector andλ
the detection threshold associated to this detector.

In many problems, non-Gaussian noise can be character-
ized by SIRVs but the covariance matrixM is generally not
known and an estimatêM is required. Obviously, it has to
satisfy theM -normalization: Tr(M̂) = m.

The next section is devoted to an adaptive GLRT built
from an Approximate Maximum Likelihood (AML) estimate
of the SIRV covariance matrix. Then, Section 3 presents an
application of this detector to real data: experimental results
perfectly match theoretical analysis.



2. THE FIXED POINT ESTIMATE M̂FP AND THE
CORRESPONDING ADAPTIVE GLRT

2.1 The AML estimate

Conte and Gini in [1, 2] have shown that an Approximate
Maximum Likelihood (AML) estimatêM of M is a solution
of the following equation

M̂ =
m

N

N

∑
i=1

(
cicH

i

cH
i M̂

−1
ci

)
. (6)

Existence and uniqueness of the above equation solution,
denotedM̂FP have already been investigated in [7].

Let the functionf be defined as

f (M̂ ) =
m

N

N

∑
i=1

(
cicH

i

cH
i M̂

−1
ci

)
=

m

N

N

∑
i=1

(
xixH

i

xH
i M̂

−1
xi

)
, (7)

where the right hand side of (7) is rewritten in terms of the
xi ’s and theτi ’s.

Eqn. (7) obviously implies that̂MFP is independent of
theτi ’s.

The statistical properties of̂MFP have been investigated
and published in [10], the main results are recaped here be-
low:

Proposition 2.1
(1) M̂FP is a consistent estimate ofM ;

(2) M̂FP is an unbiased estimate ofM ;
(3) the asymptotic distribution of̂MFP is Gaussian and its

covariance matrix is fully characterized in [10];
(4) this distribution is the same as the asymptotic distribution

of a Wishart matrix with
(

m

m+1

)
N degrees of freedom.

2.2 The studied adaptive GLRT

Let us now present the adaptive GLRT [8, 9], used for detec-
tion

Λ̂(M̂ ) =
|pHM̂

−1
y|2

(pHM̂
−1

p)(yH M̂
−1

y)

H1
≷
H0

λ . (8)

In the next section dealing with applications to real data,
we will useΛ̂(M̂FP) as detector. This detector is obviously
texture-CFAR (independent of the distribution ofτ ) and, an
original result of this paper is to show the independence of
the distribution ofΛ̂(M̂FP) with the covariance matrixM :
we will say thatΛ̂(M̂FP) is Matrix-CFAR (M-CFAR).

Definition 2.1
An adaptive detector̂Λ(M̂ ) verifies the M-CFAR property
if its statistical distribution is independent of the covariance
matrixM estimated bŷM .

This property is of most interest in a practical work to
detect targets when the covariance matrix is unknown.

Theorem 2.1
Λ̂(M̂FP) is M-CFAR.

Theorem 2.1 establishes the M-CFAR property of the
adaptive GLRT built with the FP estimate.

Proof 2.1
Let M be a covariance matrix. Let̂MFP be the FP estimate
of M . Then, under hypothesisH0 (no target signal), we will
show that

L
(
Λ̂(M̂FP)

)
= L

(
Λ̂(M̂FP,I )

)
(9)

where L (x) stands for the statistical distribution of a
random variablex and M̂FP,I is the FP estimate of the
identity matrixI .

Since the statistics of̂Λ(M̂FP) is independent of the tex-
tureτ , we chooseτ = 1: secondary datax1, . . . ,xN are thus
Gaussian with covariance matrixM ,

xi ∼ N (0,M) .

The FP estimate ofM is defined as the unique solution
(up to a scalar factor) of

M̂FP =
m

N

N

∑
i=1

xi xH
i

xH
i M̂

−1
FPxi

, (10)

and the adaptive GLRT detector is

Λ̂(M̂FP) =
|pHM̂

−1
FPx|2

(pHM̂
−1
FPp)(xH M̂

−1
FPx)

H1
≷
H0

λ ,

wherex is the observation vector (under hypothesisH0) such
thatx ∼ N (0,M ) .

The first part of the proof is the whitening of the data. By
applying the following change of variable,y = M−1/2x to
Eqn. (10), one has

M̂FP =
m

N

N

∑
i=1

M1/2yi y
H
i M1/2

yH
i T̂

−1
yi

, (11)

where

T̂ = M−1/2M̂FPM−1/2 .

Therefore,

T̂ =
m

N

N

∑
i=1

yi y
H
i

yH
i T̂

−1
yi

. (12)

T̂ is thus the unique FP estimate (up to a scalar factor) of
the identity matrix. Its statistics is clearly independentof M
since theyi ’s areN (0, I ).

Moreover, for any unitary matrixU, one has

UT̂UH =
m

N

N

∑
i=1

zi zH
i

zH
i

(
UT̂UH

)−1
zi

, (13)



wherezi = Uyi is alsoN (0, I) . Therefore,UT̂UH has the
same distribution aŝT .

In terms of the adaptive detector, one has

Λ̂(M̂FP) =
|pH

1 T̂
−1

y|2

(pH
1 T̂

−1
p1)(yH T̂

−1
y)

H1
≷
H0

λ ,

wherep1 = M−1/2p andy = M−1/2x is N (0, I) .

Now let U be a unitary matrix such that

Up1 = ‖p1‖e (14)

wheree= (10 . . . 0)
⊤, ⊤ denotes the transpose operator and

‖p1‖ denotes the 2-norm of vectorp1.

Thanks to Eqn. (14), one has

Λ̂(M̂FP) =
|eH
(
UT̂UH

)−1
z|2

(eH
(
UT̂UH

)−1
e)(zH

(
UT̂UH

)−1
z)

H1
≷
H0

λ ,

wherez = Uy is alsoN (0, I ) .

By setting M̂FP,I = UT̂UH , we see that the distribu-

tion of Λ̂(M̂FP) does not depend onM , which completes
the proof of Theorem 2.1. Note also that the distribution of
Λ̂(M̂FP) does not depend on the steering vectorp.

In this section, the statistical performance of the FP
estimate has been investigated as well as the SIRV-CFAR
(texture-CFAR and M-CFAR) property of the adaptive
GLRT, built with M̂FP. One of the first deduction of previous
results is that whatever the SIRV used, for different distribu-
tions of the texture and for different covariance matrices,the
resulting GLRTΛ̂(M̂) follows the same distribution. This is
of a major interest in areas of clutter transition like for exam-
ple, in coastal areas (ground and sea) or at the edge of forests
(fields and trees) because the detector should be insensitive
to the different clutter areas. This is the object of the next
section.

3. RADAR APPLICATIONS

This section is devoted to the analysis of different radar mea-
surements in which the clutter is strongly impulsive. In a first
time, let us give some generalities.

In radar detection, the analysis falls into two independent
stages:
• The calculus of the detection thresholdλ to ensure a false

alarm rate, given by the operator. This part is performed
by a learning of the clutter.

• The comparison of the adaptive GLRT̂Λ(M̂ ) with the
detection threshold.
Let us define some notations:

• the Probability of False Alarm

Pf a = P(Λ > λ |H0) , (15)
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Figure 1: Ground clutter data level (in dB) corresponding
to the first pulse echo. Y-coordinates represent 70 azimuth
angles and X-coordinates representN = 868 range bins.

• the Probability of Detection (PD)

Pd = P(Λ > λ |H1) . (16)

In [11], a theoretical relationship between the detection
thresholdλ and the PFA has been established when the co-
variance matrixM is estimated by the well known Sample
Covariance Matrix (SCM) estimate defined by

M̂SCM=
m

N

N

∑
i=1

ci cH
i . (17)

Now, the expression of PFA-threshold relationship in this
specific case (SCM estimate) is

Pf a = (1−λ )a−1
2F1(a,a−1;b−1;λ ) , (18)

wherea = N−m+2,b = N+2 and2F1 is the hypergeomet-
ric function [12] defined as

2F1(a,b;c;x) =
Γ(c)

Γ(a)Γ(b)

∞

∑
k=0

Γ(a+k)Γ(b+k)

Γ(c+k)

xk

k!
. (19)

Moreover, thanks to point (4) of proposition 2.1 and since
the SCM (17) is Wishart distributed [13], expression 18 still
holds for largeN, when the covariance matrixM is estimated
by the FP estimate:

Pf a = (1−λ )a−1
2F1(a,a−1;b−1;λ ) , (20)

wherea =
m

m+1
N−m+ 2 andb =

m

m+1
N + 2 . It means

that it is the same relationship but with less secondary data

(
m

m+1
N data instead ofN in the Wishart case).

This result has never been validated on real measure-
ments: this is one of the purposes of this section.

The ground clutter data presented in this paper were col-
lected by an operational radar at THALES Air Defence1,

1Authors are grateful to Thales Air Defence for the analysis of their data



Figure 2: Ground clutter data level (in dB) corresponding
to the first pulse echo. Y-coordinates represent 70 azimuth
angles and X-coordinates representN = 868 range bins.

placed 13 meters above ground and illuminating the ground
at low grazing angle. Ground clutter complex echoes were
collected inN = 868 range bins for 70 different azimuth an-
gles and form= 8 recurrences, which means that vectors size
is m= 8. Near the radar, echoes characterize non-Gaussian
heterogeneous ground clutter whereas beyond the radioelec-
tric horizon of the radar (around 15 kms) only Gaussian ther-
mal noise (the dark part of the map) is presented (Figure 1).
To emphasize the areas of impulsive noise, Figure 2 repre-
sents in 3 dimensions, the same range bin-azimuth map as on
Figure 1: the third dimension (vertical) shows the power of
the noise.

Figure 3: CFAR mask

The analysis of these radar data allows to adjust the de-
tection thresholdλ for a given PFA. A common procedure
is to set this threshold, which is a system design parameter,

based on the designer perception of tradeoffs between false
alarms and missed detection. Traditionally, the experimental
detection threshold adjustment is determined by counting,by
moving a rectangular CFAR-mask of size 5×5. For all cen-
tral cells of the mask (i.e. the cell under test), the dark cell
on Figure 3, corresponding to the studied observationy (8-
vector), a value of̂Λ(M̂) is calculated. The covariance ma-
trix M̂ has been estimated with the set ofN = 24 8-vectors,
considered as the secondary data,y1, . . . ,y24, and situated
around the tested cell. These reference cells are the light blue
cells on Figure 3.

3.1 Validation of Eqn.(20) on real data

One purpose of this paper is to validate the theoretical
relationship (20) between the detection threshold and the
PFA thanks to counting of the real data when the covariance
matrix is estimated by the FP estimate.

Moreover, when it is assumed that the covariance matrix

M is known, one hasλ = 1− P
− 1

1−m
f a (see for example

[14]). Notice that this equation has just a theoretical interest
because in practice,M is always unknown.

Remark 3.1
Note that the counting system on the real data makes sense
only thanks to the M-CFAR property of the adaptive detector.
Indeed, there is no valid reason why all the sets of 24 data
have the same covariance matrix.
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Figure 4: Validation of PFA-threshold relationship

On Figure 4, the solid curve corresponds to the theo-
retical relationship ”PFA-threshold” ifM is known while
the dotted curve represents the theoretical relationship
”PFA-threshold” whenM and is assumed unknown and
estimated bŷMFP.

The curve made of crosses (×) represents the experi-
mental (made with CFAR masks by counting) relationship
”PFA-threshold” whenM is estimated bŷMFP. It perfectly



matches the theoretical relationship. Obtaining this result
has been possible only because the detectorΛ̂(M̂FP) satisfies
the M-CFAR property, essential in an heterogeneous clutter.

Thus, this application validates Eqn. (20) and an essential
consequence of this result is that thanks to Eqn. (20), the
clutter training is not essential any more for the adjustment
of the detection threshold.

3.2 Robustness to the clutter transitions

Figure 5 presents, for all the points of the range bin-azimuth
map, the GLRT calculated for the FP estimateM̂FP. This
map was made from the 8 available maps of real data.

Figure 5: Detector map

We can conclude from Figure 5 that in spite of the clutter
heterogeneity, on the right hand side of Figure 1, the use of
the FP estimate in the GLRT allows to obtain a completely
uniform likelihood ratio map. This experimental result en-
sures a constant false alarm regulation, even in the transi-
tions areas. Moreover, it is in a good agreement with the
theory and is directly provided by the SIRV-CFAR property
of Λ̂(M̂FP).

4. CONCLUSION

In this paper, the M-CFAR property of the adaptive detector
GLRT Λ̂(M̂FP) built with the FP estimate of the covariance
matrix M has been established. This result has been used in
a radar application on real non-Gaussian data. This property
stated the independence between the GLRT distribution and
the real covariance matrixM of the data.
Moreover, a goal of this paper was the analysis of non-
Gaussian experimental ground clutter signals. For that pur-
pose, we first validated a theoretical relationship betweenthe
detection threshold and the PFA established in [11], thanks
to non-Gaussian data. Then, we highlighted the GLRT ro-
bustness to the clutter transitions thanks to it SIRV-CFAR
property.
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