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NEMATIC FIRST ORDER PHASE TRANSITION FOR LIQUID

CRYSTALS IN THE VAN DER WAALS–KAC LIMIT.

CLÉMENT ERIGNOUX AND ALESSANDRO GIULIANI

Abstract. In this paper we revisit and extend some mathematical aspects of

Onsager’s theory of liquid crystals that have been investigated in recent years
by different communities (statistical mechanics, analysis and probability). We

introduce a model of anisotropic molecules with three-dimensional orientations
interacting via a Kac-type interaction. We prove that, in the limit in which the

range of the interaction is sent to infinity after the thermodynamic limit, the

free energy tends to the infimum of an effective energy functional à la Onsager.
We then prove that, if the spherical harmonic transform of the angular inter-

action has a negative minimum, this effective free energy functional displays a

first order phase transition as the total density of the system increases.

1. Introduction

The problem of understanding phase transition phenomena in liquid crystals was
first mathematically formalized in a seminal paper by Onsager [28], in which he
considered a simple microscopic model of anisotropic molecules interacting through
repulsive interactions, and derived an effective free energy functional for the system,
of the following form:

ρ

β

∫
S2
f(Ω) log f(Ω)dΩ +

ρ2

2

∫
S2×S2

f(Ω)f(Ω′)ϕ(Ω · Ω′)dΩdΩ′. (1.1)

Here f(Ω) represents the distribution of the orientation of the molecules, and ϕ is an
interaction potential, even under ‘orientation flip’, Ω ·Ω′ → −Ω ·Ω′. Since then, the
topic of phase transitions in liquid crystal models has attracted significant attention,
and the equilibrium phenomenology of liquid crystals is now well understood, see
[9] for an extensive overview.

However, from a more fundamental point of view, several aspects of the mathe-
matical theory of liquid crystalline phases are not well understood. In particular,
the problem of proving the existence of an oriented phase at low enough tempera-
tures, or high enough densities, in a system of anisotropic molecules with continuous
orientational symmetry and finite range interactions, is almost completely open (the
only exceptions we are aware of, see [1, 2, 32], concern discrete, reflection positive,
models with an internal O(n) degree of freedom). Even less is rigorously known
about the order of the phase transition from the disordered to the nematic phase,
which is supposed to be of first order in great generality, at least if Ω ∈ Sn, with
n ≥ 2: loosely speaking, as soon as the molecules acquire a common orientation,
the density is expected to have a jump (at fixed activity), due to the fact that
oriented elongated molecules can pack more efficiently than un-oriented ones. We
believe that the lack of rigorous results on the existence and nature of the phase
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2 CLÉMENT ERIGNOUX AND ALESSANDRO GIULIANI

transition in microscopic models for liquid crystals is related to the limited mathe-
matical understanding of continuous symmetry breaking phenomena in system with
short range interactions: with a very few exceptions [4, 15, 21], the only available
results on the subject are based on reflection positivity and, therefore, are not ro-
bust under perturbations of the microscopic Hamiltonian. Typically, the ‘natural’
microscopic models of liquid crystals are not reflection positive and, therefore, there
are not many techniques available for attacking the problem. One possible route
that, in our opinion, has not been explored enough in the context of liquid crystals,
is to consider finite range models obtained as perturbation of mean field ones, in
the spirit of [24, 30]. The techniques developed by [24] in their standard form are
suitable for studying problems with discrete symmetry breaking only; still, there
is hope that a generalization thereof can be used to attack the more challenging
problem of continuous symmetry breaking and liquid crystalline order.

Of course, in order for such a program to be feasible, the scaling limit of the finite
range model to the mean field one, as well as the properties of the effective energy
functional for the limiting mean field model, must be understood in a complete and
quantitative form. Motivated by this, in this paper we revisit and extend some
aspects of the mathematical theory of liquid crystals that have been investigated in
recent years by different communities (statistical mechanics, analysis, probability).
In short, we introduce a model of anisotropic molecules with long but finite range
interactions (we denote the range by γ−1) and give a simple proof of the following
facts: (1) as the range γ−1 tends to infinity, the free energy of the model tends to
the minimizer of a free energy functional à la Onsager , i.e., of the form (1.1); (2)
this effective free energy functional displays a first order phase transition as the
total density of the system is varied from small to large values. Our results are
not the first of this kind available in the literature, and some aspects of our proofs
overlap with known techniques developed by different mathematical communities:
for instance, in the proof of (1), we use a criterium put forward by Lebowitz and
Penrose [25] to show spatial homogeneity of the critical points, and in the proof
of (2) we apply an argument already used in [20, 31] for analyzing the nature
of the phase transition of the spatially homogeneous effective energy functional.
Nevertheless, since the topic at hand involves various mathematical and physics
communities and previous results are delocalized in papers aimed at researchers
with different backgrounds, we deem worthwhile to have in the same short article
both parts of the problem solved in a concise way.

1.1. Previous results on the derivation of an effective free energy func-
tional. In the standard mean-field scaling limit, N particles enclosed in a container
interact among each other via a potential of strength N−1 and range comparable
with the container itself. Recently, models for nematic liquid crystals in this scal-
ing limit have been considered [6], and the free energy proved to converge to an
appropriate effective energy functional, of the same form as the one originally con-
sidered by Onsager. A priori, the predictions on the nature of the phase transition
based on the limiting mean-field functional are not reliable for finite range mod-
els (an exception is the case of finite range systems in large dimension, where in
some cases the mean field approximation can be rigorously justified, see [5] for a
proof covering models of interest for liquid crystals). In order to better understand
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the connection between the limiting functional and finite-range models, it is im-
portant to clarify whether there are other limit procedures leading to the Onsager
functional. Onsager himself, in his original article [28], derives his effective energy
functional by truncating the virial expansion for the free energy at second order,
an approximation that, unfortunately, is justified only at low enough densities (well
below the critical density beyond which the system is expected to enter a nematic
phase); see [18] for a recent analysis of the virial expansion applicable to systems
of anisotropic molecules in the canonical ensemble; see also [29] for a recent crit-
ical discussion of Onsager’s approximation and its range of applicability. A third
approach to derive the effective equation of state from microscopic models, stand-
ing somehow in between the two previous approximation schemes, is based on the
so-called ‘van der Waals limit’, or ‘Kac limit’, which has been rigorously proved
to produce the expected effective energy functional for several models of isotropic
particles, see [16, 25]. In the van der Waals–Kac limit, particles interact on typical
range of order γ−1 (instead of the size L of the macroscopic container), where γ
goes to 0 after having taken the thermodynamic limit L→∞ at constant density
ρ = N/Ld (here Ld is the d-dimensional volume of a cubic box of side L). One
of the purposes of this note is to adapt the methods of [16, 25] to models of ne-
matic liquid crystals, thus extending the proof of convergence to an effective energy
functional à la Onsager beyond the mean field analysis of [6]. Let us conclude
this subsection by remarking that the problem of computing the free energy for
models of anisotropic molecules with continuous symmetry and ‘really short-range’
interactions (i.e., interactions of range comparable with the size of the molecules
themselves), in regimes of intermediate densities (potentially including the critical
density for nematic phase transition) is completely open. For recent progress in the
case of anisotropic molecules with discrete orientations, see [10, 11] and references
therein; it would extremely interesting to extend these results to ‘clock-models’ of
anisotropic molecules with several, but finite, allowed orientations, but this remains
to be done.

1.2. Previous results on the minimizers of the effective free energy func-
tional. In his seminal paper, Onsager proved that the effective energy functional
(1.1) displays a phase transition from isotropic to nematic liquid, at least for certain

simple reasonable choices of ϕ, most notably ϕ(x) =
√

1− x2, which is the potential
arising from the truncation of the virial expansion, in the case of rod-like molecules.
When we say that ‘the effective energy functional displays a phase transition’, we
mean that, while the minimizer of (1.1) is isotropic for ρ small enough, it is peaked
around a given (arbitrary) direction Ω0 for ρ large enough. Given this, two natural
questions arise:

• Can we compute or characterize the critical points of the free energy func-
tional?
• Can we determine the order of the phase transition from isotropic to ne-

matic liquid?

The problem of determining the order of phase transition has been studied for
several effective free-energy functionals similar to the Onsager one, e.g., for those
arising in the mean field solution of the classical XY and Heisenberg models, see
[22], and for the McKean-Vlasov functional, see [7]. In the latter case, the authors
gave necessary and sufficient conditions for the existence of a first order phase
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transition, and exhibited examples of specific models in their class for which a first
order phase transitions can be proved; however, their analysis does not apply to
the Onsager case.

In order to attack both questions in the Onsager case, a natural approach is to
study the Euler-Lagrange equation

f(Ω) =
e−βρ

∫
ϕ(Ω·Ω′)f(Ω′)dΩ′∫

e−βρ
∫
ϕ(Ω·Ω′)f(Ω′)dΩ′

dΩ
. (1.2)

Unfortunately, for general interactions ϕ, including the case ϕ(x) =
√

1− x2,
this equation is infinite-dimensional and, therefore, very hard to solve or analyze.
Remarkably, there are special cases in which this equation reduces to a finite-
dimensional one, most notably the case of the so-called Maier-Saupe potential [14],
ϕ(x) = 1 − x2. For this potential, in the case of three-dimensional orientations
(Ω ∈ S2), the Euler-Lagrange equation was solved independently in [12] and [26].
These papers derive a complete classification of the critical points and bifurcation
diagram. Although the issue of the order of the phase transition is addressed nei-
ther in [12] nor in [26], one can prove that the phase transition is discontinuous
(first order); this follows, in particular, from our Theorem 2.2 below, see Section 3.

For the ‘Onsager case’ ϕ(x) =
√

1− x2, Kayzer and Raveché [20] built an iterative
scheme to compute the axially symmetric solutions of the Euler-Lagrange equation;
recently, Vollmer [31] obtained the full classification of the bifurcation points from
the uniform solution. An extension of Vollmer’s results, included in the present
paper, implies that the phase transition is first order in the Onsager case, as well.

Let us remark that an analogous bifurcation analysis for the Euler-Lagrange
equation (1.2) in the case of two-dimensional orientations (Ω ∈ S1) has been worked
out in [8, 27] for various potentials, including Maier-Saupe and Onsager’s. The
classification and characterization of the critical points has been obtained in [13]
for the family of potentials cos

(
n θ(Ω,Ω′)

)
, where θ = θ(Ω,Ω′) is the angle formed

by Ω and Ω′, and n ≥ 1; for all these cases the phase transition is continuous (second
order). Note that this family includes Maier Saupe potential (n = 2); the general
case remains open, but we expect that the transition is generically continuous, see
Remark 5.1 below.

1.3. Plan of the paper. In Section 2 we define the liquid crystal model we con-
sider, and state our two main results, namely a variational formula for the ther-
modynamic free energy (Theorem 2.1), and a simple criterion for the existence of
a first order phase transition for the free energy (Theorem 2.2). In Section 3, we
exhibit some concrete models, which these results apply to. In Section 4, we prove
the variational formula for the free energy, by adapting the proofs by Lebowitz and
Penrose [25] and Gates and Penrose [16] on the van der Waals–Kac limit to our
case of interest, where particles have an internal orientational degree of freedom.
Finally, in Section 5, we prove our criterium for the first order nature of the phase
transition, and discuss the fundamental differences between models with two- and
three-dimensional orientations.

2. Microscopic model and main results

We consider a system of infinitely thin rods interacting via a pair wise potential
and hard-core repulsion, modelled as follows. Given L > 0, d ≥ 1, consider a
large box ΛL = [0, L]d, containing N anisotropic particles, each characterized by a
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position xi ∈ ΛL, to be thought of as its center, and a three-dimensional orientation
Ωi ∈ S2. Note that we do not require the space dimension d to be the same as the
rod orientation’s. Letting x̄ = (x1, . . . , xN ) and Ω̄ = (Ω1, . . . ,ΩN ), we assume the
particles to interact via the pairwise potential

Vγ(x̄, Ω̄) =
∑

1≤i<j≤N

vγ(xi − xj ,Ωi,Ωj).

Denoting Ω · Ω′ the inner product in R3, we assume the potential vγ to have the
form

vγ(r,Ω,Ω′) = q(r) + γdϕ(γr,Ω · Ω′),
where q(r) models an isotropic hard core repulsion with distance r0,

q(r) =

{
∞ if |r| ≤ r0

0 otherwise
,

and ϕ : Rd× [−1, 1]→ R models the anisotropic long range interaction (the inverse
range γ of ϕ should be thought of as a small parameter). We assume that ϕ is
integrable on Rd × [−1, 1], and, more specifically, that

sup
τ>0

sup
x∈Λτ

sup
u∈[−1,1]

τd
∑
n∈Zd

∣∣ϕ(x+ τn, u)
∣∣ < +∞. (2.1)

Moreover, we assume that

ϕ(x, ·) is C1(x)-Lipschitz. (H1)

ϕ(·, v) is continuously differentiable. (H2)

Both C1(x) and C2(x) := supv |∇xϕ(x, v)| are Riemann integrable over Rd. (H3)

The fact that the potential models a liquid crystalline interaction translates into
ϕ being even in its second variable. However, since this is not necessary to derive
the free energy functional, we keep it as an assumption for our second result, which
states that a first order phase transition occurs in the thermodynamic limit.

The Gibbs distribution for this system with open boundary conditions is then
given by

µβ,γ({Xi ∈ xi + dxi, Oi ∈ Ωi + dΩi}i=1,...,N ) =
1

Zβ(N,L, γ)

dx̄dΩ̄

N !
e−βVγ(x̄,Ω̄),

where Zβ(N,L, γ) is the partition function

Zβ(N,L, γ) :=

∫
ΛNL×(S2)N

dx̄dΩ̄

N !
e−βVγ(x̄,Ω̄).

The thermodynamic free energy in the van der Waals–Kac limit is defined as

Fβ(ρ) = lim
γ→0

lim
L→∞

−1

βLd
logZβ(bρLdc, L, γ).

Our goals are: first, to derive an expression for the free energy as a variational
principle over the distribution in space and orientation of the particles; then, to
show that this expression undergoes a first order phase transition under suitable
assumptions on the interaction potential ϕ. To state our first result, denote by
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ρcp = ρcp(r0) the close packing density at radius r0. Introduce the partition function
relative to N particles with hard core repulsion,

Zhc(N,L) =

∫
ΛNL

dx̄

N !
1{xi−xj≥r0, ∀i 6=j≤N}, (2.2)

and define the corresponding free energy at density ρ as

Fhc(ρ) = lim
L→∞

−1

βLd
logZhc(bρLdc, L) (2.3)

=

{
β−1

[
ρ log(ρ/e) +Qr0(ρ)

]
for ρ < ρcp

∞ otherwise
,

where the positive term Qr0(ρ) encompasses the loss of entropy due to the hard
core repulsion. It is well known that, if ρrd0 is sufficiently small, Qr0(ρ) is real
analytic; moreover, both Qr0(ρ) and ρ−1Qr0(ρ) are increasing in r0, and convex
and increasing in ρ (these properties follow from the fact that the second and third
virial coefficients of the hard core gas are positive, see [23]). We are now ready to
state our main results.

Theorem 2.1. Given a function f : Rd × S2 → R, we denote by f̄ the function on
Rd defined as f̄(x) =

∫
S2 f(x,Ω)dΩ. Then

Fβ(ρ) = inf
τ≥0
f∈Rτ

Fβ,τ (ρ, f), (2.4)

where

Fβ,τ (ρ, f) :=
1

τd

{
1

β

∫
Λτ

Qr0(ρf̄(x))dx+
ρ

β

∫
Λτ×S2

f log f(x,Ω)dx dΩ (2.5)

+
ρ2

2

∫
Λτ×Rd×S2×S2

f(x,Ω)f(y,Ω′)ϕ(x− y,Ω · Ω′)dx dy dΩ dΩ′
}
,

and Rτ is the set of non-negative, L1
loc, τ -periodic functions, such that

τ−d
∫

Λτ×S2
f(x,Ω)dx dΩ = 1.

[If τ = 0, R0 consists of functions that are translationally invariant in x; if f ∈ R0,
we simply denote by f(Ω) the values of f .]

Note that, since Qr0(ρ) = +∞ for ρ ≥ ρcp, in the minimization of Fβ,τ (ρ, f)
we can assume without loss of generality that ρf̄(x) < ρcp. For later reference, we
denote Fβ(ρ, f) := Fβ,0(ρ, f), and note that, for f ∈ R0,

Fβ(ρ, f) =
1

β
Qr0(ρ) +

ρ

β

∫
S2
f log f(Ω)dΩ +

ρ2

2

∫
S2×S2

f(Ω)f(Ω′)ϕ̂(0,Ω ·Ω′)dΩ dΩ′,

where ϕ̂(0, u) =
∫
Rd ϕ(x, u)dx.

Let us now give a criterion for Fβ(ρ) to exhibit a first order phase transition.
Since we are mostly interested in the angular dependence of the free energy func-
tional, we focus on the r0 → 0+ limit of Fβ(ρ), which we denote by F0

β(ρ) (we

define F0
β,τ (ρ, f) and F0

β(ρ, f) analogously). Most of the consideration below can
be extended to the case of r0 small, thanks to the properties of Qr0 spelled after
(2.3), but we will not discuss this issue explicitly below.
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Denote by P`, with ` ∈ N0 (here N0 is the set of non-negative integers), the `-th
Legendre polynomial, whose definitions and basic properties are briefly recalled in
Appendix A.

Theorem 2.2. For ξ ∈ Rd, ` ∈ N0 define

Φ̂`(ξ) =

∫
Rd×[−1,1]

ϕ(x, u)P`(u)e−ix·ξdudx. (2.6)

Assume that for any x ∈ Rd, ϕ(x, ·) is even, and that there exists `? > 0 such that

inf
(ξ,`)∈Rd×N

Φ̂`(ξ) = Φ̂`?(0) < 0. (2.7)

Then F0
β(ρ) exhibits a first-order phase transition, in the sense that there exists a

positive critical density ρc, strictly smaller than ρ? := −4π/
(
βΦ̂`?(0)

)
, such that:

1. For any ρ < ρc, the uniform profile f0 ≡ 1
4π is the unique global minimizer

of F0
β,τ (ρ, f), for all τ ≥ 0.

2. For any ρc < ρ < ρ?, the uniform profile f0 is a local stable minimum of
F0
β,τ (ρ, f), for all τ ≥ 0; however, there exists τ ≥ 0 and f ′ ∈ Rτ such that

F0
β,τ (ρ, f ′) < F0

β(ρ, f0).
3. For any ρ > ρ?, the uniform profile is locally unstable.

Remark 2.3 (On the parity of `?). Since the Legendre Polynomials P` are even
(resp. odd) on [−1, 1] iff ` is, and since we assumed our potential ϕ to be even in

its second variable, we obtain by symmetry Φ̂` ≡ 0 for any odd `. In particular, one
must have, under the assumptions of Theorem 2.2, that `? is even.

The proof of Theorem 2.1 mimicks the one of [16] and is given in Section 4.
The proof of Theorem 2.2 is given in Section 5 and goes as follows. In our setting
of pairwise particle interactions, the energetic contribution to the free energy can
be expressed as a quadratic functional of the particles distribution, both in space
and orientation. In this context, one can then develop the entropic term around
the uniform profile f0 to second order to determine the density ρ? at which f0

loses linear stability, as a function of the most negative eigenvalue of the energetic
contribution. Developing further, two cases can arise: either at ρ? the leading
correction beyond the quadratic approximation is negative, in which case at the
critical density ρ? the uniform profile is not a local minimizer for the free energy,
which is sufficient to prove a first order phase transition. Or the leading order
term is positive, in which case the uniform profile is a local minimizer. For general
liquid crystal models with orientation in S2, the first case arises and a first order
phase transition can then be proved. Notably, this is not the case for ferromagnetic
models (cf. Remark 5.2 below) or two-dimensional liquid crystals for which the
orientation is in S1 (cf. Remark 5.1 below). In both of those cases, at the density
ρ?, the uniform profile f0 is, at least locally, a minimizer of the free energy. This,
of course, is not sufficient to preclude the existence of a first order phase transition,
but still sheds some light on the different phenomenologies of these three closely
related models.
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3. Examples of applications

Before proving Theorem 2.1 and Theorem 2.2, let us exhibit some explicit models
which they can be applied to. Assume for simplicity that ϕ has separate variables,

ϕ(x, u) = φ(x)g(u),

with φ : Rd → R, g : [−1, 1] → R. In this case, defining λ` :=
∫
P`(u)g(u)du, the

assumptions required for Theorems 2.1 and 2.2 to hold translate into

φ is positive definite, C1, and integrable over Rd, together with its derivative,

g is even, Lipschitz and ∃`? > 0, s.t. inf`>0 λ` = λ`? < 0.

Without loss of generality, we also assume that
∫
Rd φ(x)dx = 1.

The case of Onsager’s potential corresponds to the choice g(u) =
√

1− u2. In
this case, the λ`’s can be explicitly computed and form for ` ≥ 1 an increasing
sequence. Indeed, denoting by Pm` the associated Legendre polynomials, see (A.2),

λ` =

∫ 1

−1

√
1− v2P`(v)dv =

1

2`+ 1

∫ 1

−1

(
P 1
`−1(v)− P 1

`+1(v)
)
dv.

For m = 1, (cf. [19], p.646)

R1
2`+1 :=

∫ 1

−1

P 1
2`+1(u)du = − π(2`+ 2)

(2`+ 1)24`+4

(
2`+ 2

`+ 1

)2

so that

λ2` =
1

4`+ 1

(
R1

2`−1 −R1
2`+1

)
= − π

2(`+ 1)(2`− 1)24`

(
2`

`

)2

.

Note that this sequence is non-decreasing for positive indexes and vanishes as `→
∞. In particular, λ?` = λ2 = −π/16. Therefore, by Theorem 2.2, the system
undergoes a first order phase transition, which occurs before the uniform profile f0

loses linear stability at ρ? = 64/β.

The same explicit characterization of the phase transition for the limiting func-
tional can be extended to more general functions g satisfying the assumptions above,
provided we can compute the smallest λ` :=

∫
P`(u)g(u)du and show that it is

negative. For example, choosing g = (1 − u2)k, corresponding to an interaction[
sin
(
θ(Ω,Ω′)

)]2k
, the corresponding λ

(k)
` can be computed explicitly, recursively

in k, thanks to the identity

(1− u2)P` =
(`+ 1)(`+ 2)

(2`+ 1)(2`+ 3)
(P` − P`+2)− `(`− 1)

(2`+ 1)(2`− 1)
(P`−2 − P`),

which follows from using three times Bonnet’s recursion formula (A.1). By this

identity, the computation of λ
(k)
` can be reduced to that of λ

(k−1)
` , λ

(k−1)
`−2 and

λ
(k−1)
`+2 . For Maier-Saupe’s potential, corresponding to k = 1, one obtains that
λ0 = 4/3, λ2 = −4/15, and λ` = 0 for any other ` > 0, so that the loss of linear
stability occurs at ρ? = 15π/β. Solving the recursion equation above, one can
analogously derive the threshold for the linear stability of the homogeneous profile
for larger values of k.
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4. Thermodynamic limit: Proof of Theorem 2.1.

As anticipated above, to prove Theorem 2.1, we follow [16]. For the sake of con-
ciseness, we will not detail some technical steps already solved in [16], and instead
present the general structure of the proof and focus on the necessary modifications
to account for the presence of the angular variables Ωi. Throughout, we tesselate
ΛL into n := nd boxes Λi`, of side `, for 1 ≤ i ≤ n where n = L/`. We further

consider the inner box Λ̂i` ⊂ Λi`, with same center as Λi` and side k = k` := `−
√
`

instead of `. We also tesselate S2 = {Ω = (θ, φ) ∈ [0, π] × [0, 2π)} into m := m2

pieces Si each of surface s := 4π/m. To give the reader a sense of the relative scales
of those parameters, to carry out the proof, we will consider the system in the limit

L→∞, then γ → 0, then `→∞ then m→∞. (4.1)

4.1. Upper bound. We first investigate the upper bound for the free energy, which
corresponds to a lower bound on the partition function. Fix a family of integers
N = (Np

i )1≤i≤n, 1≤p≤m satisfying
∑
i,pN

p
i = N , and define Ni =

∑
pN

p
i . We can

then write

Zβ(N,L, γ) ≥ sup
N

{
1∏

i,pN
p
i !

∫
(Λ̂1
L×S1)N

1
1

· · ·
∫

(Λ̂n
L×Sm)N

m
n

dx̄dΩ̄e−βVγ(x̄,Ω̄)

}
.

Because of the hard core repulsion, if Ni > `dρcp, the integrand vanishes, so that
we can safely assume that each of the Ni’s is bounded by `dρcp. Assume that ` is

large enough so that
√
` > r0, so that particles in different boxes do not interact

via the hard core interaction. Recalling from (2.2) the definition of the hard-core
partition function Zhc(Ni, k) , we obtain

Zβ(N,L, γ) ≥ sup
N

{
|S1|N

∏
iNi!∏
i,pN

p
i !

∏
i

Zhc(Ni, k)e−βWmax(N)

}
, (4.2)

where Wmax(N) is the maximum of Vγ(x̄, Ω̄) over all N summing to N , such that

Ni ≤ ρcp`d, and with Np
i particles in Λ̂i` × Sp. Denoting

ϕp,q
i,j

= inf
(x,x′)∈Λi`×Λj`
(Ω,Ω′)∈Sp×Sq

ϕ(γ(x− x′),Ω · Ω′)

ϕp,qi,j = sup
(x,x′)∈Λi`×Λj`
(Ω,Ω′)∈Sp×Sq

ϕ(γ(x− x′),Ω · Ω′),

and noting that, for any i, ϕ(γ(xi − xi),Ωi · Ωi) = ϕ(0, 1), we find

Wmax(N) =
γd

2

∑
i,j≤n
p,q≤m

Np
i N

q
j ϕ

p,q
i,j
− Nγd

2
ϕ(0, 1) + ∆(N), (4.3)

where the supremum is taken over all families Np
i summing to N , and ∆(N) is

bounded by

|∆(N)| ≤ γd

2

∑
i,j≤n
p,q≤m

Np
i N

q
j [ϕp,qi,j − ϕ

p,q
i,j

].
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For any Ω ∈ S2, and any Ω1,Ω2 ∈ Sp for p ≤ m, we have |Ω · (Ω1 − Ω2)| ≤ c0/m,
for some constant c0 > 0. Therefore, by triangular inequality we obtain

ϕp,qi,j − ϕ
p,q
i,j
≤ sup
u∈[−1,1]

[
sup

(x,x′)∈Λi`×Λj`

ϕ(γ(x− x′), u)− inf
(x,x′)∈Λi`×Λj`

ϕ(γ(x− x′), u)

]

+
2c0
m

sup
(x,x′)∈Λi`×Λj`

C1(γ(x− x′)) := Ai,j +Bi,j ,

where C1(x) is the Lipschitz constant appearing in assumption (H1). The right
hand side above no longer depends on p, q. In particular,

|∆(N)| ≤
ρ2
cpγ

d`2d

2

∑
i,j≤n

[Ai,j +Bi,j ]. (4.4)

By assumption (H3), limγ→0(γ`)d
∑
iBi,j = O(1/m) uniformly in j. Analogously,

by assumptions (H2) and (H3), (γ`)d
∑
iAi,j = O(γ`). Putting things together,

and recalling that n`d = Ld, we find

lim
γ→0

lim
L→∞

|∆(N)|L−d = O(1/m). (4.5)

Since the second term in the the right-hand side of (4.3), divided by Ld, vanishes
as L→∞ then γ → 0, using Stirling’s formula, (4.2) implies

Fβ(ρ) ≤ lim
m→∞

lim
`→∞

lim
γ→0

lim
L→∞

inf
N
Aβ(N), (4.6)

where the infimum is carried out over all families N = (Np
i )i≤n,p≤m summing to

ρLd such that Ni ≤ ρcp`d, and

Aβ(N) =
1

βLd

∑
i,p

Np
i log

Np
i

Ni|S1|
− 1

βLd

∑
i

logZhc(Ni, k) +
γd

2Ld

∑
i,j≤n
p,q≤m

Np
i N

q
j ϕ

p,q
i,j
.

(4.7)

Fix τ > 0, and recall from Theorem 2.1 the definition of the set Rτ . We are
now ready to investigate the limit of the quantity above. Fix ρ′ < ρcp and f ∈ Rτ

such that ρf̄(x) ≤ ρ′ (recall the notation f̄(x) =
∫
S2 f(x,Ω)dΩ), and define M̃ =

(M̃p
i )i≤n,p≤m as

M̃p
i =

⌊
ρ

∫
ΛiL×Sp

f(γx,Ω)dxdΩ

⌋
. (4.8)

Note that we will take the limit m→∞ after `→∞, so that each of the M̃p
i will

go to ∞ in any cell where f > 0. We then define the family Mp
i by adding 1 to the

smallest M̃p
i ’s in order to enforce

∑
i,pM

p
i = bρLdc. We now investigate the limit

of the right-hand side of (4.6) for N = M . Following the same steps as in [16], one
can check that in the quadruple limit of (4.6), since ρf ≤ ρ′ < ρcp,∣∣∣∣ 1

βLd

∑
i,p

Mp
i log

Mp
i

Mi|S1|
(4.9)

− ρ

β(L′)d

∫
ΛL′

[∫
S2
f(x,Ω) log(f(x,Ω))dΩ− f̄(x) log f̄(x)

]
dx

∣∣∣∣→ 0.
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where we shortened L′ = γL. Moreover, by the periodicity of f ,

1

(L′)d

∫
ΛL′

[∫
S2
f(x,Ω) log(f(x,Ω))dΩ− f̄(x) log f̄(x)

]
dx =

=
1

τd

∫
Λτ

[∫
S2
f(x,Ω) log(f(x,Ω))dΩ− f̄(x) log f̄(x)

]
dx+O(1/L′).

Similarly, ∣∣∣∣− 1

n

∑
i

1

β`d
logZhc(Mi, k)− 1

(L′)d

∫
ΛL′

Fhc(ρf̄(x))dx

∣∣∣∣→ 0,

and, by periodicity again, 1
(L′)d

∫
ΛL′
Fhc(ρf̄(x))dx = 1

τd

∫
Λτ
Fhc(ρf̄(x))dx. Finally∣∣∣∣ γd2Ld

∑
i,j≤n
p,q≤m

Mp
iM

q
j ϕ

p,q
i,j

− ρ2

2(L′)d

∫
ΛL′×ΛL′

dx dx′
∫
S2×S2

dΩ dΩ′ f(x,Ω)f(x′,Ω′)ϕ(x− x′,Ω · Ω′)
∣∣∣∣→ 0.

In the last line, the integral over ΛL′ × ΛL′ can be freely replaced by ΛL′ × Rd,
because ρf̄ is bounded by ρ′ and ϕ is integrable. Finally, by periodicity, we can
rewrite

ρ2

2(L′)d

∫
ΛL′×Rd

dx dx′
∫
S2×S2

dΩ dΩ′ f(x,Ω)f(x′,Ω′)ϕ(x− x′,Ω · Ω′)

=
ρ2

2τd

∫
Λτ×Rd

dx dx′
∫
S2×S2

dΩ dΩ′ f(x,Ω)f(x′,Ω′)ϕ(x− x′,Ω · Ω′).

To conclude, let us explicitly write M = M(ρ, f) to indicate the dependency of
M on ρ and on f ∈ Rτ . Define Γρn,m(ρ′) (resp. Rτ (ρ′)) the set of N ’s that sum up

to ρLd and such that each of the Ni’s is bounded by ρ′`d (resp. functions f ∈ Rτ

such that ρf̄ is bounded by ρ′ < ρcp). We rewrite (4.6) as

Fβ(ρ) ≤ lim
ρ′→ρcp

lim
m→∞

lim
`→∞

lim
γ→0

lim
L→∞

inf
N∈Γρn,m(ρ′)

Aβ(N) (4.10)

≤ lim
ρ′→ρcp

 lim
m→∞

lim
`→∞

lim
γ→0

lim
L→∞

inf
τ>0

f∈Rτ (ρ′)

Aβ(M(ρ, f))

 ,
which, thanks to the three estimates above, proves the upper bound after straight-
forward computations, since for ρ′ < ρcp fixed, the convergence of the quantity
inside brackets above is uniform.

4.2. Lower bound. For the lower bound on the free energy, which corresponds to
an upper bound on the partition function, we first write

Zβ(N,L, γ) ≤
∑
N

[
1∏

i,pN
p
i !

∫
(Λ1
L×S1)N

1
1

· · ·
∫

(Λn
L×Sm)N

m
n

dx̄dΩ̄e−βWmin(N)

]
,

(4.11)
where the sum is taken over all families N summing to N ; moreover, Wmin(N) is
a lower bound on Vγ for configurations with Np

i particles in Λi × Sp, of the same
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form as (4.3), with the only difference that ∆(N) is replaced by a different the
remainder ∆′(N), bounded in the same way as (4.4)-(4.5). From (4.11), we get

Zβ(N,L, γ) ≤ 2m(ρcp`
d)n sup

N

[
|S1|N

∏
iNi!∏
i,pN

p
i !

∏
i

Zhc(Ni, `)e
−βWmin(N)

]
, (4.12)

where the factor 2m(ρcp`
d)n in the right-hand side is a crude upper bound on the

number of families (Np
i ) such that

∑
pN

p
i = Ni and each Ni is less than ρcp`

d; to

obtain this bound, we simply ignored the constraint that
∑
iNi = N . Note that, in

the limit (4.1), the contribution of this term to the free energy vanishes. Therefore,
by repeating the same considerations as in the previous subsection, we find that
the free energy Fβ(ρ) is bounded from below by the same expression as the right
side of (4.10), and this concludes the proof of the theorem.

5. Phase transition in liquid crystals: proof of Theorem 2.2

We recall that the functional of interest is the r0 → 0+ limit of (2.5), namely

F0
β,τ (ρ, f) =

1

τd

{
ρ

β

∫
Λτ×S2

f(x,Ω) log f(x,Ω)dx dΩ (5.1)

+
ρ2

2

∫
Λτ×Rd

dx dy

∫
S2×S2

dΩ dΩ′f(x,Ω)f(y,Ω′)ϕ(x− y,Ω · Ω′)
}
,

Proof of item 1. It is straightforward to check that f0 ≡ 1/4π is a critical point
of F0

β,τ (ρ, f), for all β, ρ, τ . In order to show that f0 is the global minimizer for ρ

small enough, fix τ ≥ 0 and write f ∈ Rτ as f = f0(1 + 4πh), with
∫

Λτ×S2 h = 0

and 4πh ≥ −1. We have:

F0
β,τ (ρ, f)−F0

β,τ (ρ, f0) =
ρ

β
〈(1 + 4πh) log(1 + 4πh)〉+ Eτ (ρ, h), (5.2)

where 〈F 〉 = 1
4πτd

∫
Λτ×S2 F (x,Ω)dx dΩ and

Eτ (ρ, h) =
ρ2

2τd

∫
Λτ×Rd

dx dy

∫
S2×S2

dΩ dΩ′ h(x,Ω)h(y,Ω′)ϕ(x − y,Ω · Ω′).

Thanks to the periodicity of h(·,Ω), we can rewrite

Eτ (ρ, h) =
ρ2

2τd

∫
Λτ×Λτ

dx dy

∫
S2×S2

dΩ dΩ′ h(x,Ω)h(y,Ω′)ϕτ (x − y,Ω · Ω′),

where ϕτ (x, u) =
∑
n∈Zd ϕ(x + nτ, u). Now, thanks to the integrability condition

(2.1), |ϕτ (x, u)| ≤ Kτ−d for some constant K, uniformly in τ, u. Therefore,

F0
β,τ (ρ, f)−F0

β,τ (ρ, f0) ≥ ρ

β
〈(1 + 4πh) log(1 + 4πh)〉 − 8π2ρ2K〈|h|〉2. (5.3)

Let h+ and h− be the positive and negative parts of h, respectively. We let H =
4π〈h+〉 = 4π〈h−〉 ≤ 1. Using the convexity of (1+x) log(1+x) and of (1−x) log(1−
x), we find

〈(1 + 4πh) log(1 + 4πh)〉 ≥ (1 +H) log(1 +H) + (1−H) log(1−H),

which is bounded from below by H2, for all 0 ≤ H ≤ 1. Using also the fact that
4π〈|h|〉 = 2H, from (5.3) we find

F0
β,τ (ρ, f)−F0

β,τ (ρ, f0) ≥ ρ

β
H2 − 2ρ2KH2, (5.4)
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which proves that f0 is the unique global minimizer, if ρ < (2βK)−1. This proves
item 1 of Theorem 2.2, with ρc the sup of the values of ρ for which f0 is the unique
global minimizer.

It is easy to see that at any density beyond ρc there exists a non-uniform f with
lower free energy than f0. To see this, for any ε > 0, choose ρc < ρ ≤ ρ + ε, in
correspondence of which there is τ ≥ 0 and f 6= f0 in Rτ such that

F0
β,τ (ρ, f) ≤ F0

β,τ (ρ, f0). (5.5)

This is possible by the very definition of ρc. More explicitly, (5.5) means∫
Λτ×S2

(
f(x,Ω) log f(x,Ω)− f0 log f0

)
dx dΩ ≤ (5.6)

≤ βρ

2

∫
Λτ×Rd

dx dy

∫
S2×S2

dΩ dΩ′ϕ(x− y,Ω · Ω′)
(
f2

0 − f(x,Ω)f(y,Ω′)
)
.

The left side is positive, because f log f is strictly convex and f is non uniform. As
a consequence, the right side is positive, too; so, if we take any ρ′ > ρ,∫

Λτ×S2

(
f(x,Ω) log f(x,Ω)− f0 log f0

)
dx dΩ ≤ (5.7)

<
βρ′

2

∫
Λτ×Rd

dx dy

∫
S2×S2

dΩ dΩ′ϕ(x− y,Ω · Ω′)
(
f2

0 − f(x,Ω)f(y,Ω′)
)
,

that is, F0
β,τ (ρ′, f) < F0

β,τ (ρ′, f0), as announced.

Proof of items 2 and 3. In light of what we already proved above, in order to
complete the proof of item 2 of Theorem 2.2, we are left with proving that the
value of the density at which f0 loses linear stability is strictly larger than ρc. Fix
τ ≥ 0. Consider a small perturbation f = f0 + εh , where h is τ -periodic such that∫

Λτ×S2 h = 0. If we expand the free energy up to order ε3 included we find:

F0
β,τ (ρ, f0 + εh)−F0

β,τ (ρ, f0) = (5.8)

= ε2
[8π2ρ

β
〈h2〉+ Eτ (ρ, h)

]
− ε3 32π3ρ

β
〈h3〉+O(ε4).

As the next step, we diagonalize Eτ (ρ, h). Passing to Fourier space with respect to
the x variable, we get

Eτ (ρ, h) =
ρ2

2τ2d

∑
k∈Zd

∫
S2×S2

ĥk(Ω)ĥ−k(Ω′)ϕ̂k(Ω · Ω′)dΩdΩ′, (5.9)

where for k ∈ Zd

ĥk(Ω) =

∫
Λτ

h(x,Ω)e
2iπ
τ k·xdx and ϕ̂k(u) =

∫
Rd
ϕ(y, u)e−

2iπ
τ k·ydy.

Next, for any k ∈ Zd, define the operator Gk acting on a function g on S2 as

(Gkg)(Ω) =

∫
S2
ϕ̂k
(
Ω · Ω′)g(Ω′)dΩ′.

For later reference, we denote by Gk(Ω,Ω′) = ϕ̂k(Ω ·Ω′) the kernel of Gk. Moreover,
let Lz, L± be the usual angular momentum operators

Lz =
1

i

∂

∂φ
and L± = e±iφ

(
± ∂

∂θ
+ i cot(θ)

∂

∂φ

)
,
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where (θ, φ) ∈ [0, π] × [0, 2π] are the spherical coordinates of an element Ω ∈ S2.
Straightforward computations, for Ω = (θ, φ) and Ω′ = (θ′, φ′), yield

Ω · Ω′ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′)

[L±Gk(·,Ω′)](Ω) = ∂uϕ̂k(Ω · Ω′)
[
∓ sin θ cos θ′e±iφ ± cos θ sin θ′e±iφ

′
]

= −[L±Gk(Ω, ·)](Ω′).

[LzGk(·,Ω′)](Ω) = ∂uϕ̂k(Ω · Ω′) sin θ sin θ′i sin(φ− φ′) = −[LzGk(Ω, ·)](Ω′),
which, by integration by parts, proves that Gk commutes both with Lz and with
L±.

As defined in more details in Appendix A, we consider the spherical harmonics
defined for ` ∈ N0, |m| ≤ `

Y m` (θ, φ) = C`,mP
m
` (cos θ)eimφ,

where the C`,m are normalizing constants making it an orthonormal family, and the
Pm` ’s are the associated Legendre polynomials. They satisfy the classical relations

L±Y
m
` =

√
(`∓m)(`±m+ 1)Y m±1

`

and

L2Y m` := [L+L− + L2
z]Y

m
` = `(`+ 1)Y m` .

In particular, since Gk commutes with Lz and L±, it also commutes with the angular
momentum L2, therefore its eigenvectors are the Y m` ’s. Furthermore, since Gk
commutes with L±, the corresponding eigenvalues λ`,m(k) = λ`(k) do not depend
on m. Writing the identity λ`(k)Y 0

` (θ, φ) = (GkY 0
` )(θ, φ) at θ = 0, we get

λ`(k) = 2π

∫ 1

−1

P`(u)ϕ̂k(u)du = 2πΦ̂`

(
2kπ

τ

)
.

where Φ̂`(ξ) was defined in (2.6). If we now expand each of the ĥk appearing in
(5.9) in spherical harmonics, we can rewrite

Eτ (ρ, h) =
πρ2

τ2d

∑
`∈N0

∑̀
m=−`

∑
k∈Zd

|ĥk,`,m|2Φ̂`

(
2kπ

τ

)
(5.10)

≥ ρ2Φ̂`?(0)

2τd

∫
Λτ×S2

h2(x,Ω)dxdΩ = 2πρ2Φ̂`?(0)〈h2〉. (5.11)

To establish the lower bound, we used Assumption 2.7 and both Fourier and Spher-
ical harmonics versions of Parseval’s identity.

Plugging this back into (5.8), we see that the square brackets in the right side is
bounded from below as

8π2ρ

β
〈h2〉+ Eτ (ρ, h) ≥ 4π2ρ

β

(
2− (βρ/2π)|Φ̂`?(0)|

)
〈h2〉, (5.12)

which proves the linear stability of f0 for any ρ < ρ? := 4π
β|Φ̂`? (0)| . Let us identify

Ω ∈ S2 with its polar coordinates (θ, φ), and let h? be the function h?(x, θ, φ) :=
P`?(cos θ). Note that, choosing h = h?, Eq. (5.12) is valid with the equality sign.
This implies the linear stability of f0 for any ρ > ρ?, thus proving item 3 of Theorem
2.2.
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We are left with proving that ρc < ρ?. For this purpose, compute (5.8) at τ = 0,
ρ = ρ? and h = h?:

F0
β(ρ?, f0 + εh?)−F0

β(ρ?, f0) = −ε3 32π3ρ?

β
〈(h?)3〉+O(ε4). (5.13)

The ε3 term in the right side equals

−ε3 16π3ρ?

β

∫ 1

−1

P 3
`?(u)du.

Recalling that `? is even, see Remark 2.3, this integral can be computed explicitly,
recognizing that it is a special case of Gaunt’s formula, see e.g. [17, (7.125), p.771];
we thus get ∫ 1

−1

P 3
`?(u)du = 2

(2s)!3

(6s+ 1)!

(3s)!2

s!6
> 0

where we used the shorthand notation s for the positive integer s = `?/2. In
particular, for ε small enough, the r.h.s. of (5.13) is negative, which proves that at
ρ = ρ?, the uniform profile is not a global minimizer of F0

β(ρ, f). This concludes
the proof of Theorem 2.2.

Remark 5.1 (Case of the angular dimension 2, Ω ∈ S1). Note that the same
analysis can be applied to study the free energy functional for angles in S1. In
this case, the density ρ? at which the uniform profile loses linear stability can be
expressed as a function of the minimal Fourier coefficient, in orientation and space,
of ϕ. In this case however,

∫
cos3(u)du vanishes, and the next contribution O(ε4) in

(5.13) is positive. One therefore expects that the transition is instead continuous, i.e.
that for any ρ < ρ?, the uniform profile is the global minimizer. As mentioned in the
introduction, this has in fact been proved for some special choices of the interaction
potential, including Maier Saupe’s, see [13], but to the best of our knowledge a proof
for (more) general potentials is missing.

Remark 5.2 (Magnetic interaction vc. Liquid crystals). The choice of a magnetic
rather than liquid-crystalline interaction formally corresponds to a choice of an odd
function ϕ(x, ·). In this case, λ`(k) vanishes for ` even instead. However, for any `
odd, the integral

∫
S2 P

3
` vanishes, so that the proof above for a discontinuous phase

transition no longer holds. In fact, the converse holds, and at the critical point ρ?,
for an odd interaction potential ϕ(x, ·), for ε small enough,

Fβ(ρ?, f0 + εh?) ≥ Fβ(ρ?, f0).

This is in line with the known fact that the mean field Heisenberg model undergoes
a second order phase transition [22]; an analogous fact is expected for more general
magnetic interactions.

Appendix A. Legendre polynomials and spherical harmonics

We first recall some basic properties of the Legendre polynomials P`. For more
on the topic, we refer the reader to e.g. [3]. This is the unique family of polynomials
P` : [−1, 1]→ R satisfying

– for any ` ∈ N0, P` is a degree ` polynomial and P`(1) = 1;

– the family (P`)`∈N0 is orthonormal in L2, i.e.
∫ 1

−1
P`(u)Pk(u)du = 2

2`+11{`=k}
for any k, ` ∈ N0.
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In particular, since P0 ≡ 1, for any ` 6= 0,
∫ 1

−1
P`(u)du = 0. The Legendre poly-

nomials have same parity as `. The Legendre polynomials satisfy the Bonnet’s
recursion formula

(n+ 2)Pn+2 = (2n+ 3)uPn+1 − (n+ 1)Pn. (A.1)

The associated Legendre polynomials Pm` can then be defined for m = 0, . . . , `
as

Pm` (u) = (−1)m(1− u2)m/2
dm

dum
[P`(u)], (A.2)

and for m = −1, . . . ,−`,

P−m` (u) = (−1)m
(`−m)!

(`+m)!
Pm` (u).

Those polynomials satisfy the orthogonality relations∫ 1

−1

Pm` (u)Pmk (u)du =
2(`+m)!

(2`+ 1)(`−m)!
1{`=k}

and ∫ 1

−1

Pm` (u)Pn` (u)

1− u2
du =

(`+m)!

m(`−m)!
1{m=n>0} +∞× 1{m=n=0}.

The associated Legendre polynomials have the same parity as `+m,

Pm` (−u) = (−1)`+mPm` (u).

The spherical harmonics Y m` can finally be defined as the functions Y m` : S2 → R

Y m` (θ, φ) = C`,mP
m
` (cos θ)eimφ,

where C`,m =
√

(2`+1)(`−m)!
4π(`+m)! are normalizing constants making the family orthonor-

mal, ∫ π

θ=0

∫ 2π

φ=0

Y m` (θ, φ)Y n,∗k (θ, φ) sin θdθdφ = 1{k=`, n=m}.
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