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ABSTRACT
In this paper, we use the theory of generalized likelihood ra-
tio tests (GLRT) to study the adaptive version of the asymp-
totical Bayesian Optimum Radar Detector (BORD) built
with a covariance matrix estimate. We investigate its prop-
erties, when the noise is modelled as a non-Gaussian com-
plex process, such as Spherically Invariant Random Process
(SIRP).
We derive, for appropriate covariance matrix estimates, the
analytical expression of the relationship between the Proba-
bility of False Alarm (PFA) and the detection threshold. We
show that this detector is SIRP-CFAR : the GLR distribution
does not depend on the SIRP characteristics.

1. INTRODUCTION

Detection in non-Gaussian noise has gained many interests
in the radar community. Indeed, since experimental clutter
measurements made by organizations like MIT [1] showed
that these data are correctly described by non-Gaussian
statistical models. One of the most tractable and elegant
non-Gaussian model comes from the so-called Spherically
Invariant Random Process (SIRP) theory. A SIRP is the
product of a Gaussian random process - called speckle -
with a non-negative random variable - called texture. This
model leads to many results [2, 3, 4, 5, 6, 7]. For example,
Gini et al.’s have derived in [7], the optimum detector in the
presence of a SIRP noise with known statistics.

In previous works [8, 9], a bayesian approach was pro-
posed to determine the PDF of the texture (the SIRP char-
acteristic PDF) from N reference clutter cells. It allowed
to derive the expression of the optimum detector called
Bayesian Optimum Radar Detector (BORD). For all the
SIRPs, the BORD does not require the knowledge of the
PDF texture and nevertheless reaches the performances of the
Neyman-Pearson detector with known noise statistic. More-
over BORD was shown to be an adaptive detector : it is so
no more necessary to have any knowledge about the clutter
statistics but BORD deals directly with the received data.

2. PROBLEM STATEMENT AND BACKGROUND

We consider here the basic problem of detecting a complex
signal s corrupted by an additive SIRP noise c (clutter) in a
m-dimensional complex vector y. This can be stated as the
following binary hypothesis test :{

H0 : y = c yi = ci i = 1, . . . ,N
H1 : y = s+ c yi = ci i = 1, . . . ,N (1)

where yi are N signal-free independent measurements
which will be used to estimate clutter covariance matrix.

Under the hypothesis H1, it is instead assumed that the
observed data consist in the sum of a signal s = α p and
clutter c, where p is a perfectly known complex steering
vector and α is the signal complex amplitude.

The clutter is modelled as a SIRP, a non-homogeneous
Gaussian process with random power : its randomness is
induced by spatial variation in the radar backscattering. A
SIRP [10] is the product of a positive random variable τ (tex-
ture), and a m-dimensional independent complex Gaussian
vector x (speckle), with zero mean and normalized covari-
ance matrix M = E(xx†) with Mii = 1, where † denotes the
conjugate transpose operator :

c =
√
τ x .

The SIRP PDF expression is recalled :

pm(c) =
∫ +∞

0
gm(c,τ) p(τ)dτ , (2)

where

gm(c,τ) =
1

(2π τ)m/2
√|M| exp

(
−c† M−1 c

2τ

)
. (3)

Let us consider the classical likelihood ratio for the de-
tection problem (1) :

Λ(y) =
p(y/H1)
p(y/H0)

H1
≷
H0

η , (4)

For given range cell and steering vector p, this detection
test involves the following unknown quantities : the am-
plitude α , the texture PDF p(τ) and the covariance matrix
M. Therefore, a Generalized Likelihood Ratio Test (GLRT)
is usually developed. The major difficulty comes from
the estimation of the texture PDF. When M is known, this
problem was solved in a different way in [8, 9] (BORD) and
[3, 4] (GLRT - Linear Quadratic (GLRT-LQ)).

For the BORD, p(y/H1) and p(y/H0) were replaced by
their Bayesian estimates. Asymptotically, BORD tends to
asymptotical BORD (aBORD) leading to the test :

Λ =
|p†M−1y|2

(p†M−1p)(y†M−1y)

H1
≷
H0

λ , (5)



with λ = 1−η− 1
m .

The aBORD properties were studied in [9]. In partic-
ular, it has the CFAR property with regard to the texture
distribution (i.e. it remains independent whatever the texture
distribution).

This is illustrated on the following figure which repre-
sents the relation between the detection threshold η and the
Probability of False Alarm Pf a for different SIRP distribu-
tion : Gaussian, K-distribution, Student-t and SIRP with a
Weibull texture.
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Figure 1: CFAR property for the aBORD when the covari-
ance matrix is perfectly known

The relationship between the Probability of False Alarm
Pf a defined by :

Pf a = P(Λ > λ/H0),

and the detection threshold η (or λ ) leads to :

η = P
m

1−m
f a , λ = 1−P

− 1
1−m

f a . (6)

In practice, M is generally unknown and quite difficult
to obtain. Hence it has to be estimated from y i data.

Test (5), rewritten in terms of estimated covariance
matrix M̂, provides the so-called adaptive version of the
aBORD :

Λ̂(M̂) =
|p†M̂

−1
y|2

(p†M̂
−1

p)(y†M̂
−1

y)

H1
≷
H0

λ , (7)

where we have emphasized the functional dependence of
Λ̂ on the covariance estimator M̂.

The major contribution of this paper is to establish the
distribution of Λ̂(M̂) for several estimators M̂.

3. ADAPTIVE DETECTION PERFORMANCES

We will start with the normalized sample covariance matrix
estimate (NSCME) first proposed in [11] and defined as fol-
lows :

M̂NSCME =
m

N

N

∑
i=1

(
ci c

†
i

c†
i ci

)
. (8)

Denominator is used to normalize each term of the
sample covariance matrix estimate by the SIRP power.

M̂NSCME defined by (8) is statistically independent of the
texture distribution :

M̂NSCME =
m

N

N

∑
i=1

(
ci c

†
i

c†
i ci

)
=

m

N

N

∑
i=1

(
xi x

†
i

x†
i xi

)
. (9)

This feature is significant and is referred to as the texture-
CFAR property. However, it can be shown that the test dis-
tribution depends on the covariance matrix M : the resulting
test is not M-CFAR. Nevertheless, when m tends to infin-
ity, x†

i xi/m tends to one. Therefore, it is interesting to study
Λ̂(M̂w) when M̂w is the sample Gaussian covariance matrix :

M̂w =
1

N

N

∑
i=1

xi x
†
i , (10)

which is complex Wishart-distributed.

3.1 Λ̂(M̂w) distribution

The starting point [12] for the derivation of Λ̂(M̂w) PDF is
based on Wishart’s theory. Kraut, in [12] rewrites Λ̂(M̂w)
defined by (7) in terms of random variable F̂ :

Λ̂(M̂w) =
F̂

F̂ +1
,

where F̂ depends on another random variable B. Con-
ditionally to B, F̂ is β 2

1,Nr−m+1-distributed and B is

β 1
Nr−m+2,m−1-distributed, with β 1

a,b and β 2
a,b PDF defined by

[13] :

β 1
a,b(x) =

Γ(a+b)
Γ(a)Γ(b)

xa−1(1− x)b−1Π[0,1](x),

and

β 2
a,b(x) =

Γ(a+b)
Γ(a)Γ(b)

xa−1

(1+ x)a+b, x > 0

where Π[0,1](x) is the window function on the interval
[0,1]. After several basic probabilistic considerations, we ob-
tain the following original results :

• the adaptive GLR Λ̂(M̂w) is distributed according to :

gN,m(x) =
(N −m+1)(m−1)

(N −1)
2F1(a,a;b;x)
(1− x)N−m Π[0,1](x)



where a = N −m+2, b = N +2 and 2F1 is the hyperge-
ometric function [13] defined as :

2F1(a,b;c;x) =
Γ(c)

Γ(a)Γ(b)

∞

∑
k=0

Γ(a+ k)Γ(b+ k)
Γ(c+ k)

xk

k!
.

• the relationship between the threshold η (or λ ) and Pf a
is given by :

Pf a = η− a−1
m 2F1

(
a,a−1;b−1;1−η− 1

m

)
(11)

= (1−λ )a−1
2F1(a,a−1;b−1;λ )

Figure 2 validates the theoretical relationship (11) by the
Monte-Carlo method for m = 10 and various values of N.
The dashed line is obtained from the relationship (6) where
the covariance matrix M is perfectly known.

As expected, the Monte-Carlo simulations confirm the
theoretical result given by (11). Moreover, since the covari-
ance matrix estimate (10) tends to the true covariance matrix
M when N tends to infinity, we also have the convergence in
probability of Λ̂(M̂w) to the aBORD (5) :

P(Λ̂(M̂w) > λ ) −−−→
N→∞

P(Λ > λ ).

As a consequence, when N tends to infinity, there is a
convergence of (11) to (6), as shown on figure 2.
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Figure 2: Validation of the relation (11) for different values
of N

3.2 An improved estimator M̂ f p

Despite of its interesting properties, the NSCME (8) suffers
the following drawbacks :

• it is a biased estimate;
• the resulting adaptive GLR Λ̂(M̂NSCME ) is not M-CFAR.

Recently, a recursive estimation of the covariance ma-
trix has been introduced in [14] as a numerical procedure for
computing the Maximum Likelihood of M :

M̂t+1 =
m

N

N

∑
i=1

(
cic

†
i

c†
i M̂

−1
t ci

)
. (12)

In this section, we derive new properties of this estima-
tor. These properties are of a great interest for our detection
problem. Let the function f be defined from the recursive
relation (12) :

f (M̂) =
m

N

N

∑
i=1

(
cic

†
i

c†
i M̂

−1
ci

)
. (13)

Theorem 1 We have the following results

1. the function f admits a single fixed point, called M̂ f p;

2. M̂t → M̂ f p;

3. the estimate M̂ f p is not biased;

4. the GLR Λ̂(M̂ f p) is texture-CFAR for all SIRPs;

5. the GLR Λ̂(M̂ f p) is M-CFAR for all SIRPs.

Proof 1 Proofs are too long to fit in this paper and will be
developed in a forthcoming paper.

We will call SIRP-CFAR detector, a detector which veri-
fies the two points 4 and 5 of the above theorem.
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Figure 3: Illustration of the convergence to the fixed point.

Figure 3 illustrates the second point of the above theo-
rem. On this figure, the relative error ‖ f (M̂t)− M̂t‖/‖M̂t‖
has been plotted versus t with initial value M̂0 = M̂NSCME
(8).

Other simulations have been performed with different
initial values M̂0 (ex : sample Gaussian covariance esti-
mate, matrix with uniform PDF, deterministic Toeplitz ma-



trix), each of them conducting to the same value with an ex-
tremely fast convergence :

‖f(M̂t)− M̂t‖ −−→
t→∞

0

3.3 Study of Λ̂(M̂ f p) behavior

In this section, we analyze by Monte-Carlo simulations the
relationship between the Probablity of False Alarm and the
threshold for the GLR Λ̂(M̂ f p).

Figure 4 presents Monte-Carlo simulations. On this fig-
ure, the dependance between the threshold and the PFA has
been displayed for different SIRP distribution : Gaussian,
K-distribution, Student-t, Cauchy, Laplace.

One can observe that the relationship (11) between the
threshold and the PFA, found in the special case where the
covariance matrix estimate is Wishart-distributed, seems to
be valid even if the SIRP is not Gaussian when taking for M̂
the fixed point of f .

Therefore, remarkably, the Monte-Carlo simulations
show that all the GLR Λ̂(M̂ f p) follow the same distribution
than the Λ̂(M̂w)’s one. Hence, we infer that the relationship
(11) remains valid for Λ̂(M̂ f p) althought we have not yet
proved this assertion.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−3

10
−2

10
−1

10
0

threshold η

P
F

A

Verification of the relationship (11) for various SIRP

Gaussian
K−distribution
Student−t
Cauchy
Laplace
Relationship (11), N=40, m=10
Relationship (6), m=10
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4. CONCLUSION

In this paper, we have studied the adaptive GLRT (BORD)
when the SIRP covariance matrix is estimated. We have first
derived the distribution of the adaptive BORD in the Gaus-
sian case using the sample covariance matrix. Althought
this case is restrictive in our non-Gaussian context, we have
shown through extensive simulations that this distribution
seems to be valid in a non-Gaussian noise (SIRP) when
using an appropriate covariance matrix estimate.

The resulting detector has the following important
property : it is SIRP-CFAR (invariance of its distribution
with respect to the texture and to the speckle covariance
matrix).

Moreover, this estimate was shown to be unbiased, to be
the fixed point of a suitable function and to be the limit of a
recurrence relation.
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