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Abstract

We give here the key to reduce the problem of computing a three dimensional Fourier
transform - for a certain class of functions - to a one dimensional Fourier transform
computation, allowing in some way to “reverse” the main theorem of [1], in this particular
case. This class of functions being of the form

R(cos(|¢]], sin([[]])

t—

where R € C[X,Y] and P € C[X,Y, Z]
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1 Introduction

1.1 “Universal” notation for the Fourier Transform

There is a lot of conventions for the Fourier transform, so we give here a convenient notation
to take care of all the cases once for all (with f,g: R” — R) :

n/2 '
0 = (i) [ fOar (1)

n/2 )
F 00 = (o) [ a0 a (1.2

To jump from a convention to another, we have the simple following corresponding formula :

[b/V]

n/2 .
FOf) () = ((%)) V() (bR). (13)

Fourier Transform of a tempered distribution

Let us recall that if ' € §’(R") is a tempered distribution, we define de Fourier transform of
FET by
(FatT, ) = (T, Fi’p) (1.4)



In order to give the formula to jump from a convention to another, we have to define the
following operator : for a € R, we set mg : f — (v — f(ax),z € R").

This operator can be extended to the distributions : for all a # 0,

1
(maT, ¢) = T (Tsm ) (1.5)
From (1.3) and (1.5) we have
aop _ (LN
i ((%)a/a T (my ). (16)

(please notice that |b/b| in (1.3) “becoming” |b'/b| in (1.6) is not a typo!)

1.2 Radial distributions

We recall here the definitions and de properties given and demonstrated in [1].

We set (where S(R™) stands for the space of Schwartz functions on R™)

Sad(R") ={p e SR™) : p=poA, VA€ O(n)}
Srad(R) = Seven(R) = {p € S(R) : o(z) = ¢(—x)}
where O(n) is the set of the orthogonal transformations of R™.

We define then the following functions :
S(R") — Snda(R)

o = |(ree(r) = ﬁ{l Jsn—10(r0) d9> (1.9)
Srad (R) —  Srad (Rn)
{ o = (20 0%@) = p(la)) (1.10)

(where S"~! is the unit sphere onR™ and w1 its surface area; with the convention wy = 2
and ¢°(z) = 5(p(x) + (=), for ¢ € S(R)).

Definition 1.1 A distribution v € S8'(R™) (with S'(R™) the space of tempered distributions
on R™) is called radial if for all A € O(n),

u=1uoA,

that is,
{u, ) = (u, po A)
for all ¢ € S(R™). The set of all radial tempered distributions is denoted by S, ;(R™).

Proposition 1.2 For u € S/ 4(R") and ¢ € S(R"),
(u, ) = (u, ™) (1.11)

where " := (¢°)9 (i.e. " (x) = ¢°(|z]) ).



Let us define the space
Ry =1""184(R) = {(7“ — w(r)rn_l), (NS Srad(R)}. (1.12)

Remark 1.3 R, is a subspace S(R) on which we can use the same topology ; we denote its
dual (set of the linear continuous functions defined over R, ) by R.,.

We switch from R/, to radials distributions of S'(R™) as follows :

e if u is radial distribution, we define u, € R}, by

(o ¥ ) 1= —2—(u,40), € Sraa(R) (1.13)

Wn—1

o if u, € R}, we define a radial distribution u by

Wn—1

2

(u, ) = (uo, °(r)r" 1), p € S(R") (1.14)

1.3 Grafakos-Teschl’s Theorem
Theorem 1.4 (Grafakos-Teschl (2013)) Given vy in S'(R), we define a radial distribu-
tion vy on R¥ (k € N*) by

WEg—1
2 <

(if ¢ € Staa(R™), then o(z) = ¢°(|z[)).
Let uF = f,?’b(vk). We have then

<Uka ‘P> = v1, @O(T)Tk_1>’ p e Srad(Rk) (1'15)

(2m)* d 2
il 5ug =ul" (1.16)
Remark 1.5 e Dans larticle de base, on partait d’une fonction vo € S'(R), et on
définissait (v, p) = w’“il(vo,cpo(r)rk_lh mais alors, on vérifie trés rapidement que

vg = v1 ; cela n'a pas d’intérét de commencer par vy.

e Onaul=u':en effet
_ 2
<’LL<1>,¢(T)T‘1 1> = *<Uﬂ/’o> = <U,¢>
wo
soit (ul,v) = (u, ) pour tout 1 € Spaq(R).
Corollary 1.6 Given vy in S'(R), we define the radial distribution vz on R? by

(03,0) = 2{o1, (), @ € Sua(®Y) (1.17)

(if ¢ € Srad(R™), then ¢(x) = ¢°(|z|)). We have then, for all ¢ € Spaq(R3)

T a+1
F5 w)e) = ~E = (r 2 (T o), ) (1.18)




Proof: With u? := F3*(v3) and u! := F"(v3) we have

w2

(s ) = 5 (U3, ”(r)r?) (cf (1.14))
= %< — (|2;L>na d—iul,wo(r)r2> (cf. (1.16) and Remark 1.5)
(2m)etty d 0
= (g )
since wy = 4. °

2 Fourier transform of ¢ — R(COS(H;S;IH(W”) e L} (R3)
Lemma 2.1 Let f be a smooth function such that
t
t Hﬂhn‘? € LL.(R3). (2.19)

If we set Ty = fT 1 and Tp = f,T santr) (with fe = M and f, = %f(_x) if m is
even, and Ty = fOT% and Ty = [T sgn(,«) otherwise, the mdml distribution T defined by

(To¢) = T+ To,r%6"), o € SR
verifies
£l _
12l
Proof:
We set

j = inf ((inf {u] £4(0) # 0}, m —2)

and n := m — j — 2. Let us notice that, from condition (2.19) and since either f(r) ~ CrJ (Taylor’s
Theorem) or j = m — 2, it becomes that
0>n. (2.20)

1) First, we will show the result for T':= Ty = f(r)Teen (f even or odd, according to m).

From (5.33), we have (with g(r) := @) and s € N such that m + s = j + 2),

() Teang, 70%) = (g (r)rsen(r), %)
w22< / w) du + /O et () )
- ”2( /— u? du +/0+oo %w"(u)zﬂ du)
| {%wwm@
= [ A eqayai- [ 20D o a



2) Similarly, for 7' := T} = f(r)T 1 (f even or odd, according to m), From (5.32) , we have (with
g(r) := £%) and s € N such that m + s = j + 2),

rJ

ST 4,777 = Fgr)r ¢°)
w 0 +o00
~2 ([ stwwerant [ gtouea)
w 0 u oo f(u
_22< 3 J;(m)apo(u)u2du+/o %(po(u)zﬂ du)
=w o M °(u)u? du
2/0 e (u)u=d
_ [ LA _ [ faiED
= Jea T # D= g0
3 Fourier transform of t — P(t) R(COS(HiH;,SLm(”t”) € L} (R?)
Lemma 3.1 Let f be a smooth function and P € C[X,Y, Z], such that
£ P(t) f"g;’ﬂp €Ll (R?). (3.21)

If we set Ty = feT 1 and Ty = foTsen(r (with fe = W and f, = w) if m is

I

even, and Ty = fOT% and Ty = feTseny otherwise, the radial distribution T defined by

rm

w
(T.p) = 5 (Ti + T, %%, @ eSER)

verifies

Py 0D _ pipyr,

]}

Proof: If P(0) # 0, it is a straightforward consequence of Lemma 2.1 ; hence, we will consider that
P(0) = 0 in the sequel of this proof and, using the spherical coordinates, we then define the quantity
d € N* by

P(rX(¢,0)) = rh(X(¢,0)). (3.22)

We set
j = inf ((inf {ul £9(0) # 0}, m —2)

and n := m — j — 2. Let us notice that, from condition (3.21) and since either f(r) ~ CrJ (Taylor’s
Theorem) or j = m — 2, it becomes that
d>n. (3.23)

If n <0, we will have t — LMD ¢ 11 (R?), so that Lemma 2.1 can be, again, directly applied.

lIefi™ loc

Hence, in the sequel, we will assume always that n > 1.

1) First, we will show the result for T':= Ty = f(r)Tsn (f even or odd, according to m).

ru



From (5.35), we have (with g(r) := f(r))

“2
2

and (with (5.37)),

(F () Tasagor12°) =

(Tesng, 9(r)9°)

= lim r
e—=0t Jrs . rn
b (e (™) + 009" (=) — 3 LD (g0 (e) + (1)< (g n B (o))
(n — 1)' Pt 6’671
Since we have the following different cases :
m even m odd
and f odd and f even
jeven | jodd || jeven | jodd
g odd even even odd
n | even odd odd even

and since ¢°(r) = ¢°(—r), we always have

So

(Tesnr, 9(r)°)

2 . fllzl) o
=2 lim / WD) o120 da
W2 e=0F Jr3\ B(0,e) (B4l

+(ni1)!<lng<(g<)00)(nl)(€)+( oy(n=1)(_ ) 3 Ek_? (9@ ) (&) 4 (— 1)(k+1)(g(po)(nk)(_6))>

2t [ HE el de kR

w2 e=0T Jr3a\B(0,e) (|2

2 [ HE el de kR

W2 e—0*+ R3\B(0,¢) ||£E

But if we define the tempered distribution u by

()= tim [ HU) 2y a4 2 F (g0

=0+ Jra\B(0,e) NZ]|™ 2

it is straightforward that u is radial distribution (clearly u o A = u for any A € O(n), and from
Proposition 1.2,

ra , fl=[)
() = (u, ™) = Tim, /

RA\B(0,e) [1Z[™

o w o w o
P (2]) dz + “2Fu(99°) = “2(Tun, 9(r)6"). (3.25)

Putting togheter (3.24) and (3.25), we have

(T.¢) = (u0) + G +2,m)(=1)" (65" %)



SO,
W . — n—
(PT,9) = (1, Pg) + 20 +2,m)(=1)"1 (60, (Po)°) = (u, Po).
—_———
=((Pg)*) ("= (0)=0

The fact that ((Pp)?)™®~1(0) = 0 is a straightforward consequence of (3.23) and the following Lemma
3.2 (with g =1).

Now, since we have
lim F.(gPy°) =0
e—0t

which is a consequence from the easy following lemma
* ok ok

Lemma 3.2 For all { € N such that | < d, there exists a smooth function hy such that

(9(Pe)*) " (e) = he(e)e™ .

Proof:

By induction : for [ = 0, since g is a smooth function (¢f. Lemma 6.1), and

(Po)° = — / Pplco)do

)

1 27 s .
= /0 Py(0(8,v)) sin(p) do

1
=c?l— [ P(o)p(eo)da
w2 Js2

we have (it is straightforward that e — (}2 Js: P(0)p(e0) do is a smooth function)
9(Pp)°(e) = ho(e)e’
with ho(e) := g(e)w% Js2 P(o)p(eo) do.
Forl+1:
o\? ! d—Le\/
((a(Pe))) = (he(e)e™)

= hy(e)e®™" + hy(e)e 1

= hypa(e)e?~HY

with hep1(e) := hj(e)e + he(e).

[ ]
* ok %
we have
(PT,¢) = lim / f(”mnHT) Po(z)dx = f(||a:nHT) Po(z)dz.
e=0* Jra\Bo,.e) Izl e |||

2) Similarly, we will show the result for 71 = f(r)T 1 (f even or odd, according to m).
From (5.34), we have (with g(r) := fr(j))

w w

ST 4 r20%) = 91T, 9°) (3.26)



and (with (5.36)),

(Teangr, 9(r)°) = lim

T e=0t Jrse rn

n—1

G o S (e = (1))
k=1

Since we have the following different cases :

m even m odd
and f even and f odd
jeven | jodd || jeven | j odd
g | even odd odd even
n | even odd odd even

and since ¢°(r) = p°(—r), we always have
g(r)e°(r) = (=1)"g(=r)e°(=r) _ (pO(T)g(T) — (=D"g(=r) _ 2¢°(r)g(r) _ ,@°(r)f(r) 2

So

Wy e—0t

(T, 9r)e?) = Jim [ () da
" R3\B(0,¢) [l

(o . 1! i . ;1)! ((g9") " D(e) = (~1)*(g¢) "D (=e))
T k=1

2 . f X (e} o
2 im / W) oz de + F2(g0°)
R3\ B(0,¢

wg e—0t ) ||J?||m

2 . f x o o
_2 / W) o2y de + F2(g6°)
R3\ B(0,e

Wy e—0t ) ||£E||m

But if we define the tempered distribution u by

| £(ll=l) wa oy
(u, ) = lim / o(z)dz + L2 F(g0%)
e—0t Jra\B(o,e) 17" 2°°

it is straightforward that v is radial distribution (clearly wo A = wu for any A € O(n), and from
Proposition 1.2,

rad : f(”xH) o W2 oy o w2 o
u, @) = (u, p"*d) = hm/ ©°(lz]]) dz + = FL(g°) = == (T, g(r)¢®).  (3.27
() = dm [ Al PRt = ST 0 (320

With (3.26) and (3.27), we have directly
(T, ¢) = (u, 0)

<PT7 §0> = <u7P90>'

Now, since we have (using Lemma 3.2),

lim F!(gP¢°) =0,

e—0t

(PT,p) = lim/]R f(”x|)P<p(x)da::/R f<||xH)P<p(x)dw

=0t Jra\B(0,e) [l]™ s flzll™

then




4 Appendix

4.1 Distributions associated to L and &

™ ™

_1\n—1

T, = ((nl_)l)!(ln(\x]))(n) (4.28)
_1\n—1

Tomge) = ((nl_)l)!(sgn(aj) In(j[)) ™ (4.29)

Remark 4.1 1. We then have directly de followings inductive properties

—1 ,

T, = T 4.30
—1
ng;éz) =1 égngzl)' (4.31)

2. T1 . and Tbg,n () sont des distributions tempérés car elles sont, a constantes pres, issues

respectwement des dérivations successives (au sens des distributions) des fonctions x —
zln(|z|) — z et x — |z|In(|z|) — x qui sont continues et a croissance lente, donc elles-
meémes des distributions tempérées.

Proposition 4.2 1.

T 1o=1 (4.32)
ansgn(z) - Sgn(l‘) (433)
2.
T L= T (4.34)
2" Toniey = Tognie) — (—1)™ 1C(m,n)s{™ Y (4.35)
zm+n M
where &g is the Dirac distribution in 0, with the convention (5( )= = 0y and with!
2<Hm+n—1 - Hm—l)
C = = .
(m,n) (m—1)!§m+k (m—1)!
Proof:

1. Where H, is the n-th Harmonic number :

1 1
Hy=14+-+---+—.
2 n



Proposition 4.3 For all ¢ € S(R), we have (with the conventions (°) = ¢ and Zzza f(k) =
0ifa>b)

1
(Ts.¢) = lim olz) = (_;zn_lw(_@ dz (4.36)
n—1
B o)
k=1
2

T ) tim [ £ = D)

z™ e—=0t Jos . xn

OL11ﬂ(lns(w“’”(®—kwm‘”(—@)“ﬁi(iﬁ_?!(ww‘kN6)+(—1ﬂk_”@m_m<_@)>

x (4.37)

_|_

Proof:

1. By induction (or direct calculation).

2. By induction.

5 Micellaneous

Lemma 5.1 Let f be a smooth function and j € N* such that

F0)=f(0)=---=fU1D0)=0
then the function
giam 1O
xd

18 also smooth.

Proof:
The Taylor’s Theorem with integral remainder gives
2 1 oo
f@) =2 [ =07 ) ar
J: Jo
SO
1 1 o
o) == [ =ty g0 ez e
J-Jo
and the Leibniz integral rule, allows us to conclude the smoothness of g. °

10
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