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ABSTRACT is the signal complex amplitude.

This paper deals with radar detection in impulsive noise. It .
aim is twofold. Firstly, assuming a Spherically Invariant L€t us now recap some SIRV theory results. A noise
Random Vectors (SIRV) modelling for the noise, the cor-modelled as a SIRV is a non-homogeneous Gaussian process
responding unknown covariance matrix is estimated by #ith random power. More precisely, a SIRV [6] is the prod-
recently introduced algorithm [1, 2]. A statistical anasys Uctof the square root of a positive random variab{eexturg
(bias, consistency, asymptotic distribution) of this restie and am-dimensional independent complex Gau53|anHvector
will be summarized allowing us to give the GLRT proper-X (specklg with zero mean covariance matit = E(xx")

ties: the SIRV-CFAR (Constant False Alarm Rate) propertyWith normalization T(M) = m, whereH denotes the conju-
i.e. texture-CFAR and Covariance Matrix-CFAR, and the re-gate transpose operator

lationship between the Probability of False Alarm (PFA) and

the detection threshold. c=+TX. (2)
Secondly, one of the main contributions of this paper is

to give some results obtained with real non-Gaussian data. The SIRV PDF expression is

These results demonstrate the interest of the proposectdete

tion scheme, and show an excellent correspondence between oo
experimental and theoretical false alarm rates. Pm(C) = A gm(c,7) p(7)dT , 3)
1. PROBLEM STATEMENT AND BACKGROUND where

Non-Gaussian noise characterization has gained many

interests since experimental radar clutter measurements, 1 HM-Llc
made by organizations like MIT [3], showed that these data Im(C,T) = = exp(—i) . 4)
are correctly described by non-Gaussian statistical nsodel (my)m M| T

One of the most tractable and elegant non-Gaussian model ) ) ] )
comes from the so-calle@pherically Invariant Random This model allowed to build several Generalized Like-
Vector (SIRV) theory. A SIRV is the product of a Gaussian I|hoqd Ratio Tests like the GLRT-Linear Quadratic (GLRT-
random process - callegpeckle- with the square root of a LQ) in [4, 5] defined by

non-negative random variable - calléekture This model

leads to many results [4, 5]. A( IpHM ~1y? H

H -1 H —1 2 )\ ’ (5)
: : : (PM™P)(Y'M ~7y) Ho
The basic problem of detecting a complex signal cor-
rupted by an additive SIRV noisein am-dimensional com- wherep is the steering vectoy, the observed vector amd

plex vectory can be stated as the following binary hypothesighe detection threshold associated to this detector.
test:

M) =

_ , In many problems, non-Gaussian noise can be character-
{ Ho y=¢ Yi = Cf iI=1...,N (1)  ized by SIRVs but the covariance mathk is generally not
Hity=st+c y=c i=1...N known and an estimatel is required. Obviously, it has to

where theg’s areN signal-free independent measurementsgsatisfy theM -normalization: T(M) =m.
traditionally called the secondary data, used to estinfae t
clutter covariance matrix. The next section is devoted to an adaptive GLRT built
from an Approximate Maximum Likelihood (AML) estimate
Under hypothesidi;, it is assumed that the observed of the SIRV covariance matrix. Then, Section 3 presents an
data consists in the sum of a sigrsak ap and clutterc,  application of this detector to real data: experimentalites
wherep is a perfectly known complex steering vector and perfectly match theoretical analysis.



2. THE FIXED POINT ESTIMATE Mgp AND THE
CORRESPONDING ADAPTIVE GLRT

2.1 The AML estimate

Conte and Gini in [1, 2] have shown that an Approximate

Maximum Likelihood (AML) estimateM of M is a solution
of the following equation
( l ) .
Ci

acl!
cf M

M=£i (©)

Existence and uniqueness of the above equation solution,

denotedVigp have already been investigated in [7].

Let the functionf be defined as

f(W) - mX xixH .
NZ\ 1Ci _Ni; XiH|\7|71Xi - 0

ciclt
cf! M

Theorem 2.1
A(Mgp) is M-CFAR.

Theorem 2.1 establishes the M-CFAR property of the
adaptive GLRT built with the FP estimate.

Proof 2.1 N

LetM be a covariance matrix. L& gp be the FP estimate
of M. Then, under hypothest, (no target signal), we will
show that

where £ (X) stands for the statistical distribution of a
random variablex and M| is the FP estimate of the
identity matrix| . '

A~

£ (AMep)) =2 (AMgp)) ©)

Since the statistics JK(M rp) is independent of the tex-
turet, we choosa = 1: secondary data, ... ,xy are thus
Gaussian with covariance mathk,

where the right hand side of (7) is rewritten in terms of the

Xi's and thert;’s

Eqgn. (7) obviously implies thatl gp is independent of
ther’s.

The statistical properties ol ep have been investigated

and published in [10], the main results are recaped here be-

low:
Proposition 2.1
(1) Mgp is a consistent estimate bf;

(2) Mep is an unbiased estimate Wf;

(3) the asymptotic distribution dfiep is Gaussian and its
covariance matrix is fully characterized in [10];
(4) this distribution is the same as the asymptotic distidu

of a Wishart matrix Witf(%) N degrees of freedom.
m

2.2 The studied adaptive GLRT

Let us now present the adaptive GLRT [8, 9], used for detec-

tion

H Ly)2 H
P"M | L

i\(M): H L Hi L <
(P"M "p)(y'M Ty) Ho

(8)

In the next section dealing with applications to real data,

we will useA(Mgp) as detector. This detector is obviously
texture-CFAR (independent of the distribution®fand, an

original result of this paper is to show the independence of

the distribution of/A\(I\ﬁ rp) with the covariance matrii:
we will say thatA(Mgp) is Matrix-CFAR (M-CFAR).

Definition 2.1
An adaptive detectol\( ) verifies the M-CFAR property
if its statistical distribution is independent of the caaarce

matrixM estimated bﬂ.

This property is of most interest in a practical work to
detect targets when the covariance matrix is unknown.

Xi ~ A (0,M).

The FP estimate dfl is defined as the unique solution
(up to a scalar factor) of

mIxxM
b)
NzixHMpr.

and the adaptive GLRT detector is

(10)

~ 1
|pH Mepx|? > A,
-1

(p™ M FPp)(XH M FpX) HO

wherex is the observation vector (under hypothéis such
thatx ~ A (0,M).

A(Mgp) =

The first part of the proof is the whitening of the data. By

applying the following change of variablg,= M ~Y/?x to
Eqgn. (10), one has
R N M 1/2 M 1/2
Mep = %] L, (11)
i= y| T yl
where
f = Mfl/ZMFpMil/z.
Therefore,
~ mN yH
T-gY (12)
i= yiH T Y|

T is thus the unique FP estimate (up to a scalar factor) of
the identity matrix. Its statistics is clearly independefit
since they;’s are_#"(0,1).

Moreover, for any unitary matrid, one has



wherez; = Uy, is also.# (0,1). ThereforeJTU" has the ‘ Clutter Map

same distribution &8 .
10
In terms of the adaptive detector, one has
1 20
R HT y[2 Hy
AMee) = HAlf)ll yHlA71 =A £ 3
(PIT P)YT y) Mo 5
wherep; =M ~Y2p andy = M~Y2x is ¥ (0,1). o
Now letU be a unitary matrix such that 50
Upy = [Ipslle (14) 60 |
wheree= (10... O)T, T denotes the transpose operatorand |} !
|lp1|| denotes the 2-norm of vectay. S et
Thanks to Eqn. (14), one has Figure 1: Ground clutter data level (in dB) corresponding
to the first pulse echo. Y-coordinates represent 70 azimuth
. 1 angles and X-coordinates represiint 868 range bins.
. e (UTUH) "z Hy
N(Mep) = ——— ——— A,
(e (UTUM) ") (2 (UTUH) 2) Ho N _
¢ the Probability of Detection (PD)
wherez = Uy is also./"(0,1) . Py=P(A> AlH1). (16)
By setting|\7IFP| — UTU", we see that the distribu- In [11], a theoretical relationship between the detection

. PN . thresholdA and the PFA has been established when the co-
tion of A(MgP) does not depend ok, which completes  yariance matrixV is estimated by the well known Sample
the proof of Theorem 2.1. Note also that the distribution ofcoyariance Matrix (SCM) estimate defined by

f\(l\ﬁ rP) does not depend on the steering vegtor

_ mN
In this section, the statistical performance of the FP Mscm= Nzlci c. (17)
estimate has been investigated as well as the SIRV-CFAR i=

(texture-CFAR and M-CFAR) property of the adaptive  Now, the expression of PFA-threshold relationship in this
GLRT, built with Mp. One of the first deduction of previous SPecific case (SCM estimate) is

results is that whatever the SIRV used, for different disii al

tions of the texture and for different covariance matrices, Pra=(1-2)" "2FR(a,a—1;b—1;A), (18)
resulting GLRTA(M) follows the same distribution. This is wherea=N—m+2,b= N+ 2 and,F; is the hypergeomet-
of a major interest in areas of clutter transition like foagx  ric function [12] defined as

ple, in coastal areas (ground and sea) or at the edge offorest

(fields and trees) because the detector should be insensitiv ® k

to the different clutter areas. This is the object of the next ,F;(a,b;c;x) = r) M@a+krb+k al (29)

section. r@rb)sg rle+k) k-
Moreover, thanks to point (4) of proposition 2.1 and since
3. RADAR APPLICATIONS the SCM (17) is Wishart distributed [13], expression 14 stil

This section is devoted to the analysis of different radaa-me 10ds for largeN, when the covariance matri is estimated

surements in which the clutter is strongly impulsive. In stfir °Y the FP estimate:
time, let us give some generalities.

In radar detection, the analysis falls into two independent
stages:

m m
. wherea= ——N-m+2andb=——N+2. It means
e The calculus of the detection threshadldo ensure a false .m + . ] +
alarm rate, given by the operator. This part is performedhat it is the same relatlonshlp but with less secondary data

by a leaming of the clutter. ) "~ (lN data instead df in the Wishart case).
e The comparison of the adaptive GLRY{M) with the m+1

Pfa: (1—)\)a712F1(a,a—1;b_1;/\)a (20)

detection threshold. This result has never been validated on real measure-
Let us define some notations: ments: this is one of the purposes of this section.
« the Probability of False Alarm The ground clutter data presented in this paper were col-

lected by an operational radar at THALES Air Defehce

Pta=P(A > A[Ho), (15)

1Authors are grateful to Thales Air Defence for the analy$iheir data



based on the designer perception of tradeoffs between false
alarms and missed detection. Traditionally, the expertaien
detection threshold adjustment is determined by couniting,
moving a rectangular CFAR-mask of sizex%. For all cen-

tral cells of the mask (i.e. the cell under test), the dark cel
on Figure 3, corresponding to the studied observafi¢&-

MR vector), a value 0f\(|\7|) is calculated. The covariance ma-
A g trix M has been estimated with the sethdof= 24 8-vectors,

i ! kN considered as the secondary data,...,Y,s, and situated

e oo around the tested cell. These reference cells are the ligat b

e s Ak R i
5 M |1 T cells on Figure 3.
s I 54

2 \ S et e 000

ST "*////‘ﬁ 800 3.1 Validation of Eqn.(20) on real data
0N One purpose of this paper is to validate the theoretical

relationship (20) between the detection threshold and the

] ] _ PFA thanks to counting of the real data when the covariance
Figure 2: Ground clutter data level (in dB) correspondingmatrix is estimated by the FP estimate.
to the first pulse echo. Y-coordinates represent 70 azimuth

angles and X-coordinates represhint 868 range bins. Moreover, when it is assumed that the covariance matrix
1

M is known, one has\ = 1—P;;"™ (see for example
[14]). Notice that this equation has just a theoreticalrese
placed 13 meters above ground and illuminating the groungecause in practic#) is always unknown.
at low grazing angle. Ground clutter complex echoes were
collected inN = 868 range bins for 70 different azimuth an-
gles and fom= 8 recurrences, which means that vectors sizekemark 3.1
ism= 8. Near the radar, echoes characterize non-Gaussiute that the counting system on the real data makes sense
heterogeneous ground clutter whereas beyond the radioelegnly thanks to the M-CFAR property of the adaptive detector.
tric horizon of the radar (around 15 kms) only Gaussian therindeed, there is no valid reason why all the sets of 24 data
mal noise (the dark part of the map) is presented (Figure 1have the same covariance matrix.
To emphasize the areas of impulsive noise, Figure 2 repre-
sents in 3 dimensions, the same range bin-azimuth map as on
Figure 1: the third dimension (vertical) shows the power of | ‘ Curves "PRA-threshold”
the noise. X

S % Fixed Point
X — - Mhat
M known

Cell under test:y X\

Y

A
™

107k EN |

™
“
"
By

0°F X ]

PFA
g

x
x
X
1 / 107 . . ¥ . .
10° 10° 10* 10° 10°
\ / Detection threshold A

\/ Figure 4: Validation of PFA-threshold relationship

On Figure 4, the solid curve corresponds to the theo-
Reference cells (CFAR mask) retical relationship "PFA-threshold” iM is known while
the dotted curve represents the theoretical relationship
Figure 3: CFAR mask "PFA-threshold” whenM and is assumed unknown and
estimated bMgp.

The analysis of these radar data allows to adjust the de- The curve made of crosses) represents the experi-
tection threshold\ for a given PFA. A common procedure Mmental (made with CFAR masks by counting) relationship
is to set this threshold, which is a system design parameteéR?FA-threshold” wherM is estimated bW gp. It perfectly
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