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We give here the key to reduce the problem of computing a three dimensional Fourier transform -for a certain class of functions -to a one dimensional Fourier transform computation, allowing in some way to "reverse" the main theorem of [1], in this particular case. This class of functions being of the form

where R ∈ C[X, Y ] and P ∈ C[X, Y, Z]

Introduction 1."Universal" notation for the Fourier Transform

There is a lot of conventions for the Fourier transform, so we give here a convenient notation to take care of all the cases once for all (with f, g : R n → R) :

F a,b n (f )(k) := |b| (2π) 1-a n/2 R n f (t)e ib k,t dt (1.1) F a,b n -1 (g)(t) := |b| (2π) 1+a n/2 R n g(k)e -ib t,k dk (1.2)
To jump from a convention to another, we have the simple following corresponding formula : In order to give the formula to jump from a convention to another, we have to define the following operator : for a ∈ R, we set m a : f → (x → f (ax), x ∈ R n ).

F a,b (f )(k) = |b/b | (2π) a -a n/2
This operator can be extended to the distributions : for all a = 0, (1.6)

m
(please notice that |b/b | in (1.3) "becoming" |b /b| in (1.6) is not a typo !)

Radial distributions

We recall here the definitions and de properties given and demonstrated in [START_REF] Grafakos | On fourier transforms of radial functions and distributions[END_REF].

We set (where S(R n ) stands for the space of Schwartz functions on R n )

S rad (R n ) = {ϕ ∈ S(R n ) : ϕ = ϕ • A, ∀A ∈ O(n)} (1.7) S rad (R) = S even (R) = {ϕ ∈ S(R) : ϕ(x) = ϕ(-x)} (1.8)
where O(n) is the set of the orthogonal transformations of R n .

We define then the following functions :

   S(R n ) → S rad (R) ϕ → r → ϕ o (r) := 1 ω n-1 S n-1 ϕ(rθ) dθ (1.9) S rad (R) → S rad (R n ) ϕ → x → ϕ O (x) := ϕ(|x|) (1.10) 
(where S n-1 is the unit sphere onR n and ω n-1 its surface area ; with the convention ω 0 = 2 and ϕ o (x) = 1 2 (ϕ(x) + ϕ(-x), for ϕ ∈ S(R)).

Definition 1.1 A distribution u ∈ S (R n ) (with S (R n ) the space of tempered distributions on R n ) is called radial if for all A ∈ O(n), u = u • A, that is, u, ϕ = u, ϕ • A for all ϕ ∈ S(R n ).
The set of all radial tempered distributions is denoted by S rad (R n ).

Proposition 1.2 For u ∈ S rad (R n ) and ϕ ∈ S(R n ), u, ϕ = u, ϕ rad (1.11)
where

ϕ rad := (ϕ o ) O (i.e. ϕ rad (x) = ϕ o (|x|)).
Let us define the space

R n := r n-1 S rad (R) = r → ψ(r)r n-1 , ψ ∈ S rad (R) .
(1.12) Remark 1.3 R n is a subspace S(R) on which we can use the same topology ; we denote its dual (set of the linear continuous functions defined over R n ) by R n .

We switch from R n to radials distributions of S (R n ) as follows :

• if u is radial distribution, we define u ∈ R n by u , ψ(r)r n-1 := 2 ω n-1 u, ψ O , ψ ∈ S rad (R) (1.13) • if u ∈ R n , we define a radial distribution u by u, ϕ := ω n-1 2 u , ϕ o (r)r n-1 , ϕ ∈ S(R n ) (1.14) 1.3 Grafakos-Teschl's Theorem Theorem 1.4 (Grafakos-Teschl (2013)) Given v 1 in S (R), we define a radial distribu- tion v k on R k (k ∈ N * ) by v k , ϕ := ω k-1 2 v 1 , ϕ o (r)r k-1 , ϕ ∈ S rad (R k ) (1.15) (if ϕ ∈ S rad (R n ), then ϕ(x) = ϕ o (|x|)). Let u k = F a,b k (v k ).
We have then

- (2π) a |b|r d dr u n = u n+2 (1.16) Remark 1.5 • Dans l'article de base, on partait d'une fonction v 0 ∈ S (R), et on définissait v k , ϕ := ω k-1 2 v 0 , ϕ o (r)r k-1
, mais alors, on vérifie très rapidement que v 0 = v 1 ; cela n'a pas d'intérêt de commencer par v 0 .

• On a u 1 = u 1 : en effet

u 1 , ψ(r)r 1-1 := 2 ω 0 u, ψ O = u, ψ soit u 1 , ψ = u, ψ pour tout ψ ∈ S rad (R). Corollary 1.6 Given v 1 in S (R), we define the radial distribution v 3 on R 3 by v 3 , ϕ := ω 2 2 v 1 , ϕ o (r)r 2 , ϕ ∈ S rad (R 3 ) (1.17) (if ϕ ∈ S rad (R n ), then ϕ(x) = ϕ o (|x|)). We have then, for all ϕ ∈ S rad (R 3 ) F a,b 3 (v 3 ), ϕ = - (2π) a+1 |b| r d dr (F a,b 1 (v 1 )), ϕ o (r) (1.18) Proof: With u 3 := F a,b 3 (v 3 ) and u 1 := F a,b 1 (v 3 ) we have u 3 , ϕ = ω 2 2 u 3 , ϕ o (r)r 2 (cf. (1.14)) = ω 2 2 - (2π) a |b|r d dr u 1 , ϕ o (r)r 2 (cf. (1.16) and Remark 1.5) = - (2π) a+1 |b| r d dr (u 1 ), ϕ o (r) since ω 2 = 4π. • 2 Fourier transform of t → R(cos( t ,sin( t ) t m ∈ L 1 loc (R 3 ) Lemma 2.1 Let f be a smooth function such that t → f ( t ) t m ∈ L 1 loc (R 3 ). (2.19) If we set T 1 = f e T 1 r m and T 2 = f o T sgn(r) r m
, (with

f e = f (x)+f (-x) 2 and f o = f (x)-f (-x)
2

) if m is even, and

T 1 = f o T 1 r m and T 2 = f e T sgn(r) r m
otherwise, the radial distribution T defined by

T, ϕ := ω 2 2 T 1 + T 2 , r 2 ϕ o , ϕ ∈ S(R 3 ) verifies f ( t ) t m = T.
Proof:

We set j := inf ( inf u∈N u | f (u) (0) = 0}, m -2
and n := m -j -2. Let us notice that, from condition (2.19) and since either f (r) ∼ Cr j (Taylor's Theorem) or j = m -2, it becomes that 0 ≥ n.

(2.20)

1) First, we will show the result for

T := T 2 = f (r)T sgn(r) r m
(f even or odd, according to m).

From (5.33), we have (with g(r)

:= f (r) r j ) and s ∈ N such that m + s = j + 2), ω 2 2 f (r)T sgn(r) r m , r 2 ϕ o = ω 2 2 g(r)r s sgn(r), ϕ o = ω 2 2 - 0 -∞ g(u)u s ϕ o (u) du + +∞ 0 g(u)u s ϕ o (u) du = ω 2 2 - 0 -∞ f (u) u m ϕ o (u)u 2 du + +∞ 0 f (u) u m ϕ o (u)u 2 du = ω 2 +∞ 0 f (u) u m ϕ o (u)u 2 du = R 3 f ( t ) t m ϕ o ( t ) dt = R 3 f ( t ) t m ϕ(t) dt.
2) Similarly, for T := T 1 = f (r)T 1 r m (f even or odd, according to m), From (5.32) , we have (with

g(r) := f (r) r j ) and s ∈ N such that m + s = j + 2), ω 2 2 f (r)T 1 r m , r 2 ϕ o = ω 2 2 g(r)r s , ϕ o = ω 2 2 0 -∞ g(u)u s ϕ o (u) du + +∞ 0 g(u)u s ϕ o (u) du = ω 2 2 0 -∞ f (u) u m ϕ o (u)u 2 du + +∞ 0 f (u) u m ϕ o (u)u 2 du = ω 2 +∞ 0 f (u) u m ϕ o (u)u 2 du = R 3 f ( t ) t m ϕ o ( t ) dt = R 3 f ( t ) t m ϕ(t) dt.
• 3 Fourier transform of t → P (t) R(cos( t ,sin( t )

t m ∈ L 1 loc (R 3 ) Lemma 3.1 Let f be a smooth function and P ∈ C[X, Y, Z], such that t → P (t) f ( t ) t m ∈ L 1 loc (R 3 ). (3.21) If we set T 1 = f e T 1 r m and T 2 = f o T sgn(r) r m
, (with

f e = f (x)+f (-x) 2 and f o = f (x)-f (-x)
2

) if m is even, and

T 1 = f o T 1 r m and T 2 = f e T sgn(r) r m
otherwise, the radial distribution T defined by

T, ϕ := ω 2 2 T 1 + T 2 , r 2 ϕ o , ϕ ∈ S(R 3 ) verifies P (t) f ( t ) t m = P (t)T.
Proof: If P (0) = 0, it is a straightforward consequence of Lemma 2.1 ; hence, we will consider that P (0) = 0 in the sequel of this proof and, using the spherical coordinates, we then define the quantity

d ∈ N * by P (rX(ϕ, θ)) = r d h(X(ϕ, θ)). (3.22) We set j = inf ( inf u∈N u | f (u) (0) = 0}, m -2
and n := m -j -2. Let us notice that, from condition (3.21) and since either f (r) ∼ Cr j (Taylor's Theorem) or j = m -2, it becomes that d ≥ n.

(3.23)

If n ≤ 0, we will have t → f ( t ) t m ∈ L 1 loc (R 3 ), so that Lemma 2.1 can be, again, directly applied. Hence, in the sequel, we will assume always that n ≥ 1.

1) First, we will show the result for T := T 2 = f (r)T sgn(r) r m (f even or odd, according to m).

From (5.35), we have (with g(r)

:= f (r) r j ) ω 2 2 f (r)T sgn(r) r m , r 2 ϕ o = ω 2 2 g(r)T sgn(r) r n , ϕ o + (-1) n-1 ω 2 2 C(j + 2, n) δ (n-1) 0 , ϕ o (3.24)
and (with (5.37)),

T sgn(r) r n , g(r)ϕ o = lim ε→0 + r>ε g(r)ϕ o (r) + (-1) n+1 g(-r)ϕ o (-r) r n dr + 1 (n -1)! ln ε (gϕ o ) (n-1) (ε) + (gϕ o ) (n-1) (-ε) - n k=2 (k -2)! ε k-1 (gϕ o ) (n-k) (ε) + (-1) (k+1) (gϕ o ) (n-k) (-ε)
Since we have the following different cases :

m even m odd and f odd and f even j even j odd j even j odd g odd even even odd n even odd odd even and since ϕ o (r) = ϕ o (-r), we always have

g(r)ϕ o (r) + (-1) n+1 g(-r)ϕ o (-r) r n = ϕ o (r) g(r) + (-1) n+1 g(-r) r n = 2ϕ o (r)g(r) r n = 2 ϕ o (r)f (r) r m r 2 . So T sgn(r) r n , g(r)ϕ o = 2 ω 2 lim ε→0 + R 3 \B(0,ε) f ( x ) x m ϕ o ( x ) dx + 1 (n -1)! ln ε (gϕ o ) (n-1) (ε) + (gϕ o ) (n-1) (-ε) - n k=2 (k -2)! ε k-1 (gϕ o ) (n-k) (ε) + (-1) (k+1) (gϕ o ) (n-k) (-ε) = 2 ω 2 lim ε→0 + R 3 \B(0,ε) f ( x ) x m ϕ o ( x ) dx + F ε (gϕ o ) = 2 ω 2 lim ε→0 + R 3 \B(0,ε) f ( x ) x m ϕ o ( x ) dx + F ε (gϕ o )
But if we define the tempered distribution u by u, ϕ := lim

ε→0 + R 3 \B(0,ε) f ( x ) x m ϕ(x) dx + ω 2 2 F ε (gϕ o ) it is straightforward that u is radial distribution (clearly u • A = u for any A ∈ O(n), and from Proposition 1.2, u, ϕ = u, ϕ rad = lim ε→0 + R 3 \B(0,ε) f ( x ) x m ϕ o ( x ) dx + ω 2 2 F ε (gϕ o ) = ω 2 2 T sgn(r) r n , g(r)ϕ o . (3.25)
Putting togheter (3.24) and (3.25), we have

T, ϕ = u, ϕ + ω 2 2 C(j + 2, n)(-1) n-1 δ (n-1) 0 , ϕ o so, P T, ϕ = u, P ϕ + ω 2 2 C(j + 2, n)(-1) n-1 δ (n-1) 0 , (P ϕ) o =((P ϕ) o ) (n-1) (0)=0 = u, P ϕ .
The fact that ((P ϕ) o ) (n-1) (0) = 0 is a straightforward consequence of (3.23) and the following Lemma 3.2 (with g = 1).

Now, since we have lim ε→0 + F ε (gP ϕ o ) = 0 which is a consequence from the easy following lemma * * * Lemma 3.2 For all ∈ N such that l < d, there exists a smooth function h such that

g(P ϕ) o ( ) (ε) = h (ε)ε d-.

Proof:

By induction : for l = 0, since g is a smooth function (cf. Lemma 6.1), and

(P ϕ) o = 1 ω 2 S 2 P ϕ(εσ) dσ = 1 ω 2 2π 0 π 0 P ϕ(εΘ(θ, ψ)) sin(ϕ) dσ = ε d 1 ω 2 S 2 P (σ)ϕ(εσ) dσ
we have (it is straightforward that ε → 1 ω2 S 2 P (σ)ϕ(εσ) dσ is a smooth function)

g(P ϕ) o (ε) = h 0 (ε)ε d
with h 0 (ε) := g(ε) 1 ω2 S 2 P (σ)ϕ(εσ) dσ. For l + 1 :

g(P ϕ) o = (h (ε)ε d-) = h (ε)ε d-+ h (ε)ε d--1 = h +1 (ε)ε d-( +1) with h +1 (ε) := h (ε)ε + h (ε).
• * * * we have

P T, ϕ = lim ε→0 + R 3 \B(0,ε) f ( x ) x m P ϕ(x) dx = R 3 f ( x ) x m P ϕ(x) dx.
2) Similarly, we will show the result for T 1 = f (r)T 1 r m (f even or odd, according to m). From (5.34), we have (with g(r)

:= f (r) r j ) ω 2 2 f (r)T 1 r m , r 2 ϕ o = ω 2 2 g(r)T 1 r n , ϕ o (3.26)
and (with (5.36)),

T sgn(r) r n , g(r)ϕ o = lim ε→0 + r>ε g(r)ϕ o (r) -(-1) n+1 g(-r)ϕ o (-r) r n dr - 1 (n -1)! n-1 k=1 (k -1)! ε k (gϕ o ) (n-k-1) (ε) -(-1) k (gϕ o ) (n-k-1) (-ε)
Since we have the following different cases :

m even m odd and f even and f odd j even j odd j even j odd g even odd odd even n even odd odd even and since ϕ o (r) = ϕ o (-r), we always have

g(r)ϕ o (r) -(-1) n+1 g(-r)ϕ o (-r) r n = ϕ o (r) g(r) -(-1) n+1 g(-r) r n = 2ϕ o (r)g(r) r n = 2 ϕ o (r)f (r) r m r 2 . So T 1 r n , g(r)ϕ o = 2 ω 2 lim ε→0 + R 3 \B(0,ε) f ( x ) x m ϕ o ( x ) dx - 1 (n -1)! n-1 k=1 (k -1)! ε k (gϕ o ) (n-k-1) (ε) -(-1) k (gϕ o ) (n-k-1) (-ε) = 2 ω 2 lim ε→0 + R 3 \B(0,ε) f ( x ) x m ϕ o ( x ) dx + F ε (gϕ o ) = 2 ω 2 lim ε→0 + R 3 \B(0,ε) f ( x ) x m ϕ o ( x ) dx + F ε (gϕ o )
But if we define the tempered distribution u by u, ϕ := lim

ε→0 + R 3 \B(0,ε) f ( x ) x m ϕ(x) dx + ω 2 2 F ε (gϕ o )
it is straightforward that u is radial distribution (clearly u • A = u for any A ∈ O(n), and from Proposition 1.2, u, ϕ = u, ϕ rad = lim Now, since we have (using Lemma 3.2),

ε→0 + R 3 \B(0,ε) f ( x ) x m ϕ o ( x ) dx + ω 2 2 F ε (gϕ o ) = ω 2 2 T 1 r n , g(r)ϕ o . ( 3 
lim ε→0 + F ε (gP ϕ o ) = 0, then P T, ϕ = lim ε→0 + R 3 \B(0,ε) f ( x ) x m P ϕ(x) dx = R 3 f ( x )
x m P ϕ(x) dx.

• 4 Appendix 4.1 Distributions associated to 1

x n and sgn(x)

x n T 1 x n := (-1) n-1 (n -1)! ln(|x|) (n) 
(4.28)

T sgn(x)

x n

:= (-1) n-1 (n -1)! sgn(x) ln(|x|) (n) 
(4.29)

Remark 4.1 1. We then have directly de followings inductive properties

T 1 x n = -1 n -1 T 1 x n-1 (4.30) T sgn(x) x n = -1 n -1 T sgn(x)
x n-1

.

(4.31)

T 1

x n and T sgn(x)

x n sont des distributions tempérés car elles sont, à constantes près, issues respectivement des dérivations successives (au sens des distributions) des fonctions x → x ln(|x|) -x et x → |x| ln(|x|) -x qui sont continues et à croissance lente, donc ellesmêmes des distributions tempérées.

Proposition 4.2 1.

x n T 1 x n = 1 (4.32)

x n T sgn(x)

x n = sgn(x) (4.33)

2.

x n T 1

x m+n = T 1

x m (4.34)

x n T sgn(x)

x m+n = T sgn(x) x m -(-1) m-1 C(m, n)δ (m-1) 0 (4.35)
where δ 0 is the Dirac distribution in 0, with the convention δ Proof:

• 1.
Where Hn is the n-th Harmonic number :

Hn = 1 + 1 2 + • • • + 1 n .
Proposition 4.3 For all ϕ ∈ S(R), we have (with the conventions ϕ (0) = ϕ and b k=a f (k) = 0 if a > b) 1.

T 1

x n , ϕ = lim ε→0 + x>ε ϕ(x) -(-1) n-1 ϕ(-x)

x n dx (4.36)

- 1 (n -1)! n-1 k=1 (k -1)! ε k ϕ (n-1-k) (ε) -(-1) k ϕ (n-1-k) (-ε)
2.

T sgn(x)

x n , ϕ = lim (k -2)! ε k-1 ϕ (n-k) (ε) + (-1) (k-1) ϕ (n-k) (-ε)

Proof:

1. By induction (or direct calculation).

2. By induction.

• 5 Micellaneous

Lemma 5.1 Let f be a smooth function and j ∈ N * such that

f (0) = f (0) = • • • = f (j-1) (0) = 0
then the function

g : x → f (x)
x j is also smooth.

Proof:

The Taylor's Theorem with integral remainder gives f (x) =

x j j! (1 -t) j f (j) (tx) dt and the Leibniz integral rule, allows us to conclude the smoothness of g. •

FFourier

  Transform of a tempered distribution Let us recall that if T ∈ S (R n ) is a tempered distribution, we define de Fourier transform of F a,b n T by F a,b n T, ϕ := T, F a,b n ϕ (1.4)

  .27) With (3.26) and (3.27), we have directly T, ϕ = u, ϕ so, P T, ϕ = u, P ϕ .

δ 0 and with 1 C

 1 m+n-1 -H m-1 ) (m -1)! .

  1)! ln ε ϕ (n-1) (ε) + ϕ (n-1) (-ε) -n k=2

1 0( 1 -

 11 t) j f(j)