
HAL Id: hal-02494785
https://hal.science/hal-02494785

Submitted on 29 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stokes and Navier-Stokes equations with Navier
boundary condition Equations de Stokes et de

Navier-Stokes avec la condition de Navier
Paul Acevedo, Chérif Amrouche, Carlos Conca, Amrita Ghosh

To cite this version:
Paul Acevedo, Chérif Amrouche, Carlos Conca, Amrita Ghosh. Stokes and Navier-Stokes equations
with Navier boundary condition Equations de Stokes et de Navier-Stokes avec la condition de Navier.
Comptes Rendus. Mathématique, 2019. �hal-02494785�

https://hal.science/hal-02494785
https://hal.archives-ouvertes.fr


Stokes and Navier-Stokes equations with Navier boundary
condition

Equations de Stokes et de Navier-Stokes avec la condition de
Navier
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Abstract

In this paper, we study the stationary Stokes and Navier-Stokes equations with non-homogeneous Navier boundary
condition in a bounded domain Ω ⊂ R3 of class C1,1 from the viewpoint of the behavior of solutions with respect
to the friction coefficient α. We first prove the existence of a unique weak solution (and strong) in W 1,p(Ω) (and
W 2,p(Ω)) of the linear problem for all 1 < p <∞ considering minimal regularity of α, using some inf-sup condition
concerning the rotational operator. Furthermore, we deduce uniform estimates of the solutions for large α which
enables us to obtain the strong convergence of Stokes solutions with Navier slip boundary condition to the one
with no-slip boundary condition as α→∞. Finally, we discuss the same questions for the non-linear system. To
cite this article: P. Acevedo, C. Amrouche, C. Conca, A. Ghosh, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
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Résumé

Dans cette note, nous étudions les équations stationnaires de Stokes et de Navier-Stokes avec une condition
aux limites non homogène de Navier dans un domaine borné Ω ⊂ R3 de classe C1,1, dont le comporte-
ment des solutions par rapport au coefficient de friction α. Nous prouvons, d’abord dans le cas linéaire,
l’existence d’une solution faible (et d’une solution forte) unique dans W 1,p(Ω) (et W 2,p(Ω)) pour tout
1 < p < ∞ en supposant α le moins régulier possible et en utilisant une condition inf-sup concernant
l’opérateur rotationnel. De plus, nous déduisons des estimations uniformes des solutions pour α grand
qui nous permettent d’obtenir la convergence forte des solutions de Stokes avec la condition de glissement
vers les solutions vérifiant la condition d’adhérence lorsque α→∞. Finalement, nous étudions les mêmes
questions pour le système non linéaire. Pour citer cet article : P. Acevedo, C. Amrouche, C. Conca, A.
Ghosh, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

1. Introduction

Let Ω be a bounded domain in R3 with boundary Γ, possibly not connected, of class C1,1. Consider the
stationary Stokes equation with Navier boundary condition{

−∆u+∇π = f + div F, div u = 0 in Ω

u · n = 0, [(2Du+ F)n]τ + αuτ = h on Γ
(S)

and the stationary Navier-Stokes equation with Navier boundary condition{
−∆u+ u · ∇u+∇π = f + div F, div u = 0 in Ω,

u · n = 0, [(2Du+ F)n]τ + αuτ = h on Γ
(NS)

where u and π are the velocity field and the pressure of the fluid respectively, f and F are the external
forces acting on the fluid, h is a given tangential vector field, n and τ are the unit outward normal and
tangent vectors on Γ respectively and Du = 1

2 (∇u + ∇uT ) is the rate of strain tensor. Here, α is the
coefficient which measures the tendency of the fluid to slip on the boundary, called friction coefficient.

This boundary condition was proposed by C. Navier [8], therefore usually referres as Navier (slip)
boundary condition (NBC). The very first work concerning NBC was done by Solonnikov and Ščadilov
[10] for α = 0 where the authors considered stationary Stokes system with Dirichlet condition on some part
of the boundary and Navier condition on the other part and showed existence of weak solution in H1(Ω)
which is regular (belongs to H2

loc(Ω)) up to some part of the boundary (except in the neighbourhood of
the intersection of the two part). From then, several studies have been made on the wellposedness of the
problem, for example [4] (with α = 0 and flat boundary), [1] (with α = 0 and weak, strong and very weak
solution), [3] (with α ≥ 0 constant and for p = 2), [7] (for Navier type boundary conditions). In some
sense, this note generalizes the work in [5].

In the current work, we want to study the systems (S) and (NS) where the friction coefficient α is a
non-smooth function. It is reasonable to consider α which rather than being constant depends on the
boundary, for example in the case of porous media or domain with rough boundary which occurs in many
physical phenomenon. Beside systematic study of the system (S) or (NS), one of the main goal of this
note is to understand how the solutions behave with respect to α. Namely, we can see formally that NBC
reduces to the Dirichlet boundary condition as α → ∞ and in this article, we prove this rigorously by
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obtaining precise estimates on the solution with respect to α. Therefore we may hope the possibility to
transport some interesting properties, true for the Navier-Stokes problem with NBC to one with no-slip
boundary condition.

2. Linear problem

Since the case α ≡ 0 on Γ has already been studied in [1], here we consider that α 6≡ 0. Precisely, we
assume

α ≥ 0 on Γ and α > 0 on some Γ0 ⊂ Γ with |Γ0| > 0.

Let us introduce the notations:

Lp0(Ω) :=

v ∈ Lp(Ω);

∫
Ω

v = 0


and

β(x) = b× x
in the case Ω is axisymmetric with respect to a constant vector b ∈ R3. Our first main result is the
existence, uniqueness and the estimates of weak solutions of the Stokes problem (S). For that, we need
the following regularity assumption on α:

α ∈ Lt(p)(Γ) with


t(p) = 2 if p = 2

t(p) > 2 if
3

2
≤ p ≤ 3, p 6= 2

t(p) >
2

3
max{p, p′} otherwise

(1)

and where t(p) = t(p′). Moreover, we assume F ∈ Lp(Ω) is a 3× 3 matrix, h · n = 0 on Γ and

f ∈ Lr(p)(Ω) with


r(p) = max

{
1,

3p

p+ 3

}
if p 6= 3

2

r(p) > 1 if p =
3

2
.

(2)

Note that we can always reduce the non vanishing divergence problem to the problem with zero diver-
gence condition considering a suitable Neumann problem.
Theorem 2.1 (Existence and estimate of weak solution of Stokes problem) Let p ∈ (1,∞) and

f ∈ Lr(p)(Ω), F ∈ Lp(Ω), h ∈W− 1
p ,p(Γ) and α ∈ Lt(p)(Γ)

where r(p) and t(p) are defined in (2) and (1) respectively. Then the Stokes problem (S) has a unique
solution (u, π) ∈W 1,p(Ω)× Lp0(Ω) which satisfies the following estimates:
a) if Ω is not axisymmetric, then

‖u‖W 1,p(Ω) + ‖π‖Lp(Ω) ≤ Cp(Ω)

(
‖f‖Lr(p)(Ω) + ‖F‖Lp(Ω) + ‖h‖

W
− 1
p
,p

(Γ)

)
.

b) if Ω is axisymmetric and

i) α ≥ α∗ > 0 on Γ, then

‖u‖W 1,p(Ω) + ‖π‖Lp(Ω) ≤
Cp(Ω)

min{2, α∗}

(
‖f‖Lr(p)(Ω) + ‖F‖Lp(Ω) + ‖h‖

W
− 1
p
,p

(Γ)

)
.
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ii) f ,F and h satisfy the condition:∫
Ω

f · β −
∫
Ω

F : ∇β + 〈h,β〉Γ = 0

and α is a non-zero constant, then

‖u‖W 1,p(Ω) + ‖π‖Lp(Ω) ≤ Cp(Ω)

(
‖f‖Lr(p)(Ω) + ‖F‖Lp(Ω) + ‖h‖

W
− 1
p
,p

(Γ)

)
where Cp(Ω) > 0 is independent of α.

Moreover, if

f ∈ Lp(Ω), h ∈W 1− 1
p ,p(Γ) and α ∈W 1− 1

q ,q(Γ)

with q > 3
2 if p ≤ 3

2 and q = p otherwise, then the solution (u, π) of (S) with F = 0 belongs to W 2,p(Ω)×
W 1,p(Ω), satisfying similar estimates as above.

Idea of the proof. The existence and uniqueness of a weak solution in H1(Ω) follows from Lax-
Milgram Lemma. For p > 2, we study a more general system where we use the inf-sup condition involving
curl operator, deduced in [2]; and then for p < 2, a duality argument is employed as the bilinear form
associated to the system (S) is symmetric.

Next, the existence of strong solution for more regular data is deduced using bootstrap argument.
For the uniform bounds with respect to α, we first obtain the following Caccioppoli-type inequality up

to the boundary, for Stokes system, where we use some suitable pressure estimate∫
B∩Ω

|u|2 + |Du|2 ≤ C(Ω)

 1

r2

∫
2B∩Ω

|u|2 +

∫
2B∩Ω

|F|2
 .

Here B is a ball centered on the boundary with radius r. From this, we then deduce the following weak
Reverse Hölder inequality 1

r3

∫
B∩Ω

(
|u|2 + |Du|2

)p/21/p

≤ Cp(Ω)


 1

r3

∫
2B∩Ω

|u|2 + |Du|2
1/2

+

 1

r3

∫
2B∩Ω

|F|p
1/p

 .
This along with the uniform H1-estimate finally enables us to prove the desired estimate.

The above Caccioppoli inequality has been deduced for Stokes equation with Dirichlet boundary con-
dition up to the boundary, for example in [6]. But it is new in case of Navier boundary condition and the
novelty of our work is that we have employed it suitably to obtain the α-independent estimate.

In the following theorem, we derive some inf-sup condition from the above estimate result for weak
solution which we believe is quite interesting on its own. We use the notation:

W1,p
σ,τ (Ω) := {v ∈W 1,p(Ω) : div v = 0 in Ω,v · n = 0 on Γ}

endowed with the norm of W 1,p(Ω).
Theorem 2.2 Let p ∈ (1,∞) and α ∈ Lt(p)(Γ). We have the following inf-sup condition: when either (i)
Ω is not axisymmetric or (ii) Ω is axisymmetric and α ≥ α∗ > 0,

inf
u∈W1,p

σ,τ (Ω)
u6=0

sup
ϕ∈W1,p′

σ,τ (Ω)
ϕ6=0

∣∣2 ∫
Ω
Du : Dϕ+

∫
Γ
αuτ ·ϕτ

∣∣
‖u‖W1,p

σ,τ (Ω) ‖ϕ‖W1,p′
σ,τ (Ω)

≥ γ(Ω, p) (3)

where the positive constant γ(Ω, p) does not depend on α.
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Idea of the proof. We make use of the relation, for any v ∈ W 1,p(Ω) with ∆v ∈ Lr(p)(Ω) and
v · n = 0 on Γ,

2 [(Dv)n]τ = curl v × n− 2Λv in W− 1
p ,p(Γ)

to convert the Navier boundary condition into one involving curl operator and then use the known inf-sup
condition for the operator curl:

inf
ϕ∈V p′ (Ω)

ϕ6=0

sup
ξ∈W1,p

σ,τ (Ω)
ξ6=0

∫
Ω

curl ξ · curl ϕ

‖ξ‖W1,p
σ,τ (Ω)‖ϕ‖V p′ (Ω)

≥ C

where
V p′(Ω) :=

{
v ∈W1,p′

σ,τ (Ω); 〈v · n, 1〉Σj = 0 ∀ 1 ≤ j ≤ J
}

and Σj are the cuts in Ω such that the open set Ω0 = Ω\
J⋃
j=1

Σj is simply connected (for details, see [2]).

3. Non-linear problem

Now we state our results regarding the Navier-Stokes problem (NS) which are based on the linear
problem. In order to do so, we need the following estimates providing some suitable equivalent H1(Ω)
norm:
Proposition 3.1 Let Ω be Lipschitz. For Ω axisymmetric, we have the following inequalities: for all
u ∈H1(Ω) with u · n = 0 on Γ,

‖u‖2L2(Ω) ≤ C

‖Du‖2L2(Ω) +

∫
Ω

u · β

2


and

‖u‖2L2(Ω) ≤ C

‖Du‖2L2(Ω) +

∫
Γ

u · β

2
 .

Theorem 3.1 (Existence of solution of Navier-Stokes problem and estimate) Let p ∈ ( 3
2 ,∞)

and
f ∈ Lr(p)(Ω), F ∈ Lp(Ω), h ∈W− 1

p ,p(Γ) and α ∈ Lt(p)(Γ).

1. Then the problem (NS) has a solution (u, π) ∈W 1,p(Ω)× Lp0(Ω).
2. Also for any p ∈ (1,∞), if F = 0 and

f ∈ Lp(Ω), h ∈W 1− 1
p ,p(Γ) and α ∈W 1− 1

q ,q(Γ)

with q > 3
2 if p ≤ 3

2 and q = p otherwise, then (u, π) ∈W 2,p(Ω)×W 1,p(Ω).
3. For p = 2, the weak solution (u, π) ∈ H1(Ω) × L2

0(Ω) satisfies the following estimate: if Ω is not
axisymmetric, then

‖u‖H1(Ω) + ‖π‖L2(Ω) ≤ C(Ω)
(
‖f‖

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

)
(1)

where the constant C(Ω) > 0 is independent of α.
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Remark 1 We also obtain the estimate (1) in the case when Ω is axisymmetric and either (i) α ≥ α∗ > 0
on Γ or (ii) α is a non-zero constant and f ,F and h satisfy the condition:∫

Ω

f · β −
∫
Ω

F : ∇β + 〈h,β〉Γ = 0.

Idea of the proof. First we show the existence of a solution for p = 2. The problem (NS) is equivalent
to the following variational formulation: for all ϕ ∈ H1

σ,τ (Ω) := W1,2
σ,τ (Ω),

2

∫
Ω

Du : Dϕ+ b(u,u,ϕ) +

∫
Γ

αuτ ·ϕτ =

∫
Ω

f ·ϕ−
∫
Ω

F : ∇ϕ+ 〈h,ϕ〉Γ .

Using standard arguments i.e. by Galerkin method, we construct an approximate solution and then pass
to the limit to obtain a solution of the above problem; and for p > 2, we can improve the integrability
using the regularity of linear problem.

Note that, existence of weak solution inW 1,p(Ω) for 3
2 < p < 2 is not trivial and we use the construction

developed in [9]. Then the regularity for strong solution follows using bootstrap argument.
For the α independent estimates, in the case of Ω not axisymmetric, as ‖Du‖L2(Ω) is an equivalent

norm on H1(Ω) by Korn inequality, we obtain the required estimate from the variational formulation.
Similarly, the estimates for Ω axisymmetric can be deduced from the inequalities in Proposition 3.1.

Our last main result is the strong convergence of (NS) to the Navier-Stokes equation with no-slip
boundary condition when α grows large. This can be shown using the estimates proved above.
Theorem 3.2 (Limiting case for Navier-Stokes problem) Let p ≥ 2, α be a constant and (uα, πα)
be a solution of (NS) where

f ∈ Lr(p)(Ω), F ∈ Lp(Ω) and h ∈W− 1
p ,p(Γ).

Then
(uα, πα)→ (u∞, π∞) in W 1,p(Ω)× Lp0(Ω) as α→∞

where (u∞, π∞) is a solution of the Navier-Stokes problem with Dirichlet boundary condition,
−∆u∞ + u∞ · ∇u∞ +∇π∞ = f + div F in Ω,

div u∞ = 0 in Ω,

u∞ = 0 on Γ.

Remark 2 The above technique can also be used to handle the non-linear dependence of α, as in the case
of law-walls used in turbulence, under suitable modification (work in progress).
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