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Abstract : In this paper detection performances of the
Bayesian Optimum Radar Detector (BORD) against non-
Gaussian ground clutter data are showed in the case of an
unknown complex amplitude target. Recalling first how
BORD was derived from the non-Gaussian SIRP model
(Spherically Invariant Random Process) clutter we derive
theoretical performances of the asymptotical expression of
BORD which is CFAR with respect to the texture PDF
of the SIRV. Then we compare BORD performances ob-
tained in non-Gaussian ground clutter data with those of
well-known optimum radar detectors such as Optimum K-
Detector (OKD) and Optimum Gaussian Detector (OGD).
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1. Introduction

Coherent radar detection against non-Gaussian clutter
has gained many interests in the radar community since
experimental clutter measurements made by organizations
like MIT [1] showed to fit non-Gaussian statistical models.
One of the most tractable and elegant non-Gaussian model
results in the so-calledSpherically Invariant Random Pro-
cess(SIRP) theory which states that some non-Gaussian
random processes are the product of a Gaussian random
process - calledspeckle- with a non-negative random
variable (r.v.) - calledtexture. This model is the base of
many results [2, 3, 4, 5, 6, 7] where, for example in Gini
and al.’s works [7], is derived the optimum detector in
the presence of composite disturbance of known statistics
modeled as SIRP.

In previous authors’works [8, 9], a bayesian approach
was proposed to determine the PDF of thetexture (the
characteristic PDF of the SIRP) fromN reference clutter
cells. For this task, the Bayes’rule and a Monte Carlo
integration given anon informativeprior on the variance
PDF were used. This approach exploits the SIRP model
particularity to describe non-Gaussian processes as com-
pound processes and allows to derive the expression of
the optimum detector called Bayesian Optimum Radar
Detector (BORD). Detection performances of BORD
showed that this detector gives optimum performances
whatever is the nature of the simulated data. Moreover
BORD was showed to be an adaptive detector : it is so no

more necessary to have any knowledge about the clutter
statistics but BORD deals directly with the received data.

In this paper, we propose to evaluate BORD per-
formances against non-Gaussian ground clutter data and
to compare the results to other optimum detectors such
as Optimum K-detector and Optimum Gaussian detector.
These comparisons are possible and significant since parts
of the ground clutter data statistics are showed to be closed
to a K-distribution or a Gaussian PDF.

In section 2 and 3 we briefly recall the formulation
of a detection problem and describe the bayesian approach
used to determine a bayesian estimator to thetexturePDF
and give the expression of the resulting Bayesian Optimum
Radar Detector (BORD). Section 4. is devoted to the theo-
retical performances of the asymptotical expression of the
BORD (called Asymptotical BORD) in the case where the
correlation matrix is non-singular. In section 5. we first
briefly describe the ground clutter data and then we show
BORD performances obtained thanks to Monte Carlo com-
putation. Conclusion and outlook are given in section 6.

2. General relations of detection theory

We consider here the basic problem of detecting the
presence (H1) or absence (H0) of a complex signals in a
set ofN measurements ofm-complex vectorsy = yI +
j yQ corrupted by a sumc of independent additive complex
noises (noises + clutter). The problem can be described in
terms of a statistical hypothesis test :

H0 : y = c (1)

H1 : y = s + c (2)

When present, the target signals corresponds to a modified
version of the perfectly known transmitted signalt and can
be rewritten ass = AT (θ) t. A is the target amplitude and
we suppose determined all the others parameters (θ) which
characterize the target (Doppler frequency, time delay, ...).
In the following, p = T (θ) t. The observed vectory is
used to form the Likelihood Ratio Test (LRT)Λ(y) which
is compared with a thresholdη set to a desired false alarm
probability (Pfa) value :

Λ(y) =
py(y/H1)

py(y/H0)

H1

>
<
H0

η (3)



LRT performances follow from the statistics of the data.
Pfa is the probability of choosingH1 when the target is
absent, and the detection probability (Pd) is the probability
of choosingH1 when the target is present, that is :

Pfa = IP(Λ(y) >
H0

η) and Pd = IP(Λ(y)
H1

> η) (4)

3. Non-Gaussian clutter case : SIRV and Bayesian
Optimum Radar Detector

In the case of non-Gaussian clutter, detection strate-
gies can be derived if ana priori hypothesis is made
on the clutter statistics. To model non-Gaussian clutter
and derive general detector expressions, we use the SIRP
representation [2, 10, 11].

3.1 Description and general expressions

SIRV (Vector) model interprets each element of the
clutter vectorc as the product of am-complex Gaussian
vectorx (CN (0, 2 M)) with a positive r.v.τ , the so-called
texture, that isc = x

√
τ .

The PDF of the variableτ is the so-calledcharac-
teristic PDF of the SIRV and the so formed vectorc is,
conditionally to τ , a complex Gaussian random vector
(CN (0, 2 τ M)) with joint PDFp(c/τ). The marginal PDF
of the clutter is then :

p(c) =

∫ +∞

0

1

(2πτ)m|M| exp

(
−c†M−1c

2τ

)
p(τ)dτ.

(5)
where† is the transpose conjugate operator, and|M| is the
determinant of the matrixM.

This general expression allows to determine, for a
knownp(τ), joint PDFs of non-Gaussian random vectors.

3.2 SIRP Optimum Detector

Applied to the detection problem, expression (5) gives
pc(y/H0) andpc(y/H1) = pc(y − s/H0) when the target
signals is known. The LRT becomes (with the same nota-
tions as in [7]) :

∫ +∞

0

[
exp

(
−q1(y)

2τ

)
− exp

(
λ − q0(y)

2τ

)]
p(τ)

τm
dτ

H1

>
<
H0

0

(6)
whereq0(y) = y†M−1y, q1(y) = q0(y − s) for a known
signals andλ = ln(η).

When the target signals is unknown, ML estimation
of A is performed and the detection strategy is given by (6)
where now :

q1(y) = y†M−1y − |p†M−1y|2
p†M−1p

. (7)

3.3 Bayesian Optimum Radar Detector (BORD)

For a knowntexturePDF p(τ) it is possible to de-
rive the associated detector expression. The idea of a
bayesian approach is to determine, fromN clutter refer-
ence cells of sizem, R = [r1, . . . , rN ]T where ri =
[ri(1), . . . , ri(m)]T , a bayesian estimator̂pN (τ) of thetex-
turePDFp(τ). We writep(τ) as follows :

p(τ) =

∫

IRm

p(τ/r)p(r) dr, (8)

GivenrN
i=1 a Monte Carlo estimation of (8) is [12] :

p̂N (τ) =
1

N

N∑

i=1

p(τ/ri), (9)

and the Bayes’rule provides :

p(τ/ri) =
p(ri/τ) g(τ)

p(ri)
, (10)

whereg(τ) is the prior distribution ofτ for the reference
cells and the normalization constantp(ri) is obtained by
integrating the numerator in (10) overg(τ). As the clutter
statistics is unknown, a non-informative prior distribution
g(τ) = 1/τ is chosen to retrieve thea posterioriPDF ofτ
given theN reference cells. So (10) becomes :

p(τ/ri) =
1

(2π)m |M| p(ri)
τ−m−1 exp

(
−r†i M−1ri

2τ

)
,

(11)
andp(ri) can be computed easily :

p(ri) =
Γ(m)

πm |M| (r†i M−1ri)m
. (12)

Replacing (11) and (12) in (10) and then (10) in (9) gives :

p̂N (τ) =
1

N

N∑

i=1

hi(τ). (13)

where hi(τ) is exactly an Inverse Gamma PDF with
parametersm and2/r†i M−1ri.

The so-called BORD expression which is given for
each observation cellyobs (sizem) and given theN refer-
ence clutter vectorsrN

i=1 becomes after integration of (6)
overp̂N (τ) (in lieu of p(τ)) :

ΛN (yobs) =

N∑

i=1

[
r†i M−1 ri

(q1(yobs) + r†i M−1 ri)2

]m

N∑

i=1

[
r†i M−1 ri

(q0(yobs) + r†i M−1 ri)2

]m

H1

>
<
H0

λ,

(14)
whereq0 andq1 are the same than for (6).



BORD expression depends only on the reference clut-
ter cells which provide all the necessary information about
the clutter statistics. Its adaptive version is obtained when
the correlation matrix is estimated from the reference clut-
ter cells. This estimation can be made as described in [5],
which is independent from thetexturePDF :

M̂ =
m

N

N∑

i=1

ri r†i
r†i ri

. (15)

ReplacingM by (15) in (14) gives the adaptive BORD.

4. Theoretical performances of the Asymptotical
BORD

In [9] authors gave the asymptotical result of BORD
(convergence in law,L) whenN → +∞ which is :

lim
N→+∞

L

ΛN (yobs)=

(
q0(yobs)

q1(yobs)

)m

(16)

=

(
1 − |p†M−1yobs|2

p†M−1p y†obsM−1yobs

)−m

.(17)

Asymptotical BORD expression coincides with other
detector expressions derived under different hypothesis
[3, 4, 6]. For example, K.J.Sangston and al. in [6] consider
a deterministictexture variable and replace its value by
its ML estimate under each of the hypothesis test (1),
(2). Expression (17) is also commonly called GLRT-LQ
(GLRT-Linear Quadratic) and can be expressed like the
classical matched filter [4].
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Figure 1. CFAR property of the Asymptotical BORD on
synthetic signals. Comparison between MC threshold val-
ues and theoretical values given by (19). Threshold compu-
tation is independent on thetexturePDF of the SIRV clut-
ter.

10
0

10
1

10
2

10
3

10
4

10
-3

10
-2

10
-1

10
0

Detection threshold values

P
fa

Gaussian
K-dist( ν=0.1)
Sudent-t
Texture Weibull
Theoretical

CFAR property of BORD : MC thresholds compared to theoritical As. BORD thres. in various SIRV

Gaussian

K-distStudent-t

Texture Weibull

Figure 2. CFAR property of the BORD on synthetic sig-
nals. Comparison between MC threshold values and the-
oretical values given by (19). Threshold computation is
independent on thetexturePDF of the SIRV clutter.

Expressions (16) and (17) are statistically indepen-
dent of thetexturePDF. This means that the Asymptotical
BORD is CFAR with respect to thetexturePDF as showed
in [8] and figure 1. Following the same process, it is
possible to show ([8] in figure 2 that BORD is also CFAR
with respect to thetexturePDF.

Expression (17) is so only made up of Gaussian
vectors. Under non-singularity condition on the corre-
lation matrix it is possible to prove that numerator and
denominator in (17) are statistically independent and then
to derive the PDF of Asymptotical BORD [8].

Considering (16) as the following detection test :
(

q0(yobs)

q1(yobs)

)m H1

>
<
H0

η, (18)

then theoretical performances of (18) are :

η = P
m

1−m

fa . (19)

Figure 2 shows that this result applies also for the BORD.

5. BORD performances against ground clutter data

The ground clutter data presented in this paper were
collected by an operational radar at THALES Air Defence,
placed at 13 meters height and illuminating the ground at
low grazing angle. Ground clutter complex echoes were
collected inN = 868 range bins for 70 different azimuth
angles and form = 8 recurrences of the pulse repetition
frequency (PRF). Near the radar, echoes represent non-
Gaussian ground clutter whereas beyond the radioelectric
horizon of the radar (around 15 km) only Gaussian thermal
noise is present (figure 3).
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Figure 3. Ground clutter data level (in dB) for them =
8 recurrences of PRF. Y-coordinates represent 70 azimuth
angles and X-coordinates representN = 868 range bins.

BORD performances are evaluated in some particular
zones of the data representing either non-Gaussian com-
plex clutter (m = 8, N = 2660 from range bin 22 to 212
and from azimuth 18 to 32) or complex Gaussian thermal
noise (m = 8, N = 3296 from range bin 568 to 774 and
from azimuth 22 to 38).

The detection threshold value is derived by Monte
Carlo computation forPfa = 10−2. Figure 4 represents
BORD performances in a non-Gaussian ground clutter
zone whereas figure 5 deals with a Gaussian thermal noise
zone. An artificial target with complex and unknown
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Figure 4. Performance comparison between the OGD,
OKD, BORD and As.BORD in a non-Gaussian ground
clutter zone for an unknown complex target amplitude.
Pfa = 10−2, ν̂ = 0.171 (spiky K-clutter).
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Figure 5. Performance comparison between the OGD,
OKD, BORD and As.BORD in a Gaussian thermal noise
zone for an unknown complex target amplitude.Pfa =
10−2, ν̂ = 223 (closed to Gaussian noise).

amplitude is embedded in each of these zones in order
to evaluate the probability to detect such signal in such
clutter. All the curves represent the detection probability
Pd versus the Signal-to-Clutter-Ratio (SCR) given for one
pulse.

In order to compare BORD performances with those
of optimum detectors we fit experimental data envelope to
a K-distribution. More the value of K-distribution form pa-
rameterν is low and spikier is the K clutter. Whenν is
high, the clutter tends to be Rayleigh distributed. With the
results we obtain in [8], we conclude that these data can be
connected with a K-distribution.

6. Conclusion and outlooks

The present paper has addressed detection perfor-
mances on experimental data of the new detector BORD,
based on a bayesian estimation of the clutter statistics.
This detector is adaptive and applies with significant
results to experimental clutter data. Moreover, in the case
where the correlation matrix of the data is non-singular it
is possible to apply the theoretical threshold value of the
Asymptotical BORD to the BORD. In this case, it is not
necessary to have many reference clutter cells to make
BORD efficient. Only ten data can be enough, except of
course for the correlation matrix estimation.

From the experimental point of view, it would be
interesting to evaluate BORD performances in various
clutter cases such as coastal clutter where ground/sea tran-
sitions can be observed for a deterministic or fluctuating
target amplitude.



Special thanks to THALES Air Defence for allowing
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