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Abstract

The aim of this work is twofold: proving the existence of solution (u, π) ∈ H1(Ω)×L2(Ω)
in bounded domains of R2 and the whole plane for the Oseen problem (O) for solenoidal
vector fields v in L2(Ω), and analyzing the same problem in bounded domains of Rn for
n = 2, 3 when h = 0, g = 0 and the solenoidal field v belongs to Ls(Ω) for s < n.
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1. Introduction

This work is dedicated to the study of some existence aspect related to the Oseen
problem in bounded domain Ω ⊂ Rn, n = 2, 3:

(O)−∆u + v · ∇u +∇π = f , ∇ · u = h in Ω, u = g on Γ.

In the 3-dimensional case, the existence of weak solutions (u, π) ∈ H1(Ω)×L2(Ω), regular
solution in H2(Ω) × H1(Ω) and W1,p(Ω) × Lp(Ω) (and intermediate Sobolev spaces)
together with the analysis of the existence of very weak solutions in Lp(Ω)×W−1,p(Ω)
have been analyzed by the authors in [1], assuming v a solenoidal field belonging to5

Ls(Ω) for s ≥ 3 (from now on, we will denote this solenoidal space by Lsσ(Ω)). However,
the existence of solution for the 2-dimensional Oseen system has not been attacked in
[1] because the “logical” assumption of considering the solenoidal field v ∈ L2(Ω) (in
order to obtain weak solutions for (O)) poses some difficulties in the treatment of the
convective term (v · ∇)u: On the one hand, it is not clear if the bilinear form associated10

is coercive and continuous. Some related results can be found in [2] for the scalar case
(instead of considering a vector field solution u, one considers a scalar unknown θ) and
for g = 0. On the other hand, when Ω = R2 an additional awkwardness appears because
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even if we can prove ∇u ∈ L2(R2), it is not evident that u ∈ Lp(R2) (for any p). Giving
a successful answer to both previous problems is our first aim.15

Our second aim is to give a first answer to the question of the existence of solution
for the Oseen problem (O) when v only belongs to Lsσ(Ω), with s < n and n = 2, 3.

2. Solutions for the Oseen problem in the 2-dimensional case

The existence of weak solutions in H1(Ω) for Problem (O) in 2-dimensional domains
is not known when a solenoidal field v that only belongs to L2(Ω) is considered. In this
case, the term (v · ∇)u belongs only to L1(Ω). It is then not clear neither if the bilinear
form associated to the Problem (O), with h = 0 and g = 0 :

a(u,w) =

∫
Ω

∇u · ∇w dx +

∫
Ω

(v · ∇)u ·w dx

is coercive on the space V(Ω) = {w ∈ H1
0(Ω); divw = 0 in Ω} nor if it is continuous on

V(Ω)×V(Ω). In order to overcome this difficulty, we use the Hardy space H1(R2). One
equivalent definition of such a space (in the n-dimensional case) is ([3]):

H1(Rn) = {f ∈ L1(Rn), Rjf ∈ L1(Rn), 1 ≤ j ≤ n} where Rj =
∂

∂xj
(−∆)−1/2.

A partial study of the BMO spaces (Bounded Mean Oscillation) will be also necessary
taking into account the duality between H1 and the BMO (see [4]). Moreover, the
VMO-space (Vanishing Mean Oscillator) is a subspace of the BMO: a function f in
BMO(Rn) is said to be in VMO(Rn) if

lim
r→0

sup
x0∈Rn

1

rn

∫
B(x0,r)

|f − f | dx = 0, where f =
1

|B(x0, r)|

∫
B(x0,r)

f.

It is also crucial the fact that H1(R2) ↪→ VMO(R2) (see [5]).
With these ingredients, we will prove one of the two main results of this work, namely20

Theorem 2.2 in bounded domains and Theorem 2.5 if Ω = R2. In order to prove them,
we use the following result:

Lemma 2.1. Assume v ∈ L2
σ(Ω) and y ∈ H1

0 (Ω). Then (v · ∇)y ∈ H−1(Ω) and

‖(v · ∇)y‖H−1(Ω) ≤ C ‖v‖L2(Ω)‖∇y‖L2(Ω). (1)

Moreover, we have that

〈v · ∇z, z〉H−1(Ω)×H1
0(Ω) = 0 for all z ∈ H1

0(Ω). (2)

Proof. Indeed, considering w ∈ L2(R2) the extension of v to R2 given by: w = v in
Ω, and w = ∇θ in Ω′ = R2\Ω where θ is the solution of the following problem:

∆θ = 0 in Ω′,
∂θ

∂n
= −v · n on Γ,
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with ∇θ ∈ L2(Ω′) that satisfies

‖∇θ‖L2(Ω′)≤ C‖v · n‖H−1/2(Γ) ≤ C ‖v‖L2(Ω)

because ∇·v = 0 in Ω. Moreover, ∇·v = 0 in Ω implies 〈v ·n, 1〉Γ = 0 and the existence
of θ is ensured by Theorem 3.1 [6]. Observe that ∇·w = 0 in R2 because for ϕ ∈ D(R2):

〈∇ ·w, ϕ〉 = −
∫

Ω

v · ∇ϕdx−
∫

Ω′
∇θ · ∇ϕdx = 〈v · n, ϕ〉Γ − 〈v · n, ϕ〉Γ = 0,

and ‖w‖L2(R2) ≤ C ‖v‖L2(Ω). On the other hand, we consider ỹ the extension by zero of
y that satisfies ỹ ∈ H1(R2). Using Theorem II.2 point 2) or Theorem II.1 point 2) in [3],
we can deduce that w · ∇ỹ ∈ H1(R2) and the bound

‖w · ∇ỹ‖H1(R2) ≤ C‖w‖L2(R2)‖∇ỹ‖L2(R2) ≤ C‖v‖L2(Ω)‖∇y‖L2(Ω).

Now, we have to prove that v · ∇y ∈ H−1(Ω) and 〈v · ∇y, y〉H−1(Ω)×H1
0 (Ω) = 0. Indeed,

for ϕ ∈ D(Ω)∣∣∣∣∫
Ω

ϕv · ∇y dx
∣∣∣∣ =

∣∣∣∣∫
R2

ϕ̃w · ∇ỹ dx
∣∣∣∣ ≤ ‖w · ∇ỹ‖H1(R2)‖ϕ̃‖BMO(R2)

≤ C‖v‖L2(Ω)‖∇y‖L2(Ω)‖ϕ̃‖H1(R2)

≤ C‖v‖L2(Ω)‖∇y‖L2(Ω)‖ϕ‖H1(Ω)

because H1(R2) ↪→ VMO(R2) ↪→ BMO(R2). In that way, as D(Ω) is dense in H1
0 (Ω),

we can deduce that v · ∇y ∈ H−1(Ω) and estimate (1).
For the proof of (2), let us consider zk ∈ D(Ω) be such that zk → z in H1

0(Ω). Then,

|〈v · ∇z, z〉H−1(Ω)×H1
0(Ω) − 〈v · ∇zk, zk〉H−1(Ω)×H1

0(Ω)|
≤ |〈v · ∇(z − zk), z〉H−1(Ω)×H1

0(Ω)|+ |〈v · ∇zk, (zk − z)〉H−1(Ω)×H1
0(Ω)|

Using (1) and the convergence of zk to z in H1
0(Ω), both duality terms on the right-25

hand-side of the previous inequality tend to 0 when k → +∞.
Finally, from 〈v · ∇zk, zk〉H−1(Ω)×H1

0(Ω) = 0, we can deduce (2). 2

Theorem 2.2 (Existence of weak solution for (O)). Let Ω be a Lipschitz bounded
domain in R2. Let

f ∈ H−1(Ω), v ∈ L2
σ(Ω), h ∈ L2(Ω) and g ∈ H1/2(Γ)

satisfy the compatibility condition∫
Ω

h(x) dx =

∫
∂Ω

g · n dσ. (3)

Then, the problem (O) has a unique solution (u, π) ∈ H1(Ω)×L2(Ω)/R. Moreover, there
exist some constants C1 > 0 and C2 > 0 such that:

‖u‖H1(Ω)≤C1

(
‖f‖H−1(Ω) +

(
1 + ‖v‖L2(Ω)

)(
‖h‖L2(Ω) + ‖g‖H1/2(Γ)

) )
, (4)

‖π‖L2(Ω)/R≤C2

(
‖f‖H−1(Ω) +

(
1 + ‖v‖L2(Ω)

)(
‖h‖L2(Ω) + ‖g‖H1/2(Γ)

) )
, (5)

where C1 = C(Ω) and C2 = C1

(
1 + ‖v‖L2(Ω)

)
.30
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Proof. Although some parts of this proof are identical to the proof made in [1], we
include the whole argument here for completeness. In order to prove the existence of
solution, first (using Lemma 3.3 in [7], for instance) we lift the boundary and the diver-
gence data. Then, there exists u0 ∈ H1(Ω) such that ∇ ·u0 = h in Ω, u0 = g on Γ and:

‖u0‖H1(Ω) ≤ C
(
‖h‖L2(Ω) + ‖g‖H1/2(Γ)

)
. (6)

Therefore, it remains to find (z, π) = (u− u0, π) in H1
0(Ω)× L2(Ω) such that:

−∆z + v · ∇z +∇π = F and ∇ · z = 0 in Ω, z = 0 on Γ. (7)

being F = f + ∆u0− (v · ∇)u0. From Lemma 2.1, we deduce that (v · ∇)u0 ∈ H−1(Ω),
then F ∈ H−1(Ω). Since the space Dσ(Ω) = {ϕ ∈ D(Ω); ∇ · ϕ = 0} is dense in the
space V(Ω), the previous problem is equivalent to:

Find z ∈ V(Ω) such that: ∀ϕ ∈ V(Ω)∫
Ω

∇z · ∇ϕ dx + 〈(v · ∇)z,ϕ〉H−1(Ω)×H1
0(Ω) = 〈F ,ϕ〉H−1(Ω)×H1

0(Ω).

Now, using (2) by Lax-Milgram’s Theorem, if we assume that F ∈ H−1(Ω), then we
can deduce the existence of a unique z ∈ H1

0(Ω) solution of (7) verifying:

‖z‖H1(Ω) ≤ C ‖F ‖H−1(Ω)

≤ C
(
‖f‖H−1(Ω) +

(
1 + ‖v‖L2(Ω)

) (
‖h‖L2(Ω) + ‖g‖H1/2(Γ)

) )
,

(8)

which added to estimate (6) makes (4). We can recover the pressure π thanks to the De
Rham’s Lemma (see Lemma 6 in [1] and Corollary III.5.1 in [8]). Now, −∆z+v·∇z−F ∈
H−1(Ω) and:

∀ϕ ∈ V(Ω), 〈−∆z + v · ∇z − F ,ϕ〉H−1(Ω)×H1
0(Ω) = 0.

Thanks to De Rham’s Lemma, there exists a unique π ∈ L2(Ω)/R such that

−∆z + v · ∇z +∇π = F

with ‖π‖L2(Ω)/R ≤ C ‖∇π‖H−1(Ω). Finally, estimate (5) follows from the previous equa-
tion and estimate (8) for z. 2

With the same procedure than in [1], we can prove strong and weak-W 1,p(Ω) regu-
larity for (O) in the 2-dimensional bounded case. These results can be stated as follows:

Theorem 2.3 (Existence of strong solution for (O)). Let p > 1,

f ∈ Lp(Ω), h ∈W 1,p(Ω), v ∈ Lsσ(Ω) and g ∈W2−1/p,p(Γ)

satisfying the compatibility condition (3) with s = 2 if p < 2, s = p if p > 2 and s = 2+ε
(ε > 0) if p = 2. Then, the unique solution of (O) given by Theorem 2.2 (u, π) belongs
to W2,p(Ω)×W 1,p(Ω), and there exists a constant C > 0 such that:

‖u‖W2,p(Ω) + ‖π‖W 1,p(Ω)/R ≤ C
(
1 + ‖v‖Ls(Ω)

)
×

(
‖f‖Lp(Ω) +

(
1 + ‖v‖Ls(Ω)

) (
‖h‖W 1,p(Ω) + ‖g‖W2−1/p,p(Γ)

))
4



Theorem 2.4. Let

p > 1, f ∈W−1,p(Ω), h ∈ Lp(Ω), v ∈ L3
σ(Ω) and g ∈W1−1/p,p(Γ)

satisfying the compatibility condition (3). Then, the problem (O) has a unique solution
(u, π) ∈W1,p(Ω)× Lp(Ω)/R, and there exists a constant C > 0 such that:

‖u‖W1,p(Ω) +
(
1 + ‖v‖L3(Ω)

)γ ‖π‖Lp(Ω)/R ≤ C
(
1 + ‖v‖L3(Ω)

)
×

(
‖f‖W−1,p(Ω) +

(
1 + ‖v‖L3(Ω)

) (
‖h‖Lp(Ω) + ‖g‖W1−1/p,p(Γ)

))
with γ = 0 if p ≥ 2 and γ = −1 if p < 2.35

If we treat the case of Ω = R2, we have to introduce the Sobolev spaces:

W 1,2
0 (R2) =

{
ϕ ∈ D′(R2);

ϕ

w1
∈ L2(R2), ∇ϕ ∈ L2(R2)

}
,

W 2,2
0 (R2) =

{
ϕ ∈ D′(R2);

ϕ

w2
∈ L2(R2),

∇ϕ
w1
∈ L2(R2, ∇2ϕ ∈ L2(R2)

}
,

where w1 = (1+ |x|) ln(2+ |x|) and w2 = (1+ |x|)2 ln(2+ |x|) (see Definition (7.1),p. 593
in [9]). We denote by W−1,2

0 (R2) the dual space of W 1,2
0 (R2). Recall ([5]) that the space

W 1,2
0 (R2) is densely embedded in VMO(R2), and therefore H1(R2) =

[
VMO(R2)

]′
↪→

W−1,2
0 (R2).

Theorem 2.5 (Case Ω = R2). i) Let

f = divF with F ∈ L2(R2) and h ∈ L2(R2).

Then, the problem (O) has a unique solution (u, π) satisfying u ∈ W1,2
0 (R2) and π ∈

L2(R2), where π is unique and u is unique up to an additive constant vector field.
ii) Moreover, if

f ∈ H1(R2) and ∇h ∈ H1(R2),

then

∇2u ∈ H1(R2), ∇π ∈ H1(R2), ∇u ∈ L2,1(R2) and u ∈ L∞(R2), (9)

being L2,1(R2) is the Lorentz space of all measurable functions f satisfying∫ ∞
0

t−1/2f∗(t) dt < +∞,

where the rearrangement function f∗ is defined by f∗(t) = sup{s ∈ (0,∞); µ({x ∈40

R2; |f(x)| > s}) > t}, for µ the Lebesgue measure on R2.

Proof. i) Existence: Let χ ∈ W 2,2
0 (R2) be the unique solution, up to a polynomial

function of degree one, of ∆χ = h in R2 (see Theorem 9.6 in [9]). Then, we take
uh = ∇χ ∈W 1,2

0 (R2). Problem (O) is then written as:

−∆z + v · ∇z +∇π = k, ∇ · z = 0 in R2,
5



with k = f+∆uh−v ·∇uh. Because of (v ·∇)uh ∈ H1(R2) ↪→W−1,2
0 (R2), by using Lax-

Milgram’s Lemma (as in the bounded case) we can deduce the existence of a solution
z ∈ W 1,2

0 (R2) with ∇ · z = 0, unique up to a constant vector of R2. Lax-Milgram’s
Lemma hypotheses are satisfied because, on the one hand, we know that the quotient45

norm ‖z‖W 1,2
0 (R2)/R2 is equivalent to that one defined as ‖∇z‖L2(R2), and, on the other

hand, (v · ∇)z ∈ H1(R2) for any z ∈W 1,2
0 (R2). The pressure can be recovered by using

Theorem 1 in [10].

ii) Regularity: Assume that f ∈ H1(R2) and ∇h ∈ H1(R2) (which, in particular, implies
that h ∈ L2,1(R2)). Therefore,

−∆u +∇π = f − v · ∇u ∈ H1(R2) and ∇ · u = h.

By using Theorem 3.14 in [10], one deduces (9).

3. The Oseen problem in bounded domains for a less regular v50

The aim of this section is the analysis of the existence of solutions of (O) in a bounded
domain (n = 2 or 3) when v ∈ Lsσ(Ω) for s < n. We analyze the case for f ∈ H−1(Ω),
h = 0 and g = 0. Observe that the term (v ·∇)u can also be written as ∇· (u⊗v). The
proof of Theorem 3.2 (n = 2) applies directly from that one of Theorem 3.1 (n = 3).

Theorem 3.1. Let Ω ⊂ R3 a Lipschitz bounded domain,

f ∈ H−1(Ω), h = 0, g = 0 and v ∈ L6/5+α
σ (Ω)

for any 0 < α ≤ 9/5. Then, there exists a solution of (O) such that (u, π) ∈ H1
0(Ω) ×

Lq(α)(Ω)/R for q(α) = (6(6 + 5α))/(36 + 5α) with the estimate:

‖u‖H1(Ω) + ‖π‖Lq(α)(Ω)/R ≤ C
(
1 + ‖v‖L6/5+α(Ω)

)
‖f‖H−1(Ω) (10)

Proof. We approximate v by vλ ∈ Dσ(Ω) in the L6/5+α(Ω)-norm and look for the
solution of the problem:

(Oλ) −∆uλ +∇ · (uλ ⊗ vλ) +∇πλ = f and ∇ · uλ = 0 in Ω, uλ = 0 on Γ

Taking uλ as test function in (Oλ), we get the estimate:

‖uλ‖H1
0(Ω) ≤ C(Ω) ‖f‖H−1(Ω). (11)

By De Rham Theorem, there exists πλ ∈ L2(Ω) (unique up to a constant) such that:

∇πλ = f + ∆uλ −∇ · (uλ ⊗ vλ).

Moreover, vλ⊗uλ belongs to a bounded set of Lq(α)(Ω) with q(α) = (6(6+5α))/(36+
5α) and which implies that ∇· (vλ⊗uλ) belongs to a bounded set of W−1,q(α)(Ω). Note
that if 0 < α ≤ 9/5 then 1 < q(α) ≤ 2. Using (11),

‖∇πλ‖W−1,q(α)(Ω) ≤ C1 (1 + C(Ω)) ‖f‖H−1(Ω) + ‖uλ ⊗ vλ‖Lq(α)(Ω)

≤ C1 (1 + C(Ω)) ‖f‖H−1(Ω) + C2 ‖vλ‖L6/5+α(Ω)‖uλ‖H1
0(Ω)

≤ C(Ω)
(
1 + ‖v‖L6/5+α(Ω)

)
‖f‖H−1(Ω)

(12)

6



where C1 and C2 are the constant of the Sobolev embeddings H−1(Ω) ↪→W−1,q(α)(Ω)
and H1

0(Ω) ↪→ L6(Ω), respectively. Therefore, from (12) we obtain:

inf
K∈R
‖πλ +K‖Lq(α)(Ω) ≤ C(Ω)

(
1 + ‖v‖L6/5+α(Ω)

)
‖f‖H−1(Ω)

Now, it is necessary to take the limit when λ→ 0: We can extract a subsequence of (uλ)
and (πλ + Cλ) (that will be called in the same way that the original one) such that:

uλ ⇀ u in H1
0(Ω), πλ + Cλ ⇀ π in Lq(α)(Ω),

where (u, π) is solution of (O) and satisfies (10). �55

Theorem 3.2. Let Ω ⊂ R2 a Lipschitz bounded domain, f ∈ H−1(Ω), h = 0, g = 0
and v ∈ L1+α

σ (Ω) with 0 < α ≤ 1. Then, there exists a solution of (O) such that
(u, π) ∈ H1

0(Ω)× Lq(β)(Ω)/R for q(β) = 1 + β, for any 0 < β < α, with the estimate:

‖u‖H1(Ω) + ‖π‖Lq(β)(Ω)/R ≤ C
(
1 + ‖v‖L1+α(Ω)

)
‖f‖H−1(Ω)
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